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1. Introduction

Let R = EB,,>0R be a finitely generated standard graded algebra over an
Artinian local rlngRo Let A denote length. The Hilbert function &, H(R,n) =
ARro(Ry), is given by a polynomialP(R,n) for n > 0. The Grothendieck—
Serre formula expresses the differerié€R, n) — P(R, n) in terms of lengths
of graded components of the local cohomology moduleR wfith support in the
irrelevantidealR. = @, o R» of R. We shall prove a version of this formula in
Section 2 for bigraded standard algebras over Artinian local rings. We need this
generalization to find necessary and sufficient conditions for the Cohen—Macaulay
property of bigraded Rees algebras. These conditions involve the coefficients of
the Bhattacharya polynomial of twa-primary ideals in a local ringR, m).

To be more precise, let and J be m-primary ideals in ad-dimensional
local ring (R, m). The functionB(r,s) = A(R/I" J®) is called the Bhattacharya
function of I and J [B]. Bhattacharya proved in [B] that this function is given
by a polynomialP (r, s) for r, s > 0. We represent the Bhattacharya polynomial
P(r, s) corresponding t@(r, s) by

o= 2 o))

i+j<d

wheree;; € Z. The integerse;; for whichi + j = d were termed as mixed
multiplicities of 7 and J by Teissier and Risler in [T]. We write; (I|J) for ¢;;
wheni + j =d.

The bigraded version of the Grothendieck—Serre formula, proved in Section 2,
allows us to express the difference of the Bhattacharya function and Bhattacharya
polynomial of twom-primary ideals/ and J in terms of lengths of bigraded
components of local cohomology modules of the extended Rees algelira of
andJ. This is done in Section 5 of the paper.

In Section 3 we prove some preliminary results about Ratliff~Rush closure of
products of ideals. In Section 4 we present a variation on a complex first defined
by Kirby and Mehran in [KM]. The cohomology of this complex is related to the
local cohomology of Rees algebras of two ideals. An analysis of this relationship
yields a formula for the constant term of the Bhattacharya polynomials).

This formula is used to prove the characterization of Cohen—Macaulay property
of bigraded Rees algebras mentioned above.

2. Grothendieck—Serre difference formula for bigraded algebras

We begin by establishing the notation for bigraded algebras. Adiigcalled
a bigraded algebra it = @mez A5y Where eaclt, ;) is an additive subgroup
of A suchthatd .5y - Ag.my S Agt1.s1m fOrall (r,s), (I, m) € Z2. We say thatt
is a standard bigraded algebraifis finitely generated, as afg,0)-algebra, by
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elements of degre@, 0) and(0, 1). The elements ofi,. ) are called bihomoge-
neous of degreé., s). An ideal I of A is said to be bihomogeneoudlifis gener-
ated by bihomogeneous elements. The idea generated by elements of degree
(r,s), wherer +s > 1is denoted by ;. and the ideal generated by elements of de-
gree(r, s), wherer, s > 1 is denoted byd ; . . An A-moduleM is called bigraded
if M =D, ;cz Mr.5), WhereM;, ) are additive subgroups of satisfyingA ) -
M.my S M(y41,5+m) forall r, s, I, m € Z. Itis known that wherm (g,g) is Artinian
and M is a finitely generated bigraded-module, the functiork4 o (M(y.5)),
called Hilbert function ofM, is finite for all , s and coincides with a polynomial
for r, s > 0. In this section we express the difference between the Hilbert function
and the Hilbert polynomial in terms of the Euler characteristic of local conomol-
ogy modules. For an idedlin A and anA-moduleM, let H}(M) denote theth
local cohomology module ¥ with respect ta. We refer the reader to [BS] for
properties of local cohomology modules. Note that wiiea a bihomogeneous
ideal in a bigraded algebr& and M is a bigradedd-module, the local cohomol-
ogy modulesH,i (M) have a natural bigraded structure inherited frarand M.

Throughout this sectiofd, m) will denote ad-dimensional Noetherian local
ring unless stated otherwise. L& = (X1,...,X,,) andY = (Y1,...,Y,) be
two sets of indeterminates. L& = A[X1, ..., X;, Y1,..., Y,]. We assign the
grading ded(; = (1,0) fori =1,...,m and ded; = (0,1) fori =1,...,n so
thatR is a standard bigraded algebra. We wilg ,, for the A-module generated
by products of monomials of degreén X and degree in Y. In the next lemma
we establish finite generation ovdr of the bigraded components of the local
cohomology modules aR with respect taX andY, respectively.

The results in this section are not new. They are folklore in the multigraded
case. Lemma 2.1 follows from [CHT, Lemma 2.2 and Corollary 2.3] when
is a field. Theorem 2.3 and Theorem 2.4 follow from [KT, Lemma 4.2 and
Lemma 4.3]. We refer the reader to [02, Lemma 2.1], [Sn, Theorem 9.1] and
[K, Section 1].

Although the results in the section are not new, we have provided easy proofs
so that these results are accessible to readers not familiar with sheaf cohomology.

Lemma2.1l. LetR=A[X1,..., Xm, Y1,..., Y,]. Then

(i) Hi(R)=O0foralli#mandH}(R)=0foralli#n.
(i) HyY(R)(5) =0forall r > —m and, Hy(R) sy =0for all s > —n.
(i) HY (R)(s) and Hy(R) ) are finitely generated-modules for alk, s € Z.

Proof. (i) is standard.
(i) Induct on m. Let m = 0. Then H(Oo)(R) = R = A[Y]. Therefore,

H(OO)(R)(,,S) =0 for all » > 0. Supposen > 0. Let R = R/X,,R and (X) =
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(X1, ..., X;u—1). Consider the short exact sequence
0— R(-1,0) X R — R—0.

By the change of ring principleﬂ(ix)(l_Q) (R). Since (X) is generated

e <X>
bym—1 indeterminatesH(’)_()(R) =0 for all i #m — 1. Therefore we get the

following long exact sequence:

0— Hx H(R) — H{)(R)(~1, 0) X2 H (R) —> 0. (1)

By induction hypothesis, for alt > —m + 1, H (R)(r s) = 0. Hence for
r > —m + 1 we get an exact sequence

Xm
00— H&)(R)(r_l,s) — > H(n;()(R)(r’S) — 0.

Let z € H% (R)(—15). Pick the smallest > 1, such thatx’,z = 0. Then

Xy (zX}; 1) = 0. Thereforez = 0. Hence H(y (R)(.;) = 0 for all r > —m.
Similarly one can can show that; (R) ;) =0 for all s > —n.

(iif) We need to show thaH(’g’()(R)(,,s) is finitely generated for alt < —
Apply induction onm. It is clear form = 0. Assume the statement for — 1.
Now apply decreasing induction an Whenr = —m + 1, H(”;{) 1(R)( mils) =

(X)(R)( —m.s), By (1) and (ii). By induction hypothesis om, H’” (R)( —m+1s)
is finitely generated; hence sols(’x)(R)( m,s). Now forr < m + 1 we have
the short exact sequence

Xm
0— Hy Y(R) .5y — Hi3)(R)r—1,5) <=2 H{)(R)(r,5) — O.

By induction onr, H(X)(R)(m) is finitely generated anH(’%l(I_Q)(r,S) is finitely

generated by induction om. ThereforeH(";()(R)(r,l,s) is finitely generated.
Similarly Hy (R)(,.s) is finitely generated for all, s € Z. O

Lemma 2.2.

0) H§++(R) =0foralli #m,nandm +n — 1.
(ii) H,’;H(R)(,,s) =0forr,s>0andi >0
(i) H,".(‘H(R)(,,s) is a finitely generated-module for alli > 0 andr, s € Z.

Proof. First note thatR, . = X NY with X = (X1,..., X)), Y = (Y1,..., ¥).
SetR,; = X + Y and consider the Mayer—Vietoris sequence:

- —> Hy (R) —> Hy(R) ® Hy(R) —> Hy_(R) —> HE™Y(R) —> - (2)

() If i #mnm+n—1, Hy(R) = Hj(R) = Hg'(R) = 0. Hence
H§++(R)=0f0ri7ém,n,m+n—l.
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By [BIl, Theorem 2.2.4] and Lemma 2.1, (ii) and (iii) are satisfied}b,y(R),
H(R), andH;tl(R). Hence (ii) and (iii) are satisfied bly;'?H(R). O

Theorem 2.3. Let R = (P, ;> R(-.s) be a finitely generated standard bigraded
algebra over a Noetherian local rinfoo = (A, m). Let M be a finitely generated
bigradedR-module. Then

0) er++ (M) 5y =0forall r,s > 0andi > 0.
(i) Hg, (M) isafinitely generated-module for allr, s € Z andi > 0.

Proof. As R is standard bigradef® = A[X1, ..., X, Y1, ..., Y,]/1 for a biho-
mogeneous ideal. ConsiderM as a bigraded = A[X1,..., Xy, Y1,..., Yu]-
module. Then by the change of ring principYé}éH(M) = H§++(M) for
all i > 0. Therefore, without loss of generality, we may assume tat
AlX1,..., X, Y1,...,Y,]. SinceM is a finitely generated bigradeRimodule,
there exists a fre®-module F = @‘;zl R(mj), mj € 72, and a short exact se-
guence of finitely generated bigrad®emodules

0O—K-—F—M-—0.
Consider the corresponding long exact sequence of local cohomology modules
. A . 1
- —> Hp, (K)—> Hp  (F)— Hp (M) — Hp" (K)—> -

By Lemma 2.2, (i) and (i) are true foH;?++(F). We prove the theorem by
decreasing induction oh SinceH;?++ (M) =0 fori > 0, (i) and (ii) obviously
hold for i > 0. By induction H}ti(K) has properties (i) and (ii). Hence
H;?++ (M) satisfies (i) and (ii). O

Theorem 2.4. Let R = P, ;> R(-.s) be a finitely generated standard bigraded
algebra withRoo = (A, m), an Artinian local ring and let = P, ;o M(,s) be

a bigraded finiteR-module. PutBy(r, s) = Ao (M. s)). Let Py (r, s) denote the
Hilbert polynomial corresponding to the functidh (r, s). Then for allr, s € Z,

Bu(r,s) — Pu(r.s) =Y (=D'ra(Hg, (M).s).
i=0

Proof. Write R = A[x1,..., Xm, Y1, ..., yu] With degx; = (1,0) and deg; =
(0,1). We prove the theorem by induction om + n. Supposen + n = 0.
Then M) = 0 for r,s » 0. Hence Py (r,s) = 0. Since dim\/ = 0, we
have H§++(M) =0 foralli >0 and H2++ (M) = M. ThereforeBy(r,s) =

ha(HR (M) 5)-
Now suppose:+n > 0. If m =0 orn = 0, the result reduces to Theorem 2.2.2

of [BI]. Let m > 0 andn > 0. Consider the exact sequence of finitely generated
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bigradedR-modules
0—K—M-1,0"" M —C—D0. 3)
For any finitely generated bigradé&dmoduleN, define

an(r ) =Y (=Dra(Hg, (N)rs)) and  fa(r,s) =By (r,s) = Pn(r, ).
i=0

SmceH,’? (N(=, 0)rr5) = R++(N)(r w,s), 1t follows that xn(—,.0)(r, s) =
xN(r —pu, s) Thus from (3), we get

M —L18) — xu@r,s) = xg (r,s) — xc(r,s)
and

M —=1,5)— fu(r,s) = fx(r,s) — fc(r,s)

forall r,s € Z. Let R = R/xu R = A[X1,.... X1, 1. ... Jn]. SinCex, K =
0 = x,,C, we can consideX and C as R-modules. By the change of ring
principle,

H}§++(K)§H%H(K) and H§++(C)§H%H(C)

forall i > 0. By inductionfk (r, s) = xx (r, s) and fc (r, s) = xc(r, s). Therefore
we haveyy (r,s) — xu(r —1,8) = fu(r,s) — fu(r — 1,5) for all (r,s) € Z2.
Consider the exact sequence (3) with the map, multiplication,byroceeding
as inthe above case we getthat(r,s) — xu(r,s — 1) = fu(r,s) — fu(r,s —1).
By Theorem 2.3y, (r, s) =0 for r, s > 0 and clearlyfy, (r, s) =0 forr, s > 0.
Seth = xu — fu; thenh(r,s) = 0 for all r,s > 0 and we havei(r,s) =
h(r—1,s), h(r,s) =h(r,s — 1) forall r, s. Thereforeh =0 and

Bu(r.s) — Pu(r.9) =Y (—D'aa(Hp,  (M)iy). O
i>0

3. Ratliff-Rush closure of products of ideals

Let A be a commutative ring an® C I be ideals ofA. We say thatK is
a reductionof / if there exists an integer > 1 such that/’*1 = K1”. The
smallest integer satisfying this equation is called the reduction numbg(/),
of I with respect tak. We say thak is a minimal reduction of if K is minimal
with respect to inclusion among all reductionsiofWe refer the reader to [NR]
for basic facts about reductions of ideals.

Let (A, m) be a local ring and be an ideal ofA. The stable value of the
sequencd/”"*1: 1"} is called the Ratliff—-Rush closure df denoted by/. An
ideal I is said to be Ratliff—Rush if = I. In this section we discuss the concept
of the Ratliff—-Rush closure for the product of two ideals.
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The following proposition summarizes some basic properties of Ratliff-Rush
closure found in [RR].

Proposition 3.1.Let I be an ideal containing a regular element in a Noetherian
ring A. Then

1. 1cTand(l)=1.

2. ()" = 1" for n > 0. Hence if/ is m-primary, the Hilbert polynomial of
and/ are same.

3. (I")y=1"forn>0. ~

4. If (x1,...,x,) is aminimal reduction of, then/ = |, I" ™ : (x], ... x).

We show that the Ratliff-Rush closure for product of two ideals can be
computed from complete reductions, a generalization of reductions of ideals
introduced by Rees in [R2].

Let (A, m) be ad-dimensional local ring. Lef, ..., I, bem-primary ideals
of (A, m). Let (x;;) with x;; € I;, forall j =1,....dandi =1,...,r, be
a system of elements i. Puty; = x1jx2;...x, j =1,...,d. Then the system
of elements(x;;) is said to be ecomplete reductiof the sequence of ideals
I,.... I, if (y1,...,yq) is a reduction off1...I,. In [R2] Rees proved the
existence of complete reductions when the residue fieldl isfinfinite.

Lemma 3.2. Let] and J be ideals ofdA. Then we have

(|) fj — Ur,s201r+1js+l S JTJs.
(") (Iajb) — Uk>0 Ia+kjb+k : ijk.
(i) If I andJ arem-primary ideals with a minimal reductiofys, . .., yq) of IJ
obtained from a complete reduction band J, then

(1075 = | 1 o (R,
k>0

Proof. (i) Let x € 17, then x1"J" < ["t1j"*+1 for somen. Conversely if
xI7J* < 17t jst for somer, s > 0 then forn = max(r, s}, xI"J" € 1" +1jn+l
so thatx € (IJ)./\/ .

(i) By (i), (1977) = U, 5ol T@IPt 17 JP. Let z € (14J%) then for
somer, s we havez [ jbs C jer+a jbs+b Setk = maxXar, bs}. ThenzI*Jk C
191k Jk+b and hence e 19K Jo+k . [k jk Letz Ik gk C 19tk jb+k for somek. We
may assume that = nab for n >> 0. Thereforez e [7eb+a jnabtb . pnab ynab
(1 Jb). -

(iii) Supposez € (14J?). Then for some, zI¥J* C 191k Jb+k by (ii). Since
OF, vk S IRJk, we havez(yh, ..., yh) C 19tk btk Let zyk e [tk gbtk
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for i = 1,...,d. Let (y) denote the ideaky1,...,yqs). Then (1J)"*" =
(") for all m > 0 andn > ro = ry(1J). Hence(I1J) 4k = (X)derJr
for r > rg. Therefore,
L]k prdk — Z(X)dk]r Jr = Z zyil .. 'yf;’lr il jatdk pbtdk pr gr-
Yij=dk

Hencez € (1¢7%), by (i). O

Lemma 3.3. Let I, J be ideals in a Noetherian ring, M a finite A-module and
K anideal ofA generated by -regular elements. Then there exigtr, > 0 such
thatl"J*M :y K =" 75 2(Jrjg2p .y K) forall r > 11,5 > .

Proof. We follow the line of argument in [M, Proposition 11.E]. L&t =
(a1, a2, ...,a,) whereq; areM-regular. LetS be the multiplicatively closed sub-
set generated byy, ..., a,. For j =1,...,n consider thed-submoduleM; =
a].*lM of STIM andsetl. = M1 @& M>&---@® M,,. Let Ay, be the image of the di-
agonal map ~ (7, ..., 1) from M to L. Sinceq;’s are regulad; = M. Then,

I'PM:oy K=" M:pa;)=I"J*MnM)ZT"J'LN Ay.
J J
Since L is a finite A-module andA,, is a submodule of., we can apply the
generalized Artin—Rees Lemma to ggtr, > 0 such that

I"JLNAy=1"""1J""2(1"J2LNnAy) forallr>1, s>r.
Hence
"MK =1""")"7"2(1"J2M:K) forallr>1n, s> O

Lemma 3.4.Supposd J has a reduction generated by regular elements, then for
r,s>»>0 U TH=I"JS.

Proof. We first show that/”t1ys*t1: 17 = 17J5 for r,s > 0. Let (x) =
(x1,...,xg) be areduction of J generated by regular elements. Théh/" =
(x)I"1J"=1 for n > 0 and hencer’t1ys+1 = (x)1"J* for r,s > 0. By
settingM = A and K = (x) in the Lemma 3.3, we get;, 7> > 0 such that
s+l (x) = - gstl-epn gz (x)). Chooser ands large enough so
thatr — 11,5 — 2 > r(x)(IJ). Then we have

Ir+1JS+1 1] C Ir+1JS+1: (x) — Ir+1—tljs+l—t2(1tljt2 . (x))
— (i)lrftljsftz(ltljtz . (i)) g IrJS.

Thereforel™ 1 s+l . 17 = 1" J V¥r,s > 0. We claim that for allk > 1 and
r,s >0

Ir+kJ5+k . Ika = I JS.
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Apply induction onk. Thek = 1 case has just been proved. lket 1. Assume
the result fork — 1. Then

4. A generalization of the Kirby—Mehran complex

In this section we construct a bigraded analogue of a complex first constructed
by Kirby and Mehran in [KM]. We study the cohomology modules of this
complex and relate them to those of the bigraded Rees algebras of two ideals.
Let (A, m) be ad-dimensional Noetherian local ring with infinite residue field
and/, J bem-primary ideals ofA. Let R andR* be respectively the Rees and
the extended Rees aIgebraA)fNith respecttdl andJ. Letys,...,y, € IJ. For
k> 1set(y)M =y, ..., y5) and(yn)"! = ((y1at2)k, ..., (vatar2)*). Consider
the Koszul complex ((y»)!l; R):

0= R— Rk HD - - R((n — D, (n — Dk) "V = Rk, nk) — 0.

This complex has a natural bigraded structure inherited fRar/rite the(r, s)th
graded componenK('r,S)((y_t)[k]; R), of this complex:

0— (1) (J1)* — (1) P (i)™ o > (1) ™ (1) % — 0.
This complex can be considered as a subcomplex of the Koszul complex:
K'((X)[k]; A): 0—A—A®D ... a6 s 450

Therefore there is map of complexes-0- K('r’s)((y_t)[k]; R) — K () 4).
Since this inclusion is a chain map, there exists a quotient complex.

Definition 4.1.Fork > 1,r, s € Z, andn > 1 we define the comple& (n, k r,s)
to be the quotient of the complex ((X)[k], A) by the compleﬂ((m)((y_t) T R).

We have the short exact sequence
0—> K\, (00" R) — K ()M A) — C (0. k,rs) — 0, (4)
One can easily see that (n, &, r, s) is the complex

O—>A/1 JS‘ (A/Ir+kjs+k)(1)_> d (A/IrJrnkJernk)d_C)O.
where the differentials are induced by those of Koszul comﬁ’léy’l‘, LYK A).
We compute some of the cohomology modules of this complex in the following
proposition.
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Proposition 4.2. Forall k > 1, r, s € Z we have

() HOC (n.k,r,s))=1"hjsth: (37 gs.
(i) H"(C'(n.k,r,s) = A/ 4 (31,
(i) If y1,..., y, is an A-sequence, then
(y[k]) N Jrnk gstnk
(3K [T+ =Dk Js+n—Dk

H"YC (n,k,r,5)) =

Proof.

() H%(C (n.k.r.s)) = kerd
={iecA/I"J | yfue " T foreachi =1,...,n)
Ir+kjs+k . (X)[k]
oy
kerdy.

(i) H'(C (n,k,1,5)) imd:’;_l

A/Ir+nk Js+nk

(y)[k] + 1r+nk Js+nk/[r+nk Js+nk
A

(y)[k] + 1r+nk Js+nk .

12

(iif) Suppose that, ..., y, is anA-sequence. Consider the Koszul complex

n n—2 n n—1
K'((X)[k], A — AG2) DT 4G ) Of, ...y —o0.

Since (y’l‘,...,y,’f) is an A-sequence, this is an exact sequence. Tensoring by
A/ 70Dk gs+(=Dk 'we get an exact sequence

A (7112) d_;(—z A (nil)
Jrtm=Dk js+n—1k Jr+m=Dk ys+n—Dk

ant ()
(y) [k] 1r+(n—1)k Js+(n—1)k

— 0.

We have imi’,~? = imd% 2 and a commutative diagram of exact rows

k k
. “n—2 A n (}‘1,-»-,}’;1)
0 Im dK (1r+(n—l)k]x+(n—l)k ) (yili .... y’/;)lr-%—(n—l)k Js+m=Dk 0

B

n—1 A n A
O kerdc (1r+(n—1)l< J.H—(n—l)k ) Jrtnk js+nk
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whereq is the inclusion map angd is the natural map. By the Snake lemma, we
get

H"fl(C'(n, k,r, s)) = cokero = kery

~ (y’l‘, cee yrli) N Jrtnk ps+nk .
(yf, R yfl)]rJr(nfl)k Js+@n—Dk’

For the rest of the section IétandJ be m-primary ideals ofA. Letxy; € I
andxzjeJforj=1,...,dandfori=1,2,...,d, sety; = xy;x;.

Proposition 4.3. Letr, s € Z.

(i) Forall k£ > 1, there is an exact sequenceAdfmodules
0 — H(yn™; R) ) = HO((»)™; A) » HO(C (n, k.1, 5))
- Hl((y_t)[k]; R)(r,s) o
(i) There is an exact sequenceAddfmodules

(R)(r.s) = HC,\(A) — i

0
0— H )

o0 ]r(n HO(C'(n,k, r,s))

1
—> H(ﬂ)(R)(r,s) —> e
Proof. (i) Follows from the long exact sequence of Koszul homology modules

corresponding to (4).
(ii) For eachi, consider the commutative diagram of complexes

. k
K ((yitltz)k; R): 0 R (yit1t2) R 0
idt Vi tllzt
. k+1
K ((yi ntp)* R); 0 R (yit1tp) » 0

This gives a mapgR!_; K (itit2)*; R) — Q'_1 K (i) R), i.e.,
we get a map

K" R) — K (00" R)

and its restriction to thé, s)-th component gives the map
Kipo (DM R) — Ky (001 R).

Thus we obtain a commutative diagram of exact sequences:

0—— K(r,s)((y_t)[k]; R) 4>K'((X)[k]; A)4>C'(n, k,r,s)——0

| l

0—= Ko (0O R) —= K ()™ A) —=C (0, k + L, r,5) —=0.
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Apply lim, to the long exact sequence of the cohomology modules to get ii).

Corollary 4.4. Let (A, m) be Cohen—Macaulay of dimensidn> 2 and (x;;),
i=12,1<j<d,beacomplete reduction ¢f, J). Letr,s € Z. Then
(i) Forall k >0, we have
H (0™ R) ., ZH HC (@ k,r,5)) foralll<i<d—1
and an exact sequence #fmodules
0 — HIYC (@ k.r,9)) - H (G0 (R))
— Hd(C'(d,k,r,s)) — 0.
(i) There is an isomorphism af-modules

(r,s) - Hd((X)[k]; A)

H{E)(R)(m) ~ “—Zn’ H7YCd, k,r,s5)) forall1<i<d—1

and an exact sequence
(y)[k] N Ir+koS+dk

0— 0 ()R +@—Dk Js+@—Dk

—> Hlp (R)(rns) —> Hya(A)

. A
D Ok sk 0.

—

7T
(iif) H(ly_t)(R)(,,S)z T

Proof. (i) Consider the long exact sequence of cohomology modules correspond-
ing to (4):
0 — HO(K'((y_t)[k]; R)) — HO(K'((X)U‘]; A)) — HO(C'(d, k,r,s))
— Hl(K'((y_t)[k]; R)) —

SinceA is Cohen—Macaulayi’ (K-((y)!*}; A) =0 for all 0<i < d — 1. Hence
(i) follows.

(ii) Apply lim ;. to (i).

(i) By (ii) and Lemma 3.2 we have

L o ]tk Js+k . (y)[k]
H(E)(R)(r,s) = “T”l H(C (d,k,r,5)) = “?m —
(779
IrJs

A similar theory can be developed for the extended Rees algebra by setting
I"=A=J%if r,s <0 and defining the compleX'(n, k, r, s)* in a similar way
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as we defined’ (n, k, r, s). We can prove results similar to Propositions 4.2, 4.3,
etc. First we prove a general result relating local cohomology modules of two
bigraded algebras which will help us in relating the local cohomology modules of
the Rees and the extended Rees algebras.

Proposition 4.5. Let R =P, ;~o R¢.5) = D, sez Rr.s) = R* be an inclusion
of bigraded algebras oveR g o), @ Noetherian ring. Then

(i) Fori>1,we haveH;'eH(R) x~ H§++(R*).
(i) We have an exact sequence

0— HY,_ (R)— HR_ (R*)—> R*/R— Hy_ (R)— Hg_ (R*)— 0.

Proof. Consider the exact sequence of bigradethodules:
0—R—>R"— R*/R—0O. (5)
SinceR , acts nilpotently orR* /R,
(R*/R)=R*/R and Hj (R*/R)=0 foralli#0.

0
HR++

The proposition follows from the long exact sequence of local cohomology
modules derived from (5). O

Corollary 4.6. Considerthe bigraded ringR = A[It1, J1r2] < R* = A[l 11, J 12,
nhNandG =@, 5o I 70/ It s GF = R* /1 M, 'R*. Then

(i) Foralli>2we have the isomorphisﬂiﬂ;2++ (R) = H;'2++ (R*) and there is
an exact sequence of bigrad&modules
0— H%++ (R) — H%++ (R*) — R*/R —> H}2++ (R)
N H}2++ (R*) —> 0.

(i) Foralli>2we haveHé++ G = H&++ (G*) and there is an exact sequence
of bigradedg-modules

0 — HY, (G) — HG_(G") — G*/G— H}_ (9)
— H§, (G*) — 0.
Corollary 4.7. Forall r, s > 0,

1 D)
HR++(R*)(r'S) = IrJjs

Proof. Use Corollaries 4.4(iii) and 4.6(i) to get the required resutti
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5. The difference formula

In this section we obtain an expression for the difference of Bhattacharya
polynomial and Bhattacharya function. The main motivation were results of
Johnston—Verma [JV] and C. Blancafort [BI] which express the difference of
Hilbert—-Samuel polynomial and Hilbert—Samuel function in terms of the Euler
characteristic of the Rees algebra (respectively extended Rees algebra). We have
followed Blancafort’s elegant line of approach in the proof. However, we prove
the theorem only for non-negative integers. The question remains still open for
negative integers.

Theorem 5.1. Let R* = A[I11, J1p, 17 *, £, 1]. Then

() *a(Hg, (R*)¢y5) <ooforallr,seZ,i=01,....d.
(i) P(r,s) = B(r,s) = Xio(—12a(Hy (R*)5) forall r,s > 0.

Proof. (i) By Theorem 2.3,H7i2++ (R) (5 are finitely generated -modules and

they vanish forr, s > 0. By Lemma 2.2 and Corollary 4.617"2++(R*)(,,s) =0
for all r, s > 0. We have an exact sequence of bigraftethodules:

1

0— R¥(1,1) L2, R*—>g*—>0 (6)
where G* = R*/17 11, R*. By the change of ring principlefy,  (G*) =
(g*) for all i > 0. From the above short exact sequence we obtaln the long
exact sequence:
0 — HR  (RM¢i1stn — HY, (RN ) —> HY. (GF)rs)
— Hpp, (R 1150 — -

We prove (i) by decreasing induction erands. SinceH;'z%(R*)(r,s) =0 forall
r,s > 0, the result is obviously true fat s 3> 0. Consider the exact sequence

c— ]—[7"2++ (R (r41.511) — Hk++ (R*) r.5) —> [—[_é,'/++ (G rs) —> -

By induction Hi (R*)(r+1s+1) has finite length. By Theorem 2.3 and Corol-
lary 4.6(ii), H’ (g*)(, s) is a finitely generatedigo-module. Since&jgp is Ar-

tinian, H’+ (g*)(”) has finite length. ThereforH’ (R*)(”) has finite length.
(i) For a bigraded moduld/ over the blgraded rln@, set

Xm(rs) = (=1)'xa (Hg, (M)is) and g(r,s)=P(r,s)— B(r,s).
i>0

Then from the exact sequence (6) we get foradl> 0,
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XR*,1 () — Xxrx (1, 5)
=xrx(r+1,5s4+1)— xr«(,s)
= —xg+(r,s) =—xg(r,s) (by Corollary 4.6(ii)
= Pg(r,s) — Hg(r,s) = Pg«(r,s) — Hg«(r, 5)
=(Pr+Ls+1—P@rs)— (Ber+Lls+1)—B(s)
=gr+1,s+1) —g,s).

Seth(r,s) = xrx(r,s) — g(r,s). Thenh(r,s) =h(r —1,s — 1) forall r,s >0
and h(r,s) = 0 for all r,s > 0. This clearly implies that(r,s) = 0 for all
r,s>0. O

Corollary 5.2. Let (A, m) be a2-dimensional Cohen—Macaulay local ring and
I, J bem-primary ideals ofA. Then for allr,s > 0

P(r,s) — B(r,s) = A(HE __ (R)(r5)) — AITTS /17 T°).
In particular,
eoo=r(H%, (R)00)-

Proof. By the previous theorem,

P(r,s) = B(r,5) =A(H} _ (R)n9)) = M(Hiz,, (R)irs) + M(HE, , (R)r.5))-

Since I and J are m-primary, Ry, contains a regular element. Therefore
HJ, _(R)=0. By Proposition 4.6,

—~
rJs

1 ~
Hi, (R)s = YT

Now,

eoo= P(0,0) — B(0,0) = ,\(11722++ R)©,0). O

6. Bigraded Cohen—Macaulay Rees algebras

In the previous section we have established a formula for the difference
between the Bhattacharya function and Bhattacharya polynomial. It is interesting
to know when is the Bhattacharya function equal to the Bhattacharya polynomial.
Here we give a partial answer to this question, in dimension 2. Huneke [H,
Theorem 2.1] and Ooishi [O1, Theorem 3.3] gave a characterization for the
reduction number of am-primary ideal to be at most 1 in terms af(/) and
e1(I). Huckaba and Marley [HM, Corollaries 4.8, 4.10] generalized this result
for higher reduction numbers. In particular, they characterized Cohen—Macaulay
property of the Rees algebrain terms of thé€l). It is natural to ask whether one
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can characterize the Cohen—Macaulay property of bigraded Rees algebras in terms
of coefficients of the Bhattacharya polynomial. The Theorem 6.3 below answers
this in dimension 2. A similar characterization for Cohen—Macaulayness of the
multi-Rees algebras in higher dimension in terms of Bhattacharya coefficients is
not known.

We need another generalization of reductions for two ideals, namely joint
reductions. LetA be a commutative ring with identity and I&{, I, ..., I, be
ideals ofA. A system of elementsy) := (x1, x2, ..., x,), Wherex; € [;, is said to
be ajoint reductionof the sequence of ideal$,, I, . . ., I,) if there exist positive
integersdy, do, .. ., dg such that

O Y [ AkRtY My Al dg

1 d
g—11¢ =1'
We say that the sequence of ide@ls . . ., I) hasjoint reduction number zerib

X1]21g++xg11]g71211]2]g

We first prove a general property of the Bhattacharya coefficients.

xllf

Lemma 6.1. Let (A, m) be al-dimensional Cohen—Macaulay local ring with
infinite residue field. Lef and J bem-primary ideals ofA. Then

(i) Pr+1,s)—H(r+1,5)>P(r,s)—H(r,s)andP(r,s+1)—H@r,s+1) >
P(r,s) — H(r,s).
(i) A(A/I) > e10+ eooandr(A/J) > eo1+ eoo.

Proof. Let (x) € I be areduction of. Then

Pr+1ls)—H(r+1s) = 610(”+1)+601s+600—)»(A/1r+1JS)
P(r.s) +e10— A(A/I"T1T%)
P(r,s) +MA/(x)) —AM(A/xI"J*)
P(r,s) — A((x)/x1"J?)
P@r,s)— H(r,s).

Similarly one can prove thaP(r,s +1) — H(r,s + 1) > P(r,s) — H(r,s).
From (i) it is clear thatP(r, s) — H(r,s) < 0 for all r, s. Putting (r, s) = (1, 0)
and(r, s) = (0,1), we get (ii). O

WV

Lemma 6.2. Let (A, m) be a2-dimensional Cohen—Macaulay local ring atid
J bem-primary ideals ofA. Theni(A/I) > etoandi(A/J) > eo1.

Proof. Let (x, y), wherex € I andy € J, be a joint reduction of/, J). Choose

the joint reduction such thatis superficial fol andJ. Let — denote “moduloc”.

Let H(r,s) and P(r,s) denote the Bhattacharya function and Bhattacharya
polynomial of them-primary ideals/ andJ of A = A/(x).



A.V. Jayanthan, J.K. Verma / Journal of Algebra 254 (2002) 1-20 17

Claim. P(r,s) = P(r,s) — P(r — 1, s).

From the following exact sequence
0— I"J*:x/I"J  — A/I"]* 5 AT — A/(I"J°,x) — 0,
AMITTS :x /1" T5) =A(A/(I"J*, x)). Then for allr, s > 0,
P(r,s) = MA/TTS) =M(A/I" T, x)) =A(1"T° :x /1" J°)
= A(I"71J5/1"J%)  (sincex is superficial forl andJ)
= P(r,s)— P(r—1,s).

ezo[<;> - (r ; l>i| +e11(r — (r —1))s +e1o(r — (r — 1))

= ep0(r — 1) + e115 + e10=e20r + €115 + e10 — e2o.

Since dimA = 1, by Lemma 6.11(A/1) > exo + (e10 — e20). Hencer(A /1) >
e10- Similarly one can prove that(A/J) > ep1. O

Therefore

P(r,s)

Theorem 6.3. Let (A, m) be a2-dimensional Cohen—Macaulay local ring angd
J bem-primary ideals ofA. Let P(r,s) = 3, ;< eij(;) (j) be the Bhattacharya
polynomial ofl and J corresponding to the functioB(r, s) = A(A/I"J*). Then
the following conditions are equivalent

(1) ezo=X1(A/I) andeg1 =A(A/J).

(1) e10= A(A/I) andeor > A(A/J).

(2) P(r,s) = B(r,s) forall r,s > 0.

(3) The joint reduction number af, J) is zero,»(I) < landr(J) < 1.
(4) The Reesringi[/11, J12] is Cohen—Macaulay.

Proof. The equivalence of (1) and{lis clear from Lemma 6.2. First we show
that hypotheses in (1) imply that the joint reduction numberof/) is zero.
By [V, Theorem 3.2], it is enough to show thait(1|J) = A(A/1J) — A(A/I) —
A(A/J). By Corollary 5.2

ecoo=r(H% , (R)00):
e1(I1J) + e10+ eo1+ eoo — M(A/1T) = A(HE  (R)an) = A(TT/17).

Let (y1,y2) be a reduction ofl/J coming from a complete reduction of
(1, J). It follows from the long exact sequence of local cohomology modules
corresponding to the short exact sequence

0—> R*(—1,—1) 12, R* 5 R*/y1111pR* — 0
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and Corollary 4.6, that for all, s € Z

MHR, (R)e+15+1) SMHZ,  (R)e5)-

Therefore

e1(I1J) + e10+ ep1+ eoo — K(A/ﬁ) < ego.
Hence

e1(I]J) A(A/ﬁ) —MA/D —AA))

<
< MAJIT) = A(A)T) — AM(A) ).

By the isomorphism /I ® A/J = (a, b)/aJ + bl for any regular sequence, b)
wherea € I, andb € J, it follows that

er(I|J) = AAJIT) — AM(A/T) — L(A) ).
Therefore
er(I|))=AA/1J) — AMA/I) — A(A) ).

Since the joint reduction number ¢f, J) is zero, by [V, Theorem 3.2], for all
r,s>1

MA/TTT) =x(A/T) +eaI|T)rs +1(A)T°).
Write

-
AMA/IT) = eo(]) <2> +e1()r +e2(I) and

AT = eo(J)(;> +e1(J)s +e2(J).

The reader may note that this way of writing the Hilbert polynomialg @ind

J is different from the way in which the Hilbert polynomial is usually written.
Therefore the first Hilbert coefficiert (1) appearing in the formulas above is
different from thee1 (1) appearing in papers of, for example, Huneke and Ooishi.
Therefore, for, s > 0, we have,

P(r.s) = 60(1)(;) +e1(I10)rs + eo(J) (;) +er(Dr +ex(d)s
+ex(I) +ea(J).

By assumptiore1(1) = A(A/I) ande1(J) = A(A/J). By the Huneke—Ooishi
theorem [H], ford =2 we have (1) < 1,e2(I) =0andr(J) < 1,e2(J) =0. This
proves (3) as well as (2). The statement£2)1) is obvious. The equivalence of
(2) and (3) follows from [V, Theorem 3.2] and [H, Theorem 2.1]. The equivalence
of (3) and (4) follows from [Hy, Corollary 3.5] and Goto—Shimoda Theorem
[GS]. O
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The following example shows that a naive generalization of Theorem 6.3 does
not work ford > 2.

Example 6.4.Let A = k[x,y.z], I = (x%, xy, y% z), andJ = (x, y%,z). Then

(x2, 2, z) is a reduction off with reduction number 1. One can also check that
1J = (x,2)] + y2J =xI + (y2,2)J. Thereforer(I) = 1, r(J) = 0 and joint
reduction number ofZ, J) is zero. One can see from computations on Macaulay 2
[GrS] that depthik = 4. But dimR = 5. ThereforeR is not Cohen—Macaulay.

Example 6.5.Consider the plane curvg = y?> — x” = 0. Put A = CJ[x, y]
andm = (x, y)A. Let J denote the Jacobian ide&fy, f,) of f = 0. Then
r(J) =r(m) =0. Moreoverym + xJ = mJ. Therefore by the previous theorem,
the Bhattacharya polynomial af andJ is given by the formula

A(A/mrjs) = (;) +rs+m— 1)<;) +r+@m—1s forallr,s >0.

Example 6.6.We give an example to show that neither of the conditions in (1) of
Theorem 6.3 can be dropped to get the conclusions (2) and (3)AL et) denote

a 2-dimensional regular local ring. Let = (x, y) and I = (x3, x2y%, xy®, y7).
ThenIm = x3m + yI. By [V, Theorem 3.2], we get

MA/m I°) = A(A/m") + ex(m|D)rs +1(A/1°)
= (r er 1) +o(Drs + 1(A/T%).

In the above equation(/) denotes ther-adic order ofl which is 3. The fact that
er(m|I) =o(I) is proved in [V]. We now calculate the Hilbert polynomial bf

The ideal J = (x3,y") is a minimal reduction of/ and JI°? = I® and
A(I%/JI) = 1. By a result of Sally [S]A(R/I") = P;(n) for all n > 1. Here
P;(n) denotes the Hilbert polynomial df corresponding to the Hilbert function
A(A/I™). By using Macaulay 2 [GrS], we find thatA/I) = 16,A(A/I?) =52,
L(A/I%) = 109. Therefore the Hilbert polynomial

n+1 n
P1(n):21( 5 )—6(l>+1.

Hence the Bhattacharya polynomial is

P(r,s) = (r—i2—1> +3rs+21<s_’2_1) — 6(;_) +1
r s r s
= (2> 4+ 3rs + 21<2) + <l) + 15<l) + 1

Thereforeepr = 15 < A(R/I). Notice that the constant term of the Bhattacharya
polynomial is non-zero.
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