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Abstract

The Grothendieck–Serre formula for the difference between the Hilbert function and
Hilbert polynomial of a graded algebra is generalized for bigraded standard algebras. This
is used to get a similar formula for the difference between the Bhattacharya function and
Bhattacharya polynomial of twom-primary idealsI andJ in a local ring(A,m) in terms
of local cohomology modules of Rees algebras ofI andJ . The cohomology of a variation
of the Kirby–Mehran complex for bigraded Rees algebras is studied which is used to
characterize the Cohen–Macaulay property of bigraded Rees algebra ofI andJ for two
dimensional Cohen–Macaulay local rings.
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1. Introduction

Let R = ⊕
n�0Rn be a finitely generated standard graded algebra over an

Artinian local ringR0. Letλ denote length. The Hilbert function ofR, H(R,n)=
λR0(Rn), is given by a polynomialP(R,n) for n � 0. The Grothendieck–
Serre formula expresses the differenceH(R,n) − P(R,n) in terms of lengths
of graded components of the local cohomology modules ofR with support in the
irrelevant idealR+ = ⊕

n>0Rn of R. We shall prove a version of this formula in
Section 2 for bigraded standard algebras over Artinian local rings. We need this
generalization to find necessary and sufficient conditions for the Cohen–Macaulay
property of bigraded Rees algebras. These conditions involve the coefficients of
the Bhattacharya polynomial of twom-primary ideals in a local ring(R,m).

To be more precise, letI and J be m-primary ideals in ad-dimensional
local ring (R,m). The functionB(r, s) = λ(R/IrJ s) is called the Bhattacharya
function of I andJ [B]. Bhattacharya proved in [B] that this function is given
by a polynomialP(r, s) for r, s � 0. We represent the Bhattacharya polynomial
P(r, s) corresponding toB(r, s) by

P(r, s) =
∑

i+j�d

eij

(
r

i

)(
s

j

)

where eij ∈ Z. The integerseij for which i + j = d were termed as mixed
multiplicities of I andJ by Teissier and Risler in [T]. We writeej (I |J ) for eij
wheni + j = d .

The bigraded version of the Grothendieck–Serre formula, proved in Section 2,
allows us to express the difference of the Bhattacharya function and Bhattacharya
polynomial of twom-primary idealsI and J in terms of lengths of bigraded
components of local cohomology modules of the extended Rees algebra ofI

andJ. This is done in Section 5 of the paper.
In Section 3 we prove some preliminary results about Ratliff–Rush closure of

products of ideals. In Section 4 we present a variation on a complex first defined
by Kirby and Mehran in [KM]. The cohomology of this complex is related to the
local cohomology of Rees algebras of two ideals. An analysis of this relationship
yields a formula for the constant term of the Bhattacharya polynomialP(r, s).
This formula is used to prove the characterization of Cohen–Macaulay property
of bigraded Rees algebras mentioned above.

2. Grothendieck–Serre difference formula for bigraded algebras

We begin by establishing the notation for bigraded algebras. A ringA is called
a bigraded algebra ifA = ⊕

r,s∈Z
A(r,s) where eachA(r,s) is an additive subgroup

of A such thatA(r,s) ·A(l,m) ⊆A(r+l,s+m) for all (r, s), (l,m) ∈ Z2. We say thatA
is a standard bigraded algebra ifA is finitely generated, as anA(0,0)-algebra, by
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elements of degree(1,0) and(0,1). The elements ofA(r,s) are called bihomoge-
neous of degree(r, s). An idealI of A is said to be bihomogeneous ifI is gener-
ated by bihomogeneous elements. The ideal ofA generated by elements of degree
(r, s), wherer+s � 1 is denoted byA+ and the ideal generated by elements of de-
gree(r, s), wherer, s � 1 is denoted byA++. An A-moduleM is called bigraded
if M = ⊕

r,s∈Z
M(r,s), whereM(r,s) are additive subgroups ofM satisfyingA(r,s) ·

M(l,m) ⊆M(r+l,s+m) for all r, s, l,m ∈ Z. It is known that whenA(0,0) is Artinian
andM is a finitely generated bigradedA-module, the functionλA(0,0) (M(r,s)),
called Hilbert function ofM, is finite for all r, s and coincides with a polynomial
for r, s � 0. In this section we express the difference between the Hilbert function
and the Hilbert polynomial in terms of the Euler characteristic of local cohomol-
ogy modules. For an idealI in A and anA-moduleM, let Hi

I (M) denote theith
local cohomology module ofM with respect toI . We refer the reader to [BS] for
properties of local cohomology modules. Note that whenI is a bihomogeneous
ideal in a bigraded algebraA andM is a bigradedA-module, the local cohomol-
ogy modulesHi

I (M) have a natural bigraded structure inherited fromA andM.
Throughout this section(A,m) will denote ad-dimensional Noetherian local

ring unless stated otherwise. LetX = (X1, . . . ,Xm) and Y = (Y1, . . . , Yn) be
two sets of indeterminates. LetR = A[X1, . . . ,Xm,Y1, . . . , Yn]. We assign the
grading degXi = (1,0) for i = 1, . . . ,m and degYi = (0,1) for i = 1, . . . , n so
thatR is a standard bigraded algebra. We writeR(r,s) for theA-module generated
by products of monomials of degreer in X and degrees in Y . In the next lemma
we establish finite generation overA of the bigraded components of the local
cohomology modules ofR with respect toX andY , respectively.

The results in this section are not new. They are folklore in the multigraded
case. Lemma 2.1 follows from [CHT, Lemma 2.2 and Corollary 2.3] whenA

is a field. Theorem 2.3 and Theorem 2.4 follow from [KT, Lemma 4.2 and
Lemma 4.3]. We refer the reader to [O2, Lemma 2.1], [Sn, Theorem 9.1] and
[K, Section 1].

Although the results in the section are not new, we have provided easy proofs
so that these results are accessible to readers not familiar with sheaf cohomology.

Lemma 2.1. LetR =A[X1, . . . ,Xm,Y1, . . . , Yn]. Then

(i) Hi
X(R)= 0 for all i �=m andHi

Y (R)= 0 for all i �= n.
(ii) Hm

X (R)(r,s) = 0 for all r >−m and,Hn
Y (R)(r,s) = 0 for all s >−n.

(iii) Hm
X (R)(r,s) andHn

Y (R)(r,s) are finitely generatedA-modules for allr, s ∈ Z.

Proof. (i) is standard.
(ii) Induct on m. Let m = 0. Then H 0

(0)(R) = R = A[Y ]. Therefore,

H 0
(0)(R)(r,s) = 0 for all r > 0. Supposem > 0. Let R = R/XmR and (X) =
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(X1, . . . ,Xm−1). Consider the short exact sequence

0 −→R(−1,0) .Xm−−→ R −→ R −→ 0.

By the change of ring principle,Hi
(X)(R) = Hi

(X)
(R). Since(X) is generated

by m − 1 indeterminates,Hi

(X)
(R) = 0 for all i �= m − 1. Therefore we get the

following long exact sequence:

0 −→Hm−1
(X)

(
R

) −→ Hm
(X)(R)(−1,0) .Xm−−→ Hm

(X)(R)−→ 0. (1)

By induction hypothesis, for allr > −m + 1, Hm−1
(X)

(R)(r,s) = 0. Hence for

r >−m+ 1 we get an exact sequence

0 −→Hm
(X)(R)(r−1,s)

.Xm−−→Hm
(X)(R)(r,s) −→ 0.

Let z ∈ Hm
(X)(R)(r−1,s). Pick the smallestl � 1, such thatXl

mz = 0. Then

Xm(zX
l−1
m ) = 0. Thereforez = 0. HenceHm

(X)(R)(r,s) = 0 for all r > −m.
Similarly one can can show thatHn

Y (R)(r,s) = 0 for all s >−n.
(iii) We need to show thatHm

(X)(R)(r,s) is finitely generated for allr � −m.
Apply induction onm. It is clear form = 0. Assume the statement form − 1.
Now apply decreasing induction onr. Whenr = −m + 1, Hm−1

(X)
(R)(−m+1,s) ∼=

Hm
(X)(R)(−m,s), by (1) and (ii). By induction hypothesis onm, Hm−1

(X)
(R)(−m+1,s)

is finitely generated; hence so isHm
(X)(R)(−m,s). Now for r < −m + 1 we have

the short exact sequence

0 −→Hm−1
(X)

(
R

)
(r,s)

−→Hm
(X)(R)(r−1,s)

.Xm−−→Hm
(X)(R)(r,s) −→ 0.

By induction onr, Hm
(X)(R)(r,s) is finitely generated andHm−1

(X)
(R)(r,s) is finitely

generated by induction onm. ThereforeHm
(X)(R)(r−1,s) is finitely generated.

SimilarlyHn
Y (R)(r,s) is finitely generated for allr, s ∈ Z. ✷

Lemma 2.2.

(i) Hi
R++(R) = 0 for all i �=m,n andm+ n− 1.

(ii) Hi
R++(R)(r,s) = 0 for r, s � 0 andi � 0.

(iii) Hi
R++(R)(r,s) is a finitely generatedA-module for alli � 0 andr, s ∈ Z.

Proof. First note thatR++ = X ∩ Y with X = (X1, . . . ,Xm), Y = (Y1, . . . , Yn).
SetR+ =X + Y and consider the Mayer–Vietoris sequence:

· · · −→ Hi
R+(R)−→ Hi

X(R)⊕Hi
Y (R) −→Hi

R++(R) −→Hi+1
R+ (R) −→ · · · (2)

(i) If i �= m,n,m + n − 1, Hi
X(R) = Hi

Y (R) = Hi+1
R+ (R) = 0. Hence

Hi
R++(R)= 0 for i �=m,n,m+ n− 1.
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By [Bl, Theorem 2.2.4] and Lemma 2.1, (ii) and (iii) are satisfied byHi
X(R),

Hi
Y (R), andHi+1

R+ (R). Hence (ii) and (iii) are satisfied byHi
R++(R). ✷

Theorem 2.3. Let R = ⊕
r,s�0R(r,s) be a finitely generated standard bigraded

algebra over a Noetherian local ringR00 = (A,m). LetM be a finitely generated
bigradedR-module. Then

(i) Hi
R++(M)(r,s) = 0 for all r, s � 0 andi � 0.

(ii) Hi
R++(M)(r,s) is a finitely generatedA-module for allr, s ∈ Z andi � 0.

Proof. As R is standard bigradedR ∼= A[X1, . . . ,Xm,Y1, . . . , Yn]/I for a biho-
mogeneous idealI . ConsiderM as a bigradedS = A[X1, . . . ,Xm,Y1, . . . , Yn]-
module. Then by the change of ring principleHi

R++(M) = Hi
S++(M) for

all i � 0. Therefore, without loss of generality, we may assume thatR =
A[X1, . . . ,Xm,Y1, . . . , Yn]. SinceM is a finitely generated bigradedR-module,
there exists a freeR-moduleF = ⊕s

j=1R(mj ), mj ∈ Z2, and a short exact se-
quence of finitely generated bigradedR-modules

0−→ K −→ F −→M −→ 0.

Consider the corresponding long exact sequence of local cohomology modules

· · · −→ Hi
R++(K)−→ Hi

R++(F )−→Hi
R++(M)−→ Hi+1

R++(K)−→ · · ·
By Lemma 2.2, (i) and (ii) are true forHi

R++(F ). We prove the theorem by

decreasing induction oni. SinceHi
R++(M) = 0 for i � 0, (i) and (ii) obviously

hold for i � 0. By induction Hi+1
R++(K) has properties (i) and (ii). Hence

Hi
R++(M) satisfies (i) and (ii). ✷

Theorem 2.4. Let R = ⊕
r,s�0R(r,s) be a finitely generated standard bigraded

algebra withR00 = (A,m), an Artinian local ring and letM = ⊕
r,s�0M(r,s) be

a bigraded finiteR-module. PutBM(r, s) = λA(M(r,s)). LetPM(r, s) denote the
Hilbert polynomial corresponding to the functionBM(r, s). Then for allr, s ∈ Z,

BM(r, s)− PM(r, s)=
∑
i�0

(−1)iλA
(
Hi

R++(M)(r,s)
)
.

Proof. Write R = A[x1, . . . , xm, y1, . . . , yn] with degxi = (1,0) and degyi =
(0,1). We prove the theorem by induction onm + n. Supposem + n = 0.
Then M(r,s) = 0 for r, s � 0. HencePM(r, s) = 0. Since dimM = 0, we
haveHi

R++(M) = 0 for all i > 0 andH 0
R++(M) = M. ThereforeBM(r, s) =

λA(H
0
R++(M)(r,s)).

Now supposem+n > 0. If m= 0 orn = 0, the result reduces to Theorem 2.2.2
of [Bl]. Let m > 0 andn > 0. Consider the exact sequence of finitely generated
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bigradedR-modules

0 −→K −→ M(−1,0) .xm−−→M −→ C −→ 0. (3)

For any finitely generated bigradedR-moduleN , define

χN(r, s) =
∑
i�0

(−1)iλA
(
Hi

R++(N)(r,s)
)

and fN(r, s)= BN(r, s)− PN(r, s).

SinceHi
R++(N(−µ,0))(r,s) = Hi

R++(N)(r−µ,s), it follows thatχN(−µ,0)(r, s) =
χN(r −µ, s). Thus from (3), we get

χM(r − 1, s)− χM(r, s)= χK(r, s)− χC(r, s)

and

fM(r − 1, s)− fM(r, s) = fK(r, s)− fC(r, s)

for all r, s ∈ Z. Let R = R/xmR ∼= A[x̄1, . . . , x̄m−1, ȳ1, . . . , ȳn]. SincexmK =
0 = xmC, we can considerK and C as R-modules. By the change of ring
principle,

Hi
R++(K)∼=Hi

R++
(K) and Hi

R++(C)
∼=Hi

R++
(C)

for all i � 0. By inductionfK(r, s)= χK(r, s) andfC(r, s)= χC(r, s). Therefore
we haveχM(r, s) − χM(r − 1, s) = fM(r, s) − fM(r − 1, s) for all (r, s) ∈ Z2.
Consider the exact sequence (3) with the map, multiplication byyn. Proceeding
as in the above case we get thatχM(r, s)−χM(r, s−1)= fM(r, s)−fM(r, s−1).
By Theorem 2.3,χM(r, s) = 0 for r, s � 0 and clearlyfM(r, s) = 0 for r, s � 0.
Set h = χM − fM ; then h(r, s) = 0 for all r, s � 0 and we haveh(r, s) =
h(r − 1, s), h(r, s)= h(r, s − 1) for all r, s. Thereforeh = 0 and

BM(r, s)− PM(r, s)=
∑
i�0

(−1)iλA
(
Hi

R++(M)(r,s)
)
. ✷

3. Ratliff–Rush closure of products of ideals

Let A be a commutative ring andK ⊂ I be ideals ofA. We say thatK is
a reductionof I if there exists an integerr � 1 such thatI r+1 = KIr . The
smallest integerr satisfying this equation is called the reduction number,rK(I),
of I with respect toK. We say thatK is a minimal reduction ofI if K is minimal
with respect to inclusion among all reductions ofI . We refer the reader to [NR]
for basic facts about reductions of ideals.

Let (A,m) be a local ring andI be an ideal ofA. The stable value of the
sequence{In+1 : In} is called the Ratliff–Rush closure ofI , denoted byĨ . An
idealI is said to be Ratliff–Rush if̃I = I . In this section we discuss the concept
of the Ratliff–Rush closure for the product of two ideals.
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The following proposition summarizes some basic properties of Ratliff–Rush
closure found in [RR].

Proposition 3.1.Let I be an ideal containing a regular element in a Noetherian
ring A. Then

1. I ⊆ Ĩ and (̃Ĩ )= Ĩ .
2. (Ĩ )n = In for n � 0. Hence ifI is m-primary, the Hilbert polynomial ofI

and Ĩ are same.
3. ˜(In)= In for n� 0.
4. If (x1, . . . , xg) is a minimal reduction ofI , thenĨ = ⋃

n�0 I
n+1 :(xn1, . . . , xng ).

We show that the Ratliff–Rush closure for product of two ideals can be
computed from complete reductions, a generalization of reductions of ideals
introduced by Rees in [R2].

Let (A,m) be ad-dimensional local ring. LetI1, . . . , Ir bem-primary ideals
of (A,m). Let

(
xij

)
with xij ∈ Ii , for all j = 1, . . . , d andi = 1, . . . , r, be

a system of elements inA. Putyj = x1jx2j . . . xrj , j = 1, . . . , d . Then the system
of elements(xij ) is said to be acomplete reductionof the sequence of ideals
I1, . . . , Ir if (y1, . . . , yd) is a reduction ofI1 . . . Ir . In [R2] Rees proved the
existence of complete reductions when the residue field ofA is infinite.

Lemma 3.2. Let I andJ be ideals ofA. Then we have

(i) Ĩ J = ⋃
r,s�0 I

r+1J s+1 : I rJ s .

(ii) (Ĩ aJ b)= ⋃
k�0 I

a+kJ b+k : IkJ k .
(iii) If I andJ arem-primary ideals with a minimal reduction(y1, . . . , yd) of IJ

obtained from a complete reduction ofI andJ , then(
Ĩ aJ b

) =
⋃
k�0

Ia+kJ b+k : (yk1, . . . , ykd).
Proof. (i) Let x ∈ Ĩ J , then xInJ n ⊆ In+1J n+1 for some n. Conversely if
xI rJ s ⊆ I r+1J s+1 for somer, s � 0 then forn = max{r, s}, xInJ n ⊆ In+1J n+1

so thatx ∈ (ĨJ ).

(ii) By (i), (Ĩ aJ b) = ⋃
r,s�0 I

ar+aJ bs+b : IarJ bs . Let z ∈ (Ĩ aJ b) then for

somer, s we havezIarJ bs ⊆ Iar+aJ bs+b. Setk = max{ar, bs}. ThenzIkJ k ⊆
Ia+kJ k+b and hencez ∈ Ia+kJ b+k :IkJ k. LetzIkJ k ⊆ Ia+kJ b+k for somek. We
may assume thatk = nab for n � 0. Thereforez ∈ Inab+aJ nab+b : InabJ nab ⊆
(Ĩ aJ b).

(iii) Supposez ∈ (Ĩ aJ b). Then for somek, zIkJ k ⊆ Ia+kJ b+k, by (ii). Since
(yk1, . . . , y

k
d) ⊆ IkJ k, we havez(yk1, . . . , y

k
d) ⊆ Ia+kJ b+k. Let zyki ∈ Ia+kJ b+k
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for i = 1, . . . , d . Let (y) denote the ideal(y1, . . . , yd). Then (IJ )m+n =
(y)m(IJ )n for all m � 0 andn � r0 = r(y)(IJ ). Hence(IJ )r+dk = (y)dkI rJ r

for r � r0. Therefore,

zI r+dkJ r+dk = z(y)dkI rJ r =
∑

∑
ij=dk

zy
i1
1 · · ·yidd I rJ r ⊆ Ia+dkJ b+dkI rJ r .

Hencez ∈ (Ĩ aJ b), by (ii). ✷
Lemma 3.3. Let I, J be ideals in a Noetherian ringA, M a finiteA-module and
K an ideal ofA generated byM-regular elements. Then there existt1, t2 > 0 such
that I rJ sM :M K = I r−t1J s−t2(I t1J t2M :M K) for all r � t1, s � t2.

Proof. We follow the line of argument in [M, Proposition 11.E]. LetK =
(a1, a2, . . . , an) whereai areM-regular. LetS be the multiplicatively closed sub-
set generated bya1, . . . , an. For j = 1, . . . , n consider theA-submoduleMj =
a−1
j M of S−1M and setL=M1⊕M2⊕· · ·⊕Mn. Let∆M be the image of the di-

agonal mapx �→ ( x1, . . . ,
x
1) fromM toL. Sinceai ’s are regular∆M

∼=M. Then,

I rJ sM :M K =
⋂
j

(
I rJ sM :M aj

) =
⋂
j

(
I rJ sMj ∩M

) ∼= I rJ sL∩∆M.

SinceL is a finiteA-module and∆M is a submodule ofL, we can apply the
generalized Artin–Rees Lemma to gett1, t2 > 0 such that

I rJ sL ∩∆M = I r−t1J s−t2
(
I t1J t2L∩∆M

)
for all r � t1, s � t2.

Hence

I rJ sM :K = I r−t1J s−t2
(
I t1J t2M :K)

for all r � t1, s � t2. ✷
Lemma 3.4.SupposeIJ has a reduction generated by regular elements, then for
r, s � 0, (Ĩ rJ s)= I rJ s .

Proof. We first show thatI r+1J s+1 : IJ = I rJ s for r, s � 0. Let (x) =
(x1, . . . , xg) be a reduction ofIJ generated by regular elements. Then,InJ n =
(x)In−1J n−1 for n � 0 and henceI r+1J s+1 = (x)I rJ s for r, s � 0. By
settingM = A and K = (x) in the Lemma 3.3, we gett1, t2 > 0 such that
I r+1J s+1 : (x) = I r+1−t1J s+1−t2(I t1J t2 : (x)). Chooser ands large enough so
thatr − t1, s − t2 � r(x)(IJ ). Then we have

I r+1J s+1 : IJ ⊆ I r+1J s+1 : (x)= I r+1−t1J s+1−t2
(
I t1J t2 : (x))

= (x)I r−t1J s−t2
(
I t1J t2 : (x)) ⊆ I rJ s.

ThereforeI r+1J s+1 : IJ = I rJ s ∀r, s � 0. We claim that for allk � 1 and
r, s � 0

I r+kJ s+k : IkJ k = I rJ s.
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Apply induction onk. Thek = 1 case has just been proved. Letk > 1. Assume
the result fork − 1. Then

I r+kJ s+k : IkJ k = (
I r+kJ s+k : Ik−1J k−1) : IJ = I r+1J s+1 : IJ = I rJ s. ✷

4. A generalization of the Kirby–Mehran complex

In this section we construct a bigraded analogue of a complex first constructed
by Kirby and Mehran in [KM]. We study the cohomology modules of this
complex and relate them to those of the bigraded Rees algebras of two ideals.
Let (A,m) be ad-dimensional Noetherian local ring with infinite residue field
andI, J bem-primary ideals ofA. Let R andR∗ be respectively the Rees and
the extended Rees algebra ofA with respect toI andJ . Let y1, . . . , yn ∈ IJ . For
k � 1 set(y)[k] = (yk1, . . . , y

k
n) and(yt)[k] = ((y1t1t2)

k, . . . , (ynt1t2)
k). Consider

the Koszul complexK ·((yt)[k];R):

0 →R →R(k, k)(
n
1) → ·· · →R

(
(n− 1)k, (n− 1)k

)( n
n−1) → R(nk,nk) → 0.

This complex has a natural bigraded structure inherited fromR. Write the(r, s)th
graded component,K ·

(r,s)((yt)
[k];R), of this complex:

0 → (I t1)
r(J t2)

s → (I t1)
r+k(J t2)

s+k(
n
1) → ·· · → (I t1)

r+nk(J t2)
s+nk → 0.

This complex can be considered as a subcomplex of the Koszul complex:

K ·((y)[k];A)
: 0 −→A −→A(

n
1) −→ · · · −→A(

n
n−1) −→A −→ 0.

Therefore there is map of complexes 0−→ K ·
(r,s)((yt)

[k];R) −→ K ·((y)[k];A).
Since this inclusion is a chain map, there exists a quotient complex.

Definition 4.1.Fork � 1, r, s ∈ Z, andn � 1 we define the complexC·(n, k, r, s)
to be the quotient of the complexK ·((y)[k];A) by the complexK ·

(r,s)((yt)
[k];R).

We have the short exact sequence

0−→ K ·
(r,s)

(
(yt)[k];R) −→K ·((y)[k];A) −→ C·(n, k, r, s)−→ 0, (4)

One can easily see thatC·(n, k, r, s) is the complex

0→ A/IrJ s d0
C−→ (

A/Ir+kJ s+k
)(n1) d1

C−→ · · · dn−1
C−−−→ (

A/Ir+nkJ s+nk
) dnC−→ 0.

where the differentials are induced by those of Koszul complexK ·(yk1, . . . , ykn;A).
We compute some of the cohomology modules of this complex in the following
proposition.
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Proposition 4.2. For all k � 1, r, s ∈ Z we have

(i) H 0(C·(n, k, r, s))= I r+kJ s+k : (y[k])/I rJ s .

(ii) Hn(C·(n, k, r, s)) =A/(I r+kJ s+k + (y[k])).
(iii) If y1, . . . , yn is an A-sequence, then

Hn−1(C·(n, k, r, s)
) ∼= (y[k])∩ I r+nkJ s+nk

(y[k])I r+(n−1)kJ s+(n−1)k
.

Proof.

(i) H 0(C·(n, k, r, s)) = kerd0
C

= {
ū ∈ A/IrJ s

∣∣ yki u ∈ I r+kJ s+k for eachi = 1, . . . , n
}

= I r+kJ s+k : (y)[k]
I rJ s

.

(ii) Hn(C·(n, k, r, s)) = kerdnC
imdn−1

C

= A/Ir+nkJ s+nk

(y)[k] + I r+nkJ s+nk/I r+nkJ s+nk

∼= A

(y)[k] + I r+nkJ s+nk
.

(iii) Suppose thaty1, . . . , yn is anA-sequence. Consider the Koszul complex

K ·((y)[k],A)
: · · · −→A(

n
n−2)

dn−2
K−−−→ A(

n
n−1)

dn−1
K−−−→ (

yk1, . . . , y
k
n

) −→ 0.

Since (yk1, . . . , y
k
n) is an A-sequence, this is an exact sequence. Tensoring by

A/Ir+(n−1)kJ s+(n−1)k , we get an exact sequence(
A

Ir+(n−1)kJ s+(n−1)k

)( n
n−2) d̄n−2

K−−−→
(

A

Ir+(n−1)kJ s+(n−1)k

)( n
n−1)

d̄n−1
K−−−→ (y)[k]

(y)[k]I r+(n−1)kJ s+(n−1)k
−→ 0.

We have imd̄n−2
K = imdn−2

C and a commutative diagram of exact rows

0 im d̄n−2
K

α

(
A

Ir+(n−1)kJ s+(n−1)k

)n
id

(yk1,...,y
k
n)

(yk1,...,y
k
n)I

r+(n−1)kJ s+(n−1)k

γ

0

0 kerdn−1
C

(
A

Ir+(n−1)kJ s+(n−1)k

)n A
Ir+nkJ s+nk
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whereα is the inclusion map andγ is the natural map. By the Snake lemma, we
get

Hn−1(C·(n, k, r, s)
) ∼= cokerα ∼= kerγ

∼=
(
yk1, . . . , y

k
n

) ∩ I r+nkJ s+nk(
yk1, . . . , y

k
n

)
I r+(n−1)kJ s+(n−1)k

. ✷
For the rest of the section letI andJ bem-primary ideals ofA. Let x1j ∈ I

andx2j ∈ J for j = 1, . . . , d and fori = 1,2, . . . , d , setyi = x1ix2i .

Proposition 4.3. Let r, s ∈ Z.

(i) For all k � 1, there is an exact sequence ofA-modules

0 → H 0((yt)[k];R)
(r,s)

→ H 0((y)[k];A) → H 0(C·(n, k, r, s)
)

→ H 1((yt)[k];R)
(r,s)

→ ·· · .
(ii) There is an exact sequence ofA-modules

0 → H 0
(yt)(R)(r,s) →H 0

(y)(A)→ lim−→
k

H 0(C·(n, k, r, s)
)

→ H 1
(yt)(R)(r,s) → ·· · .

Proof. (i) Follows from the long exact sequence of Koszul homology modules
corresponding to (4).

(ii) For eachi, consider the commutative diagram of complexes

K ·((yit1t2)k;R)
: 0 R (yit1t2)

k

id

R
yi t1t2

0

K ·((yit1t2)k+1;R)
: 0 R (yit1t2)

k+1

R 0.

This gives a map
⊗n

i=1K
·((yit1t2)k;R) −→ ⊗n

i=1K
·((yit1t2)k+1;R), i.e.,

we get a map

K ·((yt)[k];R) −→K ·((yt)[k+1];R)
and its restriction to the(r, s)-th component gives the map

K ·
(r,s)

(
(yt)[k];R) −→ K ·

(r,s)

(
(yt)[k+1];R)

.

Thus we obtain a commutative diagram of exact sequences:

0 K(r,s)

(
(yt)[k];R)

K ·((y)[k];A)
C·(n, k, r, s) 0

0 K(r,s)

(
(yt)[k+1];R)

K ·((y)[k+1];A)
C·(n, k + 1, r, s) 0.
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Apply lim−→k to the long exact sequence of the cohomology modules to get (ii).✷
Corollary 4.4. Let (A,m) be Cohen–Macaulay of dimensiond � 2 and (xij ),
i = 1,2, 1 � j � d , be a complete reduction of(I, J ). Letr, s ∈ Z. Then

(i) For all k � 0, we have

Hi
(
(yt)[k];R)

(r,s)
∼=Hi−1(C·(d, k, r, s)

)
for all 1 � i � d − 1

and an exact sequence ofA-modules

0 → Hd−1(C·(d, k, r, s)
) →Hd

(
(yt)[k]; (R)

)
(r,s)

→Hd
(
(y)[k];A)

→ Hd
(
C·(d, k, r, s)

) → 0.

(ii) There is an isomorphism ofA-modules

Hi
(yt)(R)(r,s) ∼= lim−→

k

H i−1(C·(d, k, r, s)
)

for all 1� i � d − 1

and an exact sequence

0 −→ lim−→
k

(y)[k] ∩ I r+dkJ s+dk

(y)[k]I r+(d−1)kJ s+(d−1)k
−→Hd

(yt)(R)(r,s) −→Hd
m(A)

−→ lim−→
k

A

(y)[k] + I r+dkJ s+dk
−→ 0.

(iii) H 1
(yt)(R)(r,s) ∼= (Ĩ rJ s)

I rJ s
.

Proof. (i) Consider the long exact sequence of cohomology modules correspond-
ing to (4):

0 −→ H 0(K.
(
(yt)[k];R)) −→H 0(K.

(
(y)[k];A)) −→ H 0(C.(d, k, r, s)

)
−→ H 1(K.

(
(yt)[k];R)) −→ · · · .

SinceA is Cohen–MacaulayHi(K.((y)[k];A) = 0 for all 0� i � d − 1. Hence
(i) follows.

(ii) Apply lim−→k to (i).
(iii) By (ii) and Lemma 3.2 we have

H 1
(yt)(R)(r,s) ∼= lim−→

k

H 0(C·(d, k, r, s)
) = lim−→

k

I r+kJ s+k : (y)[k]
I rJ s

= (Ĩ rJ s)

I rJ s
. ✷

A similar theory can be developed for the extended Rees algebra by setting
I r = A = J s if r, s � 0 and defining the complexC·(n, k, r, s)∗ in a similar way
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as we definedC·(n, k, r, s). We can prove results similar to Propositions 4.2, 4.3,
etc. First we prove a general result relating local cohomology modules of two
bigraded algebras which will help us in relating the local cohomology modules of
the Rees and the extended Rees algebras.

Proposition 4.5. Let R = ⊕
r,s�0R(r,s) ↪→ ⊕

r,s∈Z
R(r,s) = R∗ be an inclusion

of bigraded algebras overR(0,0), a Noetherian ring. Then

(i) For i > 1, we haveHi
R++(R)

∼=Hi
R++(R

∗).
(ii) We have an exact sequence

0→ H 0
R++(R)→ H 0

R++(R
∗)→ R∗/R → H 1

R++(R)→ H 1
R++(R

∗)→ 0.

Proof. Consider the exact sequence of bigradedR-modules:

0−→ R −→R∗ −→R∗/R −→ 0. (5)

SinceR++ acts nilpotently onR∗/R,

H 0
R++(R

∗/R) =R∗/R and Hi
R++(R

∗/R) = 0 for all i �= 0.

The proposition follows from the long exact sequence of local cohomology
modules derived from (5). ✷
Corollary 4.6. Consider the bigraded ringsR=A[I t1, J t2] ↪→ R∗ =A[I t1, J t2,
t−1
1 , t−1

2 ] andG = ⊕
r,s�0 I

rJ s/I r+1J s+1 ↪→ G∗ =R∗/t−1
1 t−1

2 R∗. Then

(i) For all i � 2 we have the isomorphismHi
R++(R) ∼= Hi

R++(R
∗) and there is

an exact sequence of bigradedR-modules

0 −→ H 0
R++(R) −→H 0

R++(R
∗)−→R∗/R−→ H 1

R++(R)

−→ H 1
R++(R

∗)−→ 0.

(ii) For all i � 2 we haveHi
G++(G)

∼= Hi
G++(G

∗) and there is an exact sequence
of bigradedG-modules

0 −→ H 0
G++(G) −→H 0

G++(G
∗)−→ G∗/G −→ H 1

G++(G)

−→ H 1
G++(G

∗) −→ 0.

Corollary 4.7. For all r, s � 0,

H 1
R++(R

∗)(r,s) ∼= (Ĩ rJ s)

I rJ s
.

Proof. Use Corollaries 4.4(iii) and 4.6(i) to get the required result.✷
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5. The difference formula

In this section we obtain an expression for the difference of Bhattacharya
polynomial and Bhattacharya function. The main motivation were results of
Johnston–Verma [JV] and C. Blancafort [Bl] which express the difference of
Hilbert–Samuel polynomial and Hilbert–Samuel function in terms of the Euler
characteristic of the Rees algebra (respectively extended Rees algebra). We have
followed Blancafort’s elegant line of approach in the proof. However, we prove
the theorem only for non-negative integers. The question remains still open for
negative integers.

Theorem 5.1. LetR∗ =A[I t1, J t2, t−1
1 , t−1

2 ]. Then

(i) λA(H
i
R++(R

∗)(r,s)) <∞ for all r, s ∈ Z, i = 0,1, . . . , d .

(ii) P(r, s)−B(r, s) = ∑d
i=0(−1)iλA(H i

R++(R
∗)(r,s)) for all r, s � 0.

Proof. (i) By Theorem 2.3,Hi
R++(R)(r,s) are finitely generatedA-modules and

they vanish forr, s � 0. By Lemma 2.2 and Corollary 4.6,Hi
R++(R

∗)(r,s) = 0
for all r, s � 0. We have an exact sequence of bigradedR-modules:

0 −→R∗(1,1) t−1
1 t−1

2−−−−→ R∗ −→ G∗ −→ 0, (6)

where G∗ = R∗/t−1
1 t−1

2 R∗. By the change of ring principle,Hi
R++(G

∗) =
Hi
G++(G

∗) for all i � 0. From the above short exact sequence we obtain the long
exact sequence:

0 −→ H 0
R++(R

∗)(r+1,s+1) −→H 0
R++(R

∗)(r,s) −→H 0
G++(G

∗)(r,s)
−→ H 1

R++(R
∗)(r+1,s+1) −→ · · · .

We prove (i) by decreasing induction onr ands. SinceHi
R++(R

∗)(r,s) = 0 for all
r, s � 0, the result is obviously true forr, s � 0. Consider the exact sequence

· · · −→Hi
R++(R

∗)(r+1,s+1) −→Hi
R++(R

∗)(r,s) −→Hi
G++(G

∗)(r,s) −→ · · · .
By inductionHi

R++(R
∗)(r+1,s+1) has finite length. By Theorem 2.3 and Corol-

lary 4.6(ii), Hi
G++(G

∗)(r,s) is a finitely generatedG00-module. SinceG00 is Ar-

tinian,Hi
G++(G

∗)(r,s) has finite length. ThereforeHi
R++(R

∗)(r,s) has finite length.
(ii) For a bigraded moduleM over the bigraded ringR, set

χM(r, s)=
∑
i�0

(−1)iλA
(
Hi
R++(M)(r,s)

)
and g(r, s)= P(r, s)−B(r, s).

Then from the exact sequence (6) we get for allr, s � 0,
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χR∗(1,1)(r, s)− χR∗(r, s)

= χR∗(r + 1, s + 1)− χR∗(r, s)

= −χG∗(r, s) = −χG(r, s) (by Corollary 4.6(ii))

= PG(r, s)−HG(r, s) = PG∗(r, s)−HG∗(r, s)

= (
P(r + 1, s + 1)− P(r, s)

) − (
B(r + 1, s + 1)−B(r, s)

)
= g(r + 1, s + 1)− g(r, s).

Seth(r, s) = χR∗(r, s) − g(r, s). Thenh(r, s) = h(r − 1, s − 1) for all r, s � 0
and h(r, s) = 0 for all r, s � 0. This clearly implies thath(r, s) = 0 for all
r, s � 0. ✷
Corollary 5.2. Let (A,m) be a2-dimensional Cohen–Macaulay local ring and
I, J bem-primary ideals ofA. Then for allr, s � 0

P(r, s)−B(r, s) = λ
(
H 2
R++(R)(r,s)

) − λ
(
Ĩ rJ s/I rJ s

)
.

In particular,

e00 = λ
(
H 2
R++(R)(0,0)

)
.

Proof. By the previous theorem,

P(r, s)−B(r, s) = λ
(
H 0
R++(R)(r,s)

) − λ
(
H 1
R++(R)(r,s)

) + λ
(
H 2
R++(R)(r,s)

)
.

Since I and J are m-primary, R++ contains a regular element. Therefore
H 0
R++(R) = 0. By Proposition 4.6,

H 1
R++(R)(r,s) ∼= Ĩ rJ s

I rJ s
.

Now,

e00 = P(0,0)−B(0,0)= λ
(
H 2
R++(R)(0,0)

)
. ✷

6. Bigraded Cohen–Macaulay Rees algebras

In the previous section we have established a formula for the difference
between the Bhattacharya function and Bhattacharya polynomial. It is interesting
to know when is the Bhattacharya function equal to the Bhattacharya polynomial.
Here we give a partial answer to this question, in dimension 2. Huneke [H,
Theorem 2.1] and Ooishi [O1, Theorem 3.3] gave a characterization for the
reduction number of anm-primary ideal to be at most 1 in terms ofe0(I) and
e1(I). Huckaba and Marley [HM, Corollaries 4.8, 4.10] generalized this result
for higher reduction numbers. In particular, they characterized Cohen–Macaulay
property of the Rees algebra in terms of thee1(I). It is natural to ask whether one
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can characterize the Cohen–Macaulay property of bigraded Rees algebras in terms
of coefficients of the Bhattacharya polynomial. The Theorem 6.3 below answers
this in dimension 2. A similar characterization for Cohen–Macaulayness of the
multi-Rees algebras in higher dimension in terms of Bhattacharya coefficients is
not known.

We need another generalization of reductions for two ideals, namely joint
reductions. LetA be a commutative ring with identity and letI1, I2, . . . , Ig be
ideals ofA. A system of elements(x) := (x1, x2, . . . , xg), wherexi ∈ Ii , is said to
be ajoint reductionof the sequence of ideals(I1, I2, . . . , Ig) if there exist positive
integersd1, d2, . . . , dg such that

x1I
d1−1
1 I

d2
2 · · · Idgg + · · · + xgI

d1
1 · · · Idg−1

g−1 I
dg−1
g = I

d1
1 · · · Idgg .

We say that the sequence of ideals(I1, . . . , Ig) hasjoint reduction number zeroif

x1I2 · · · Ig + · · · + xgI1 · · · Ig−1 = I1I2 · · · Ig.
We first prove a general property of the Bhattacharya coefficients.

Lemma 6.1. Let (A,m) be a1-dimensional Cohen–Macaulay local ring with
infinite residue field. LetI andJ bem-primary ideals ofA. Then

(i) P(r+1, s)−H(r+1, s)� P(r, s)−H(r, s) andP(r, s+1)−H(r, s+1)�
P(r, s)−H(r, s).

(ii) λ(A/I)� e10 + e00 andλ(A/J )� e01 + e00.

Proof. Let (x)⊆ I be a reduction ofI . Then

P(r + 1, s)−H(r + 1, s) = e10(r + 1)+ e01s + e00 − λ
(
A/Ir+1J s

)
= P(r, s)+ e10 − λ

(
A/Ir+1J s

)
� P(r, s)+ λ

(
A/(x)

) − λ
(
A/xIrJ s

)
= P(r, s)− λ

(
(x)/xI rJ s

)
= P(r, s)−H(r, s).

Similarly one can prove thatP(r, s + 1) − H(r, s + 1) � P(r, s) − H(r, s).
From (i) it is clear thatP(r, s) − H(r, s) � 0 for all r, s. Putting(r, s) = (1,0)
and(r, s) = (0,1), we get (ii). ✷
Lemma 6.2. Let (A,m) be a2-dimensional Cohen–Macaulay local ring andI ,
J bem-primary ideals ofA. Thenλ(A/I) � e10 andλ(A/J )� e01.

Proof. Let (x, y), wherex ∈ I andy ∈ J , be a joint reduction of(I, J ). Choose
the joint reduction such thatx is superficial forI andJ . Let denote “modulox”.
Let H(r, s) and P(r, s) denote the Bhattacharya function and Bhattacharya
polynomial of them-primary idealsĪ andJ̄ of A =A/(x).
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Claim. P(r, s) = P(r, s)− P(r − 1, s).

From the following exact sequence

0−→ I rJ s : x/I rJ s −→ A/IrJ s x−→ A/IrJ s −→ A/
(
I rJ s, x

) −→ 0,

λ(I rJ s : x/I rJ s)= λ(A/(I rJ s, x)). Then for allr, s � 0,

P(r, s) = λ
(
A/Ī r J̄ s

) = λ
(
A/(I rJ s, x)

) = λ
(
I rJ s : x/I rJ s

)
= λ

(
I r−1J s/I rJ s

)
(sincex is superficial forI andJ )

= P(r, s)− P(r − 1, s).

Therefore

P(r, s) = e20

[(
r

2

)
−

(
r − 1

2

)]
+ e11

(
r − (r − 1)

)
s + e10

(
r − (r − 1)

)
= e20(r − 1)+ e11s + e10 = e20r + e11s + e10 − e20.

Since dimA = 1, by Lemma 6.1,λ(A/Ī ) � e20 + (e10 − e20). Henceλ(A/I) �
e10. Similarly one can prove thatλ(A/J )� e01. ✷
Theorem 6.3. Let (A,m) be a2-dimensional Cohen–Macaulay local ring andI ,
J bem-primary ideals ofA. LetP(r, s) = ∑

i+j�2 eij
(
r
i

)(
s
j

)
be the Bhattacharya

polynomial ofI andJ corresponding to the functionB(r, s) = λ(A/IrJ s). Then
the following conditions are equivalent:

(1) e10 = λ(A/I) ande01 = λ(A/J ).
(1′) e10 � λ(A/I) ande01 � λ(A/J ).
(2) P(r, s) = B(r, s) for all r, s � 0.
(3) The joint reduction number of(I, J ) is zero,r(I) � 1 andr(J )� 1.
(4) The Rees ringA[I t1, J t2] is Cohen–Macaulay.

Proof. The equivalence of (1) and (1′) is clear from Lemma 6.2. First we show
that hypotheses in (1) imply that the joint reduction number of(I, J ) is zero.
By [V, Theorem 3.2], it is enough to show thate1(I |J ) = λ(A/IJ )− λ(A/I)−
λ(A/J ). By Corollary 5.2

e00 = λ
(
H 2
R++(R)(0,0)

)
,

e1(I |J )+ e10 + e01 + e00 − λ(A/IJ ) = λ
(
H 2
R++(R)(1,1)

) − λ
(
Ĩ J /IJ

)
.

Let (y1, y2) be a reduction ofIJ coming from a complete reduction of
(I, J ). It follows from the long exact sequence of local cohomology modules
corresponding to the short exact sequence

0−→ R∗(−1,−1)
.y1t1t2−−−−→ R∗ −→ R∗/y1t1t2R∗ −→ 0
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and Corollary 4.6, that for allr, s ∈ Z

λ
(
H 2
R++(R)(r+1,s+1)

)
� λ

(
H 2
R++(R)(r,s)

)
.

Therefore

e1(I |J )+ e10 + e01 + e00 − λ
(
A/ĨJ

)
� e00.

Hence

e1(I |J ) � λ
(
A/ĨJ

) − λ(A/I)− λ(A/J )

� λ(A/IJ )− λ(A/I)− λ(A/J ).

By the isomorphismA/I ⊕A/J ∼= (a, b)/aJ +bI for any regular sequence(a, b)
wherea ∈ I , andb ∈ J , it follows that

e1(I |J )� λ(A/IJ )− λ(A/I)− λ(A/J ).

Therefore

e1(I |J )= λ(A/IJ )− λ(A/I)− λ(A/J ).

Since the joint reduction number of(I, J ) is zero, by [V, Theorem 3.2], for all
r, s � 1

λ
(
A/IrJ s

) = λ
(
A/Ir

) + e1(I |J )rs + λ
(
A/J s

)
.

Write

λ
(
A/Ir

) = e0(I)

(
r

2

)
+ e1(I)r + e2(I) and

λ
(
A/J s

) = e0(J )

(
s

2

)
+ e1(J )s + e2(J ).

The reader may note that this way of writing the Hilbert polynomials ofI and
J is different from the way in which the Hilbert polynomial is usually written.
Therefore the first Hilbert coefficiente1(I) appearing in the formulas above is
different from thee1(I) appearing in papers of, for example, Huneke and Ooishi.
Therefore, forr, s � 0, we have,

P(r, s) = e0(I)

(
r

2

)
+ e1(I |J )rs + e0(J )

(
s

2

)
+ e1(I)r + e1(J )s

+ e2(I)+ e2(J ).

By assumptione1(I) = λ(A/I) and e1(J ) = λ(A/J ). By the Huneke–Ooishi
theorem [H], ford = 2 we haver(I) � 1,e2(I) = 0 andr(J )� 1,e2(J )= 0. This
proves (3) as well as (2). The statement (2)⇒ (1) is obvious. The equivalence of
(2) and (3) follows from [V, Theorem 3.2] and [H, Theorem 2.1]. The equivalence
of (3) and (4) follows from [Hy, Corollary 3.5] and Goto–Shimoda Theorem
[GS]. ✷
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The following example shows that a naive generalization of Theorem 6.3 does
not work ford > 2.

Example 6.4.Let A = k❏x, y, z❑, I = (x2, xy, y2, z), andJ = (x, y3, z). Then
(x2, y2, z) is a reduction ofI with reduction number 1. One can also check that
IJ = (x, z)I + y2J = xI + (y2, z)J . Thereforer(I) = 1, r(J ) = 0 and joint
reduction number of(I, J ) is zero. One can see from computations on Macaulay 2
[GrS] that depthR = 4. But dimR = 5. ThereforeR is not Cohen–Macaulay.

Example 6.5. Consider the plane curvef = y2 − xn = 0. Put A = C❏x, y❑
and m = (x, y)A. Let J denote the Jacobian ideal(fx, fy) of f = 0. Then
r(J )= r(m)= 0. Moreover,ym+ xJ = mJ . Therefore by the previous theorem,
the Bhattacharya polynomial ofm andJ is given by the formula

λ
(
A/mrJ s

) =
(
r

2

)
+ rs + (n− 1)

(
s

2

)
+ r + (n− 1)s for all r, s � 0.

Example 6.6.We give an example to show that neither of the conditions in (1) of
Theorem 6.3 can be dropped to get the conclusions (2) and (3). Let(A,m) denote
a 2-dimensional regular local ring. Letm = (x, y) andI = (x3, x2y4, xy5, y7).
ThenIm = x3m + yI . By [V, Theorem 3.2], we get

λ
(
A/mr I s

) = λ
(
A/mr

) + e1(m|I)rs + λ
(
A/Is

)
=

(
r + 1

2

)
+ o(I)rs + λ

(
A/Is

)
.

In the above equationo(I) denotes them-adic order ofI which is 3. The fact that
e1(m|I)= o(I) is proved in [V]. We now calculate the Hilbert polynomial ofI .

The ideal J = (x3, y7) is a minimal reduction ofI and J I2 = I3 and
λ(I2/J I) = 1. By a result of Sally [S],λ(R/In) = PI (n) for all n > 1. Here
PI (n) denotes the Hilbert polynomial ofI corresponding to the Hilbert function
λ(A/In). By using Macaulay 2 [GrS], we find thatλ(A/I) = 16,λ(A/I2) = 52,
λ(A/I3)= 109. Therefore the Hilbert polynomial

PI (n)= 21

(
n+ 1

2

)
− 6

(
n

1

)
+ 1.

Hence the Bhattacharya polynomial is

P(r, s) =
(
r + 1

2

)
+ 3rs + 21

(
s + 1

2

)
− 6

(
s

1

)
+ 1

=
(
r

2

)
+ 3rs + 21

(
s

2

)
+

(
r

1

)
+ 15

(
s

1

)
+ 1.

Thereforee01 = 15< λ(R/I). Notice that the constant term of the Bhattacharya
polynomial is non-zero.
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