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Abstract 

We present a calculus having real numbers as a basic data type. The calculus is defined by its 
denotational semantics. We prove the universality of the calculus. We show how the definition of 
an operational semantics is problematic. We discuss this problem and present a possible solution. 
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I.  Introduction 

The aim of  this work is to attempt a connection between two different approaches to 
computability on real numbers: a practical approach based on programming languages, 

and a more theoretical one based on domain theory. 
Several implementations of  exact computations on real numbers have been proposed 

so far [4, 17, 26, 19]. In these works, real numbers are represented by programs gen- 

erating sequences of  discrete elements, e.g. digits. Conversely, a variety of  theoretical 
work on computability on real numbers are based on domain theory: [14, 15, 10, 9]. In 
all these works domains of  approximations for real numbers are considered. A point in 

these domains represents either a real number or the approximation of  a real number. 
Approximated reals are normally described by intervals of  the real line. 

The connection between the two approaches is described here in several steps. First 

we present a domain of  approximations which is directly derived from a representation 
for real numbers used in some implementations of  exact real number computation 
[4, 17]. From this domain o f  approximations we derive a calculus for real numbers. 
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The calculus we present is an extension of PCF having real numbers as a ground type. 
We call it 5e,. We define ~r by giving its denotational semantics. 

The next obvious step would be to give an operational semantics to the calculus, 
possibly using the representation for real numbers we had employed at the start. If 
this were to be possible, we would be able to establish a close connection between 
the domain of approximations for real numbers and the implementations of real num- 
ber computations. We would have a calculus which, for many aspects, is similar to 
the calculi used in the implementations and whose terms could be directly interpreted 
in the approximation domain. Unfortunately, we prove that it is impossible to define 
the operational semantics in this way. To define an operational semantics for L~ °, it 
is necessary to introduce a new kind of representation for real numbers. This new 
representation is radically different from all classical ones, since real numbers are here 
represented also by sequences of digits undefined on some elements. In order to com- 
pute with this representation it is absolutely necessary to use parallel operators. In the 
final section of  this paper, we discuss whether parallel computation is necessary in all 
faithful calculi for real numbers. 

2. Basic definitions 

2.1. Real  number notation 

We consider the following representation for real numbers: 

Definition 1. A real number x is represented by a computable sequence of integers 
(so . . . .  ,si . . . .  ) such that 

(i) Vn .2Sn -- 1 ~ S n +  1 <~2Sn q- 1. 

(ii) x = N [(s. - 1)/2 n, (s. + 1)/2"]. 
nG~ 

In this representation, a sequence of integers is used to describe a sequence of ra- 
tional intervals. Each interval in the sequence is contained in the previous one. For 
practical purposes, this representation is very convenient, as it allows to reduce exact 
real number computation to computation on integers. In this way it is possible to ex- 
ploit the implementation of integer arithmetic already available. In [5, 16, 17] a similar 
representation has been used to develop quite efficient algorithms for the arithmetic 
operations. 

2.2. The language P C F  

From here on, the language PCF will be used as a formalism for expressing and 
studying computable functions on reals. PCF is a typed lambda calculus having a 
call-by-name strategy of evaluation, which we have chosen because it is both simple 
and has been thoroughly investigated. Moreover, the lambda calculus is a paradigm 
for functional programming languages, hence many problems which are typical of 
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programming languages can be discussed in this setting. For completeness, we give 

here the basic definition o f  PCF [18]. 

2.2.1. Syntax 
The set T o f  type expressions o f  PCF is defined by the grammar 

where tr, z are metavariables ranging over the set o f  types, 1 and o are the type constants 

for integers and booleans, respectively. Types 1 and o are called ground types. Standard 

PCF has natural numbers as its basic type; for convenience, in this work we substitute 

natural numbers with integers. PCF does not have a product type constructor. Instead, 

functions o f  several arguments can be viewed as functions of  a single argument by 

currying. 
The set 2- ° o f  expressions o f  PCF is defined by the grammar 

M : :=  x a [ ca ] M~--+~(Ma) I ( ) 'xa 'Mr)  

where x ~ is a metavariable over a countable set of  variables Var~ of  type a, and c a 

is a metavariable over the set o f  constants C. In addition, the symbols y, e are used 

here as metavariables over the set o f  the variables. When no confusion arises, the 

type superscript a in the term M a will be omitted. Typing rules, free variables, bound 

variables and closed terms are defined as usual. The application o f  terms M(N)  is 

understood to be associative to the left. [N/x]M denotes the result o f  substituting the 

term N in all free occurrences o f  x in the term M. 

The constants are 

0 . . . i . . . : z  - l . . . - i . . . ' t  

t t ,  f f  : o 

p r e d ,  s u c c  : 1 - - *  1, 

i f ,  : o - - +  t - ~  t - ~  l ,  

Ya " (o" ~ o ' )  ~ o" 

Z "  l---+O 

i fo  : o ~ o - - ~  o ~ o ,  

Type assignments and type constraints are defined as usual. 
The languages L'ePA and ~PA+3 will also be considered in this paper. L, apA is the lan- 

guage ~ extended with the constants pif, : o --* 1 ~ 1 ~ t and pif o : o --* o ~ o ---+ o. 

~PA+~ is the language L#eA extended with the constant 3 : (1 ~ o ) ~  o. We will 

denote with 2P a (~flA, 6¢~A+3) the set o f  terms of  ~ (L, eeA, LPpA+3) having type a. 

2.2.2. Operational semantics 
The operational semantics is given by an immediate reduction relation, --*, between 

terms. It is defined by the following set of  reduction rules. 
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constants: 

s u e t ( / )  ~ i + 1 

Z(/)  --+ tt i f  i ~< 0 

Z(t') ---* ff i f  i > 0 

conditional: 

i f~ ( t t ) (M)(N)  --~ M 

f ixed  point: 

YG(M) --* M ( ( Y a ) ( M ) )  

application: 

( 2 x . M ) ( N )  --+ [N/x]M 

M ---~ M I 

M ( N )  ~ M ' ( N )  

N ---+N I 

M ( N )  ---* M ( N ' )  

parallel test: 

P. Di Gianantonio/ Theoretical Computer Science 221 (1999) 295-326 

M---~ M I N--*  N 

pi f~(P)(M)(N) ~ pi f~(P)(M')(N) pi f~(P)(M)(N) ~ p i f r (P)(M)(N' )  

pif~(P)(c)(c) ---, c pif~( t t ) (M)(N) ---+ M pi f~( f f ) (M)(g)  ~ N 

existential: 

M(Qa)  * * - . .+ ff M(n )  t t  

3M --* ff 3M --* tt 

where 2 ,  is the transitive closure of  the relation -% and ~ = Ya(2~ .a  ~) is a term 

defining a diverging computation. 

We define the partial function Eval on programs (closed terms having ground type) 

as: Eva l (M)  = c i f  M -~ c for some constant c. 

2.2.3. Denotational semantics 

The denotational semantics for Lf is given using the set o f  Scott domains: 

UD = {Da I " e r} ,  

where D~ = 7/±, Do = {tt, ff}± and D ~  = [D~ ---* Dr]. 

The semantic interpretation function d ~ has the form 

~ : Lf  ---* Env--+ UD, 

where Env is the set of  environments. An environment is a function p from Var to 
UD satisfying the condition p(x ~) C D~. 

if~(ff)(M)(N) --, N 

for  M E {succ,  pred, if,, ifo, Z }  

p red ( i )  -~ i - 1 
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The definition of  ~ is given by structural induction, 

glcb = ~Ie] 

EIx"]p = p(x  ~) 

,~ M " -* ~ M ~ ]p = g~ M "-- ~ b ( o~I M " ]p ) 

8~2x6.M~]p = 2d  E Da.8[M~](p[a/x]). 

The function ~ for the interpretation of  constants is defined as 

~ ln ]  = n 

]" n + 1 i f  n C 7/ 
~[succ] (n )  

A_ if  n = A _  

f n - 1 i f  n E 7/ 
~ p r e d ] ( n )  

A_ if  n = 5 _  

tt  i f  n~<0 

~ Z ] ( n ) =  ff i f  n > 0 

3_ if  n = A _  

x i f  b = tt 

9~ i f , ] (b ) ( x ) ( y )  = y i f  b = ff 

3_ i f  b = ±  

~ Y ~ ] ( f )  = a {f"A_,} 
nEN 

~ p i f r l ( b ) ( x ) ( y  ) = 

x i f  b = tt 

y i f  b = f f  

x M y  i f  b = A _  

ff 

• ~I3](g)  = tt 
± 

i f  f ( / )  = ff 

i f  3 n . f ( n )  = tt 

otherwise. 

The operational and denotational semantics are related by the following proposition. 

Propos i t ion  2 (Adequacy) .  For  every  c losed term o f  ground type M:  

(i)  gIM~p = ~ E v a l ( M ) ]  / f  Eva l (M)  is defined; 
(ii)  g~M]p = l otherwise.  

Proof .  See [18]. 
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3. Real number computation in PCF 

In order to represent real numbers in PCF it is sufficient to implement in PCF the 
representation in Definition 1. In what follows, given a type a, &a,g~+3 indicates the 
set of  closed terms in "~?A+3 having type a. 

Definition 3. A partial representation function Evala : &a/;n-~3 ~ R is defined by: EvalR 
( M ) = x  if there exists a sequence of integers s such that 

(i) Vn E N.Eval(M(n)) -- Sn; 
(ii) Vn. 2sn - 1 <~Sn+l <~2s~ + 1 

(iii) x=f ' ]~e~ [(s~ - 1)/2~,(sn + 1)/2n]. 

A real number x is said to be computable  if it belongs to the image of the EvalR. 

Notation. We indicate by Rt the set of  the computable real numbers. 

This definition of computable real number coincides with other definitions in litera- 
ture, such as [1, 13, 15, 20, 25]. 

The definition of computability can be extended to functions on real numbers. 

Definition 4. For each natural number n, let z~ be the type inductively defined as 
~0 = (t ~ l) and ~n+l --- ~0 ---+ ~n. The function Eval~ : &a~A+3 ~ (~l)  n ~ Rt) is defined 
by 

Eval~(M) = f  iff Vx 1 . . . . .  x n E Nt • VN1 . . . . .  N,, E ~c~°~,~_ 3 . 

(Vi ~< n . Eval~ (N/) = x i ) :~  EvalR (M(N1).. .  (Nn ) ) = f (xl . . . . .  Xn ). 

A function f : (Rt) n ~ ~t is said to be Le-computable  if it belongs to the image of 

Eval~. 

Notation. We indicate by ~:~' the set of &a-computable functions with n arguments. 

It is interesting to observe that the parallel operators pift, pifo and 3 are not necessary 
in order to define computable functions on reals. This fact can be proved by observing 
that the two sets of total functions ( 7 / ~  77)~ (Z ~ Z) definable in &a and in L~'eA+3 
coincide. 

The form of computation on real numbers implied by the above definition is similar 
to the one used in the implementations of exact real number computation which has 
been described in [4, 1 7]. 

The above definition of computability is equivalent to the one presented in [6], and 
it is characterised by the fact that the domain of definition of the computable function 
is restricted to the computable reals. 

In the next section we will present a second definition of computable functions 
where the domain of definition is the whole real line. The two definitions lead to quite 
different classes of computable functions. The restriction of  the domain of definition 



P. Di Gianantonio I Theoretical Computer Science 221 (1999) 295-326 301 

of functions to computable reals has some curious consequences. It is a well-known 

result that every computable function on reals is continuous on its domain of definition 
(w.r.t. the Euclidean topology). Now, there exists a computable function defined on all 

the computable elements of  the interval [0, 1], that is continuous and unbounded. This 

function cannot be continuously extended to a total continuous function [24, p. 309]. To 
avoid this peculiarity, some authors [3] give a stronger definition of computability: they 

require computable functions to be uniformly continuous, with a computable modulus 

of  uniformity. 
It is not difficult to extend the notion of computability to arbitrary higher order 

functions on reals. Here we consider the extension to second-order functionals. 

Definition 5. For each n-tuple of  natural numbers ~ =  (mi . . . .  mn) let rm be the type 
~,,, ~ ' " ~ T m ,  ~ 0 .  The function Eval~" ~ ( Y T '  ~ . . . ~  ~7" ~ ~/)  is defined 

by 

Eval~(M) = F  iff for all f i  E fl:~ "' . . . . .  fn E ~7".VN1E 5¢ '~ . . . . .  N, C L~e 'n°. 

Vi ~< n .  Eval~ ~(Ni) = f i  =¢> EvalR(M(N1 ) . . .  (N , ) )  = F ( f l , . . . ,  f , ) .  

A functional f : ~:~' 4 . . .  ~ ~zT, ~ ~t is 5f-computable (~eA-computable ~-CeeA+3- 

computable) if it belongs to the image, via Eval~, of the set 5U ° (LPeA,~" LPeA+3)~" 

It is an open problem whether these three notions of  computability coincide. This 
open problem is connected to a more fundamental open problem for PCF. It is still 

unknown whether L,e and LfeA+~ define the same set of  total functionals on N [7]. 

However, it is possible to show that several, apparently parallel, functionals on real 
numbers, like integration, are definable in the sequential language Sa [22]. 

The definitions given in this section are relative to one particular representation 

for real numbers. It is not difficult to prove that many other representations for real 
numbers induce equivalent definitions of  computability [9]. In general, two different 

representations for real numbers induce the same notion of computability if it is possible 
to transform, in an effective and uniform way, one representation into the other. 

In this section, we have only considered computable functions which are defined on 

computable reals. By using domain theory, it is possible to consider functions which 
are defined on the whole real line. This approach is discussed in the following section. 

4. A domain of approximations for real numbers 

In the literature, several approaches to computability on real numbers can be found 
which use domain theory. Early works in this ambit are [14,15,21]. In all these 
approaches, the real line is embedded in a space of approximations where a notion 
of computability can be defined in a natural way. Many results conceming the com- 
putability theory on real numbers are given in these contexts. These spaces of  approxi- 
mations are countably based continuous cpos. We are now going to present a space of 
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approximations that is similar in many respects to those mentioned above, but has 
some important differences. First, we base our construction on the integer sequence 
representations of Definition 1. As a result, our space has less approximation points 
and is more closely related to the kind of computation used in some implementations 
of exact real number arithmetic. A second important difference consists in the fact that 
our space of approximations is a Scott domain. The other approaches use spaces of 
approximations that are continuous but not algebraic cpos. The space of approximations 
presented here has been extensively studied in [9]. The main results are summed up 
here; although the proofs are not given. 

The domain of approximations defined next is called reals domain (RD). We con- 
struct RD starting with the integer sequence representation for real numbers. Let (Si)iC ~ 

be a sequence of integers defining a real number x according to Definition 1 and let 
(s;)i<n be an initial subsequence. (si)i<n gives partial information about the value x. 
By examining (si)i<n, we can deduce that the value x is contained in an interval of real 
numbers. This observation leads to the definition of a function from finite sequences 
of integers to intervals in the real line. To any finite sequence (Si) i< n w e  associate the 
interval [a, b] containing the real numbers that can be represented by sequences having 
as initial subsequences (Si) i< n. The interval [a,b] represents the information contained 
in the sequence (Si) i< n. 

Definition 6. Let S be the set of sequences of integers defined by 

S={(si)i<n I n c  ~ , V i < n -  1 . 2s.  - 1 ~<s.+~ ~<2s. + 1}. 

Let R/denote  the set of rational intervals. The function q5 from the S ~ R/ is defined 
by 

q~((s0, Sl . . . . .  Sn))=[  s i - 1  si+l 1 
' 2 i " 

Let (DI, E_) denote the partial order formed by the rational intervals in the image of ~b 
(Fig. 1). The order relation F-- on DI is the superset relation, that is [a, b] F-[a/, b I] if 
and only if [a', b'] C_ [a, b] (if and only if [rib ~] is a more precise approximation of a 
real number that [a, b]). Let RD denote the cpo obtained by the ideal completion of 
(DI, r ) .  

Notation. Given a partial order (D, r-) and an element d E D we denote the set {d' I d' 
___ d} by J.d. Obviously, I d is a (principal) ideal. 

Proposition 7. RD is a consistently complete o-algebraic cpo (Scott domain). RD 
is an effective Scott domain when we consider the following enumeration o f  finite 
elements: 

~r(O ) = ..k, 

er(((nl,n2),n3) + 1)=  ~. [(nl - n2 - 1)/2n3,(nl - n2 + 1)/2 n3] 

where ( ) is an effective coding function for pairs o f  natural numbers. 
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" / A -', - - ' A ' , - " . . .  A "... ,,, , - , , ,  / , , , . ,  , . ,  , . ,  , . ,  , . ,  .. 
',W -W ' i/ ',W ',i! ',W "i l  ',.!,." "...[/ '...! 

[-2, O] [0, 2] 

Fig. 1. The diagram representing DI. 

The elements of RD can be thought as equivalence classes of (partial) sequences of 
integers. Each equivalence class is composed of sequences containing identical infor- 
mation about the real value they approximate. 

The relationship between the real line and the infinite elements of RD can be clarified 

by means of the following functions: 

Definition 8. A function q~ :RD--~ ~ ( ~ )  is defined by 

q:e(d)= [") [a,b]. 
[a,b]Ed 

Conversely, three fimctions e, e - ,  e + : ~ -+  RD are defined by 

e(x)  = {[a,b] ¢ D I  Ix E (a,b)}, 

e -  (x)---- {[a,b] e DI  lx • (a, b]}, 

e+(x) = {[a, b] • DI Ix • [a, b)}, 

where (a ,b)  denotes the open interval from a to b and (a,b] and [a,b) indicate the 

obvious half-open, half-closed intervals. 

Recall that a dyadic number is a rational number of the form z/2 n with n E N, z ¢ 7/. 

Proposition 9. 
(i) f o r  every 

{x}, 
(ii) f o r  every 

(iii) f o r  every 

(iv) f o r  every 

The followin9 statements hold: 
infinite element d ¢ RD there exists a real number x such that q~(d )  = 

real number x, {x} = q:~ o e(x)  = qje o e - ( x )  = q2 o e-(x) ,  
non-dyadic number x, e(x)  = e - ( x )  = e+(x), 
dyadic number x, e(x)  r- e-(x) ,  e(x)  r- e+(x) and e - ( x )  is not consis- 

tent with e+(x), 
(v) e(•) U e - ( ~ )  U e+(~)  is equal to the set o f  infinite elements o f  RD. 
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: e(0) e(,1) 
i 
i 
I 
i 
I 

'- /",...f ' . . , ./ ' , . .i/".,../".... ./ ' , . .  /'.,. / ' . , . /  

Fig. 2. The diagram representing RD. 

We can observe that the infinite elements o f  RD are a close representation o f  the 

real line, and that the set o f  infinite elements in RD is similar to the real line except 

that each dyadic number is tripled (Fig. 2). 

A closer connection between the infinite elements o f  RD and the real line can be 

established by using topological notions. Let RD t denote the subspace o f  RD consisting 

o f  the infinite elements with the subspace Scott topology on RD. 

Propos i t ion  I0. The real line is a retract o f  RD t via a pair o f  continuous functions 
q : RDt ~ ~ and e : R ~ RD t with 

q ( d ) =  x iff q ~ ( d ) =  {x} ( -- N[a,b]~d[a'b])' 

e(x) = {[a, b] E DI I x E (a, b)}. 

The function q associates to each element o f  RDt the corresponding real number. 

We can interpret e as the function which picks a canonical representative for each real 

number. Using q it is possible to give a definition of  a computable real number: 

Defini t ion 11. A real number x is computable if there is a computable element d E RD 
such that x - - q ( d ) .  

The above definition is equivalent to Definition 3. Using e and q it is possible to as- 
sociate to each Scott-continuous function f : RD ~ RD a partial real function f : ~ --~ 

defined by f = q o f o e. 
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This construction can be extended to functions with several arguments. The relation 
existing between functions on R and functions on RD can be stated in terms of the 

retraction. 

Definition 12. For each natural number n, 
(i) the topological space I:, is defined by 

F. = { f :  R" ~ R I f  total continuous function} 

where E" denotes the usual topological product of E. 
The topology on IZ~ is the compact-open topology. 

(ii) FD, is the effective Scott domain of the Scott-continuous functions [RDn~ RD]. 

(iii) FD~ is the subspace of FD, defined by 

{g E FDn I a((RD* )") c_ RD t }. 

The topology on FD~ is the subspace topology of the Scott topology. 

Observe that FDo is homeomorphic to RD. 
Not every element in RD denotes a real number: some elements are just finite 

approximations of real numbers. Similarly, not every function in FD= represents a 
function in In. For this reason, we have chosen to define the subspaces FDt=; within 
FD~ every element denotes an element in I:,. 

Notation. In this paper, an n-tuple (Y0 . . . .  ,Y~-I) is also denoted by y. If f is a func- 
tion on the elements of a tuple y, f ( y )  denotes its pointwise application ( f ( y l )  . . . . .  
f (yn-1)) .  The symbols [a,b], [a t,b'], [ai,bi] ... are reserved for intervals in DI. An 
interval [ai, bi] is denoted also by [a,b]i and, finally, if [a, b] is an n-tuple of dyadic 
intervals, Hi<n [a, b]i denotes the obvious subset of ~n. 

Proposition 13. For each natural number n, [-~ is a retract of  FD~. The pair of  
retract functions q, : FD~ ~ I:= and e, : [-~ ~ FD~ are defined as follows: 

qn(g)(ff) = q(g(e(x))), 

e~(f)(d) = { ± if  3i<n.di = 5_, 
{[a',b'] 135 [a,b] U d.f(1-Ii<,,[a,b]i)C_ (a ' ,b ')} otherwise. 

The functions e= and qn defined above are the natural generalisation of the functions 
e and q. In fact, q, associates to each element of FD~ the element of l:n which is 
represented by it. And e, chooses, for each element in In, a canonical representation 
in FD~. We can also say that the function qn partitions FD~ into equivalence classes. 
All the elements contained in a single equivalence class represent the same element in 
In. The function e, defines a canonical representation for each class. 

Definition 14. For each natural number n, a function f c I:, is domain-computable if 
there is a computable element g E FD~ such that f = q,(g). 
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It follows that every computable function on real numbers is continuous w.r.t, the 

Euclidean topology. 

We now consider second-order functionals. In this case however it is only possible 
to state a set-theoretic relation between functionals on RD and functionals of  R. 

Definition 15. For each n-tuple of  natural numbers ~ =  (ml . . . . .  mn) 
(i) the set of functionals on reals l:m is defined by 

t:m= {f:(Em, × ' "  × ~mn) ---> ~ ) ] f  total continuous function}; 

(ii) FDm is the effective Scott domain of the Scott-continuous functions [(FDmt x . . .  

× FDm, ) ~ RD]; 
(iii) FDt~ = {g C FDm ] g(FDt,,~ × " .  x FD~, ) C_ RDt }. 

Using the retract constructions for the first-order functions it is possible to associate 
to each second-order functional in FDt~ the functional on the reals represented by it. 

Definition 16. (i) For every type tuple of  natural numbers ~ let qm be the function 
from FD~ to 0:~ defined by 

qm(G) ( f  l . . . . .  f , )  = q(G(em, ( f  l) . . . .  , era.  ( fn ) ) ) .  

(ii) A functional on real numbers F E Em is computable if  there exists a computable 
element G E FDm such that F =qm(G).  

5. PCF extended with real numbers 

In this section we employ the domain RD to define an extension of the language 

PCF having a ground data type for the real numbers. We call this extension Aer, 
and denote by r the type for real numbers. In Lfr, expressions having type r represent 
elements in RD. We want to prove that any computable function on RD is definable by 

a suitable expression in Lfr. A programming language very similar to Lfr has first been 
introduced in [8]. An extension of PCF based on a different domain of approximation 
for real numbers has also been presented in [12]. 

Compared with the real computation described in Section 3, the real computa- 
tion in ,~r has several advantages. Given a closed term M E L~ ( '~ ' )~ ( '~ ' ) ,  the value 
Eval•(M) 1 may prove to be undefined; for example: 
(i) there may be a term N representing a real number such that the sequence M(N)(0),  

. . . .  M ( N ) ( n )  . . . .  does not define a real number, 
(ii) there may be two terms Nl and N2 defining the same real number and such that 

M(NI ) and M(N2) define different real numbers. 
The language 5Or is free from these inadequacies. Terms of type r in L, er can always 
be interpreted as (approximated) reals; more importantly, terms of type r---+ r preserve 
the equivalence between different representations of  the same real number. We can 
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say, therefore, that £fr defines an abstract data type for real numbers, i.e., it defines a 
collection of  primitive functions on reals which generate any other computable function. 

In this section, we give a denotational semantics to 5Ft. The attribution of  an oper- 
ational semantics to LP~ presents a numbers of  problems, which will be discussed in 

the next sections. 

5.1. Syn tax  

The types of  £,e~ are the PCF types extended with a new ground r. The set T of  

type expressions is defined by the grammar: 

a : : = t  I o [ r  l al--+fie 

The terms of  ~C,e~ are the terms of  ~gfpa+3 extended with the new constants: 

( - 1 ) , ( + 1 ) , ( ×  2 ) , (+2) ,  PR :r---~r, 

( ~ < O ) : r - ~ o  

pif r :o--*r---*r---~r, 

Y~ : (a  --~ ~r) ~ a for each new type a 

5.2. Semantics  

The denotational semantics for L~a~ is given using the set of  Scott domains UD := 
{D~ [a  E T} where Dr =RD,  D, = 7/±, Do = {tt, ff}z and D~__., = [D~ --~D~]. 

The denotation of  the new constants is 
The constants (+1) ,  ( - 1  ), ( x  2), (+2 )  realize the corresponding functions on reals: 

~ I ( + l ) ] ( d )  = {[a + 1,b + 111 [a,b] Ed}  

. ~ l ( - 1 ) ] ( d ) =  { [ a -  1 , b -  1 ] [ [ a , b ] E d }  

M[( × 2)](d) = {[a × 2, b x 2] I [a, b] E d A [a x 2, b x 2] E O I }  

M~(+2) ] (d )=  U + [ a + 2 , b + 2 ]  
[a,b]Ed 

The constant ( ~  0) tests if a number is smaller or larger than 0: 

tt i f  it exists [a, b] E d, b ~< 0 
M [ ( ~ 0 ) ] ( d )  = ff if it exists [a, b]E d, 0 ~<a 

_1_ otherwise. 

The constant PFt defines a kind of  projection on the interval [ - 1 ,  1]: 

d t5 ~ [ -  1, 1] if d is consistent with ~ [ -  1, 1 ] 

~IPR](d)  = e+( - 1) if 3[a, b] E d.b <~ - 1 

e - ( l  ) if 3[a,b] E d.a>~ 1 
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The constant pif~ defines a parallel test: 

d 

~[Pifr](b)(d)(d' ) := d '  

d Tqd I 

if b = tt 

if b = f f  

i f b = l  

If  the boolean argument is undefined, the function MlPifr] gives as an output the 
most precise approximation of the second and third argument. 

The constants Y~ are the usual fixed point operators. 
It is not difficult to prove that: 

Proposition 17. For every closed expression M ~ and environment p, g~Ma]p is a 

computable element o f  D~. 

Next we prove the universality of Z-°r, i.e., we prove that every computable func- 
tion on RD is definable by a suitable term in L#r. In order to do this we present a 

generalisation of the universality theorem for PCF [18, Theorem 5.1]. An equivalent 
generalisation had already been given in [23], although there are some important dif- 

ferences. The proof we give here follows the line of the original proof in [18]; this 

however can only be applied to extensions of  PCF where ground types are denoted by 
fiat domains. We have modified some parts of  that proof to make it applicable to ex- 
tensions of PCF where ground types are denoted by coherent domains. The proof given 

in [23] is more abstract but it uses, as a lemma, the theorem in [18], and therefore it 
is not independent of  it. 

Some definitions and lemmata are necessary here. 

Definition 18. A subset A of a p.o. P is coherent if any pair of  elements has an upper 

bound. A coherent domain is a Scott domain for which any coherent subset has an 
upper bound. 

Coherent domains are closed under many of the semantics functors. In particular: 

Proposition 19. (i) If D1 and D2 are coherent domains then DI--~D2 is a coherent 

domain. 

(ii) RD is a coherent domain. 

Proof. (i) This is a standard proposition of domain theory. 
(ii) This follows from the fact that for any finite set of intervals C the intersection 

of the intervals in C is empty if and only if there exist two intervals in C having an 
empty intersection. [] 

A fundamental step in the proof of  universality consists in showing that for every 
type a it is possible to define three functions, namely c,, p~ and #~. Here c~ and p~ 
are respectively a test and a projection function for the types tr, and #~(n)(d) checks 
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if the element d is inconsistent with the finite element co(n) (where e~ is the effective 
enumeration of the finite elements of  the domain D~ [18, p. 249]). Formally: 

Definition 20. A partial function f : D,  I ~ ... Da. ~ D~ is definable in ~ if there 
exists a closed term M such that for all dl E D~, ... dn E D,. if f ( d l ) . . .  (d , )  is defined 

then g1M]p(d])...  (d , )  -- f ( d l ) . . .  (d,).  

Definition 21. Given a coherent domain D.,  the function ca : B± --* D~ --* D.  --* D~, and 

the partial functions #.  : Zx  --, D .  ~ B±, p~ : 7/x ~ D~ ~ D~ are defined by 

dl if b = t t ,  

c,~(b)(dl)(d2)= d2 if  b = f f ,  
dl Vld2 if b =  Z, 

ff 
tt 

#a(n)(d) = undefined 
L 

{ dUe~(n) 
p . (n) (d)  = undefined 

if n E N,e.(n)  _ d, 

if n C N and the elements e.(n), d are inconsistent, 
if n is a negative number, 

otherwise, 

if n E M and the elements e , (n) ,d  are consistent, 

otherwise. 

Since the domain D~ is coherent, the function p ,  can be extended to the whole 

domain. The functions Pa and #, are defined as a partial function for convenience. 
In the proof it is shown that for every type a there exist terms P ,  and T~ whose 

denotations behave like p~ and #, on their domains of  definition. There is no interest 
in the behaviour of  P~ and T, outside these domains. 

Lemma 22. If, in a language extending ~PA+~, for every ground type z the func- 
tion c~, p~,#, are definable by some terms pif~,P~, T~, then for any other type a the 
functions c~,p~,t~ are definable by some suitable terms pif,,P~,T~. 

Proof .  By structural induction on the type a. The basic step is true by hypothesis. Let 

a = al --~ a2. The terms pif. and Pa can be defined as follows: 

pif~ = 2x.2~.2~.2fl  ~.pif~2x then ¢~rfl~, else ~f l~ '  

P~ ---- 2m. 2 ~ .  2fl ~1 . 
Y,~2 (27 ' ~ 2 "  2n. 

Pif~2Zn 
then ~/3 ~1 

else pif~2 T~, (FIRSTa m n)fl GI 
then ~'-~2 (pred(n)) 
elseP¢2(SECONDa m n)(y ' -~2(pred(n))))  

(SIZEG m) 
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where FIRST~, SECOND~ and SIZE~ define respectively three primitive recursive func- 
tions f ,  g and h such that for each natural number m, 

e~(m) = U{e~ ( f (m,  n)) ~ ca2 (g(m, n)) [ 0 < n <~ h(m)}. 

Here we denote by e~,( f (m,n))  ~ e~2(g(m,n)) the step function in D~ defined by 

(ca, ( f (m,  n)) ~ e~2(g(m, n)))(d)  = e~2(9(m, n)) if ~ ( f (m,  n)) ~ d and (e~, ( f (m ,  n)) 
e~2(g(m, n)))(d)  = _1_ otherwise. 
The idea behind the definition of P, is the following: the projection of a function cd 

on the function d = 11{ e~ ( f (m,  n)) ~ eG2 (g(m, n)) I 0 < n ~< l} is calculated pointwise. 
Given an argument fl~', it is checked if fl~l is consistent with eo,(f(m,h)).  If fl~' 
is inconsistent with eo,( f (m,h))  then the result is the projection, dp, of c~(fl ~' ) on 
d'([3 ~' ) where d ' =  U{~, , ( f (m ,n ) )=>e ,~(g(m,n) ) lO<n<. l -  1}. t f f l  ~, ~ ~ , ( f ( m , h ) )  
then the result is the projection of dp on the element e,~2(9(m,n)). If the consistency 
cannot be decided then the result is the g.l.b, of the results given in the two previous 
cases. 

The term T, is defined by 

To = 2m.2c~°.Y,_+o( 27'--+°.2n. 
ifoZn 

then ff 
else Pifo3(,~l.T,,2(SECOND,r m n)(o~"(Po~ (FIRSTa m n)(P,r, l f~,r, )))) 

then tt 
else T'~° (pred(n)  ) ) 

(SlZE~ m) 

In order to check if a function ~ is inconsistent with a function d =  U{e~,( f (m,n))  
e~g(9(m, n))10 <n  ~< I}, it is sufficient to check if there exists n ~ l, and a finite 

element fl, fl 2 e~, ( f (m,  n)), such that c~(fl) is inconsistent with ~2(9(m, n)). Observe 
that g~P~n(Po O, 12~)l=e~(n) and that the function EI2I.P~n(P~ 10~)1 enumerates the 
finite elements above e~(n). [] 

Lemma 23. I f  in an extension o f  the language 5£, for  a type ~ the function p~ is 
definable, then every computable element in D~ is definable. 

Proof. Given a computable element d in D,, let f be a primitive recursive function 
such that 

x = U {e , ( f ( i ) )  I i E N} 

and let F be a term defining the function f and Pa the term defining the function p~. 
We have 

d = oz[Y,~(2~ z--*~r . 2n. P~(Fn)(~'--*~(suec(n))))O~p. [] 

Theorem 24. For every computable element d in Do there exists a closed expression 
M in 2~'r, such that ~IMlp = d. 
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Proof. By the two previous lemmas, it is sufficient to prove that the functions c~, p~, #~ 
are definable in the language when z is a ground type. In [18], it has already been 
shown that these functions are definable when z is equal to t and o. Therefore, we 
only need to prove the definability for the basic type r. The function Cr is defined by 
the constant p i f  r. To simplify the proof, we define the terms Pr and Tr recursively by 
cases. The actual PCF terms can be obtained straightforwardly. The terms Pr and T,. 

are defined as 

Pr(n)(x)=x for n~<0 

Pr(((nl + 1,n2 + 1),n3) + 1)(x)=Pr(((nl,n2),n3) + 1)(x) 

P~(((nl + 2"3,0},n3) + 1)(x)= (+l)(P~(((nl,0),n3) + 1)(( -1)( (x)) ) )  

Pr(((0,n2 + 2n3),n3) + 1)(x)=(-1)(Pr(((O, n2},n3} + 1)((+l) ( (x)) ) )  

P~(((nl,0),n3 + 1) + 1)(x) = (+2)(Pr(((nl,0),n3) + 1)((×2)((+1) 

(PR((-1)(PR(x)))))))  with 0 <n l  <2  n3 

P~(((O, n2},n3 + 1) + 1)(x) = (+2)(Pr(((O, n2),n3) + 1) ( (×2) ( ( -1 )  

(PR((+I)(PR(x)))))))  with 0<n2 <2  n3 

Pr(((0,0),n3 + 1) + 1)(x) =(+2)(Pr(((0,0),n3} + 1)((×2)(PR(x)))) 

P~(((O,O),O) + 1) (x)= PR(x) 

Tr(n)(x)=ff with n~<0, 

Tr(((nl + 1,n2 + 1),n3) q- 1) (x)= Tr(((nl,n2),n3) q- 1)(x) 

Tr(((nl q- 2m,O),n3} + 1) (x)= Tr(((nl,O),n3) + 1)((--1)((x))) 

r~(((O, n2 + 2"3),n3) + 1) (x)= r~(((O, n2),n3) + 1)((+l)( (x)))  

Tr(((nl,O),n3 + 1) + 1)(x) 
= Pifo(< O)(x) 

then tt 
else Pifo( ~< 0 ) ( ( -  1 ) (x))  

then T~( ( (nl, O),n3) + 1)((×2)(x)) 
else tt 

with 0 < nl < 2n3 

Tr( ( (O, n2},n3 q- 1) q- 1)(x) 
= Pifo( ~< 0)(x) 

then Pifo( ~< 0)((+1 )(x)) 
then tt 
else Tr( ( (O, nz),n3) + 1)((×2)(x)) 
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else tt 
with 0 < n2 < 2 n3 

Tr(((O,O),n3 + 1) + 1)(x) 

= Pifo( ~<0)((+1 )(x)) 
thent t  

else Pifo( ~< 0 ) ( ( -  1 )(x)) 
then Tr(((nl ,O) ,n3)+ 1)((x2)(x))  
else tt 

T~(((O,O),O) + 1)(x) 

= Pifo( ~< 0)(+ l )(x) 
then tt 
else pifo( ~< 0 ) ( ( -  1 ) (x) )  

then ff 
else tt 

It is a lengthy but straightforward proof to check that the definitions of P~ and T~ 
consider all possible cases and that the given results are correct. [] 

In the domain RD every dyadic rational number has three representations, among 
which computable functions on RD are able to discriminate. Since the language Ser is 
universal w.r.t. RD, also the functions definable in L~ar can distinguish among the three 
representations of a dyadic number. The constant (~<0), which discriminates among 
the three representations of the number 0, is an example to the point. To avoid this 
behaviour, we present a second language, called ~wr, which is expressive enough 
to define all computable functions on reals, but whose functions do not distinguish 
among the three different representations of the dyadic numbers. The only difference 
among Ztwr and Z~'r is the presence of  the constant (~<0). In ~¢wr the constant (~<0) 
is substituted by a new constant (<0 ) .  The denotational semantics of ( < 0 )  is 

tt if  there exists [a,b] E d, b <0  
~ l ( < 0 ) l ( d )  : -- ff if there exists [a ,b]Ed,  0 < a  

Z otherwise 

The function ~I( < 0)] is the greatest approximation of the fimction MI( ~<0)1 (w.r.t. 
the domain order) which does not distinguish among the three representations of 0 in 
RD. 

In order to prove that terms of ~aw~ do not distinguish among the different represen- 
tations of dyadic numbers, we give the following definition. 

Definition 25. A family of partial equivalence relations ~ on the domains D~ are 
defined by 

bl ~o b2 iff bl =b2, 
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nl ~,  n2 iff nl =n2, 

dl ~ r  d2 iff q~(d l )=q .÷(d2 ) ,  

dl - - ¢ ~ ,  d2 iff ~'dl,d 2 '  ' E D~.d l' ~ d 2' ~ d l ( d { )  ~o, d2(d~). 

On basic types ~ is the finer equivalence relation that identifies the three rep- 
resentations of each dyadic real number. On higher types the relation ~-~ is defined 

hereditarily. For each element d E D~__.~,, we have d ~ ,  d if and only if d preserves 

the partial equivalence relation at lower types. 
The partial equivalence relations ~ can be extended pointwise to environments 

Pl ~ P2 iff Vx G . p l ( x )  ~-~ pz(x). 

Proposition 26. For every term M e in 5fwr and environment p i f  p TM p then 8[MO]p 

-~ ~ g~ M ~ ~p 

Proof. By structural induction on M. The only non-trivial case is represented by con- 

stants Y,. By an easy structural induction on types, it is possible to prove that for 

every type a: ± ----~ _1_ and that the relation ---, is closed by 1.u.b. of chains, i.e. it 
is inductive. It follows that for any element d E D~_~, such that d ----~__.~ d we have: 

M~Y~](d) = UnEN d" (±~)  ~=. UnEN dn(±~)  • Therefore: N~Ya] ~(~_~)__,~ N[Y~]. [] 

We need to prove that every computable function on reals is definable in 5~wr. 

Proposition 27. For each tuple o f  natural numbers -~ and fo r  every computable func-  

tional F in ~ there exists a term M in ~wr such that q-~(g~Ml)= F. 

Proof. Given a term M in L, er, let M *  indicate the term obtained by substituting each 

occurrence of the constant (~<0) in M with the constant ( < 0 ) .  Let d be a computable 
element in ~ such that qm-(d)=F,  and let M be the term in ~c°r, which has d as 
its denotation and is constructed according to the proof of  Theorem 24. We will prove 
that q~(g~Ml)  = q~(~lM*]). 

We need to introduce the following definitions: for each natural number n, let r. be 
the type inductively defined as r0 = r and rn+~ = ro --+ rn. For each n-tuple of natural 
numbers ~ = (ml . . . .  , ran) let rmm be the type r,n, --+ " "  --+ rm. --* to. Let w : RD ~ RD 
be the function defined by 

w(d)  = {[a,b]13[a' ,b '  ] E d .  [a',b'] C(a, b)}. 

For each natural number n, let wn : FDn ~ FDn be defined by 

w. (g )  = w o 9. 
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It is not difficult to prove that 
(i) Vx E ~.  e(x) = w(e(x)), 

(ii) V f  E F,. e , ( f )  = w, (e , ( f ) ) .  
Moreover for each d E RD, 

~ (  < O)](d)) = ~ (  <~ O)~(w(d)), 

w ( ~ [ ( +  1 )~(d)) = M[(+ 1 )](w(d)), 

w(~'I ( -  1 )](d)) = ~ I ( -  1 )](w(d)), 

w(~[(+2)~(d)) = ~ (+2) l (w(d) ) .  

The terms Pr, pif~, FIRST~, SECOND~ do not contain the constant (~<0); therefore P~* = 
P~, pif~* = pif~, FIRSTG*--FIRST~ and SECOND~* = SECOND~. 

From the above identities it follows that 
(iii) Vd E RD. ~ T ~ ] p ( d )  = ~IT~]p(w(d)), 
(iv) Vn E t~ . Vg E FD, . o~HT~*]p(f) = ~ T r . ] p ( W n ( f  ) ). 

Lemma 28. For each n-tuple of  natural numbers -~, for each pair of  elements G, G ~ E 
FDm and for each 91 E FDm~ .. . .  ,g, E FDm,, i f  

G(wm,(gl))...(Wm,(gn)) r- G'(gl) . . . (gn) 

then 

Vi C ~ . o~P~o( i )( G )(Wml ( g l ) ) . . .  (Wm,(gn ) ) f- o~[P~]p( i )G' (gl ) . . .  (gn ). 

Proof  of the lemma. The proof is by structural induction on the type rmm. The basic 
step occurs when the sequence ~ is composed by a single element. In this case the 
proof becomes a simple calculation. 

Inductive step. Let ~ =  (ml . . . . .  m,), ~ t =  (m2 . . . .  mn), we have: 

g~P,]p( i)( G)(wmt (g l ) ) . . .  (Wm,(g,) ) 
= 8I Y,-.r~, ().7 '--*r~' .2n. 

Pifr~ , Zn 
then a~fl r~, 
else pifr~ , Tr,,, (FIRSTr~ m n ) f l  r"~ 

then 7 '-~r~' (pred(n)) 
else Pr~, (SECOND~ m n) (?  '--'r~' (pred(n))) 

) (S lZE~  rn )]p[i/,n][O/~][(w(y , )/#., ](Wm2 ( 9 2 ) ) . . .  ( Wmn (gn ) ) 

Using the inductive hypothesis and the identities (iii) and (iv), by a simple calculation 
it is possible to prove that for each G1, G~ : E± --~ RD~m, , i E ~ , 92 E FDmz,...,gn E 
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FDm, if Gl( i ) (Wm2(g2) ) . . .  (Wren(On)) ~__ G~(i)(g2)... (gn) then 

g[Zn. Pifr~ , Zn 
then ~/~mfl Fml 
else Pifr~ , Trm t (FIRSTr~ m n )[~ r'~, 

then 7 '-~r~' (pred(n)) 
else Pr~, (SECOND~ m n)(7 ' - ~ '  (pred(n)) 

]p[i/m]t G/:('~][Gl/?'r][(w(g, )/]~tn I ](Win2 ( ~ 2 )  ) . . -  (Wm. ( gn ) ) 

_ #lZn.pifr~ , Zn 
then ~;flrm~ 
else pifr~, T* (FIRST~ m n)[F", rm I 

then ~ - ~ '  (pred(n)) 
else P~, (SECOND~ m n)(7 ' - ~ '  (pred(n)) 

~p[i/ml[G'/~'~l[G;/7"l[g,/~ m, ](g2 ).-- (gn) 

By the definition of ~[Y,--,r~, ] it follows that 

o~P~]p( i ) (G)(wm,  (gl ) ) . . .  (Wm.(gn)) 

g~Y~r~, (27 ' ~ '  .2n. 
pif~, Zn 

then ~ f l r ' l  
else Pifr~ , T *  (FIRST* m n)]? ~, 

then ?' -~ '~' (pred(n)) 
else P~, (SECOND* m n)(7 ' ~  r~, (pred(n)))) 

(SIZE~ m)]p[i/ml[G,/=,~][O,/[~m l 1(02)'" (0n) 

= 8 I P ~ p ( i ) ( G ' ) ( g l ) . . .  ( g . )  

The lemma is proved. [] 

By the above lemma it follows that for each tuple ~,  for each gl E F D m l , . . . , g n  C 

FDm, , 

~IY, _~ r7;(2~ ~ --+ ~ . 2 n . P . ; ( F n  )(od ~ ~ ( s u c c ( n  ) ) ) )O~o(Wm, (gl ) ) . . . (Wm.(g.  ) ) 

E_ ¢I  Y, _~ ~ (  2~' - '  ~.2n.P*_~( Fn  )( ~ ' --+ ~(succ(n))))0]p(gl ) . . .  ( g,  ). 

The proposition follows immediately from the above inequality, from the identities (i) 
and (ii) and from the definition of the function q~. [] 

6. A first attempt at an operational semantics 

In this section we discuss the problem of defining an operational semantics for A°r. In 
Section 4 the elements of RD are constructed as equivalence classes of partial sequences 
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of  integers. It is an obvious observation that a function having type [7/± ~ 7/±] can 

be used to represent a sequence of  integers and, as a consequence, an element in RD. 

Following this approach, higher-order functions on 7/± can be employed to represent 

functions on RD. The construction is the following: 
• Let S r be the subset o f  [77± --~ 77±] defined by 

S ' - -  { s IViE  t ~ . ( s ( i +  1) ¢ _L =~ 

(s(i) ¢ _1_ A 2s(i) - 1 <~s(i + 1)~<2s(i) + 1))} 

the elements of  S' define the partial sequences of  digits representing elements in 
RD. 

• Let ~b~:SI--+ RD be the function 

Give a function g :RD--~RD---~RD, we say that g is represented by a function 
f :  [77± --~ 77±] ~ [Z± ---, 7/±] ~ [7/± --~ 77±] if for all sl,s2 E S I, O(r~'(sl ))(~b'(s;)) = 

~'(f(sl)(s2)). 
The above representation for functions on RD suggests the following approach to 

operational semantics: for any new constant c in ~ r  it is require that we find a 

function f c  on [77±--, 77±] representing the function N[c 1. I f  the functions f c  existed 

then a set o f  closed ~°~pA+3-terms Me, such that 8~M~]o = f~ ,  could be used to define an 
operational semantics for ~ r .  More precisely, the operational semantics would be given 
by the reduction rules c ~ M~. These rules are justified since the operational behaviour 

of  the hypothetical term M~ would be in accord with the denotational semantics of  c. 

In fact, we prove that this approach cannot be taken. 

Notation. Given a function s : 7/± --~ 77± and a natural number n we denote by s In the 
restriction o f  the function s to the elements smaller that n: s In ( m ) = s ( m )  i f  m<~n, 

s In ( m ) =  _1_ otherwise. 

Proposition 29. There is no function g: {tt, f f}z ~ [Z± ~ 77z] ~ [Zz  ~ 7/z] 
[77z 4 7 _ ± ]  representing the funct ion 9~pifr]. 

Proof.  By contradiction. Suppose there exists a continuous function g representing the 

function 9~pifr]. Let x be a real number and s, t be two representations of  x. 

For every i E N we have 

g ( / ) ( s ) ( s ) (  i ) = g(tt )(s)(s)(i  ) = g(tt )(s)(_L )(i ) = g(tt ) (s)( t ) ( i )  

= g(_L)(s)(t)(i) = g(f f )(s)( t )( i )  = g(ff)(_L)(t)(i) 

= g(f f )( t )( t )( i )  = g(_L)(t)(t)(i). 

In fact, all pairs o f  elements in the above equations are order related, and since they are 
all different from _L they must be equal. The function 2s .g (_L) ( s ) ( s ) : [Zx - -*Zx] - -~  
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[Z±-*  ~_±] is therefore a continuous function that, for each real number, selects a 

canonical representation. 
We now prove that this function cannot exist. Let A = {q(4)'(s))lg(_l_)(s)(s)(O) =- 1}, 

let x be a real number in the boundary of  A and let t be a representation of  x such that 

for each n E N all the intervals in 4)'(tn) are neighbourhoods of  x. It is not difficult to 

verify that the representation t exists. 
The value g( l ) ( t ) ( t ) (O)  must be different from 1. In fact, by continuity of  g, there 

exists a natural number n such that g ( l ) ( t  In)(t In)(O)=g(l)( t ) ( t ) (O).  Let t '  be a 
representation of  a real number such that t' [, = t  In and q(d/ ( t ' ) ) f [A.  We have 

g( t ) ( t ) ( t ) (O)  = g ( k ) ( t  I,)(t [,)(0) = g(Z)(t ' ) ( t ' ) (O) ¢ 1. 
By similar arguments it is possible to prove that g(Z) ( t ) ( t ) (O)= 1. We obtain a 

contradiction. [] 

It is possible to give a stronger result and prove that there exists no representation 

for a function that behaves like a "parallel if" on the infinite elements (no matter 
how the function is extended to partial elements). Moreover, this negative result can 

be extended to a large class of  different representations for real numbers. In almost 

all the representations considered in the literature, a real number is represented by a 
sequence of  elements of  a countable set C. For example, C can be a set of  digits, the 
set o f  integers, the set o f  p-adic rational numbers, the set of  rational numbers, the set 
o f  rational intervals. 

Definition 30. A sequence representation (D,S, v) is given by a countable set C, a 

subset S of  ~ --+ C and a representation function v : S --~ E. The set S is the subset o f  
sequences defining real numbers. 

By repeating the construction of  Section 4, we maps finite sequences to subsets of  
reals. 

Definition 31. Given a sequence representation for v:S--+ E, its extension to partial 
sequences, ~ : [N --~ C l ]  ---+ ~ ( E ) ,  is defined by 

-O(s) = { v ( t ) l t  E S, s E_ t}. 

The notion of  admissible representation for real numbers has first been introduced 

in [27, pp. 479-482]. That definition can be reformulated as follows. 

Definition 32. A sequence representation (S, v) is admissible if  it satisfies the following 
conditions: 

(i) VsES,  eE • . 3 n E  ~ .~(s In) is contained in an interval having width e. 
(ii) For each real number x there exists a sequence s such that for each natural n, x 

is contained in the interior o f  ~(s In). 
(iii) Real numbers are represented only by totally defined sequences. 
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Condition (i) states that the function v : S --+ R is continuous, w.r.t, the Cantor topol- 

ogy on S and the Euclidean topology on E. Condition (ii) implies that the Euclidean 

topology is the finer topology on the real line for which the function v is continuous. 

Almost all the representation functions used in computable analysis are admissible. 
There exist representations that are commonly used and not admissible (e.g. the dec- 

imal representation). These commonly used representations are not suitable for com- 
putable analysis. It is a well known result that the arithmetic operations on reals are 

not computable when the decimal representation is used [27]. In Section 7 we present 

a new representation for real numbers. The new representation is a non admissible 

representation but it can be used for computable analysis. 

Proposition 33. For any admissible representation v there is no continuous functional  

g: {tt, ff}± ~ [~ ~ C ± ] ~ [~ --+ C ± ] ---+ [~ ~ C ± ] representing a parallel test, that is, 

for  all bE {tt, ff}x, s , t  in S, 

v(g(b)(s)( t ))  = v(s) i f  b =t t ,  

v(g(b)(s)( t ))  = v(t) i f  b = if, 

v (g (b ) ( s ) ( t ) )  = v(s)  i f  v(s)  = v(t).  

The proof of  Proposition 29 can be easily modified to obtain a proof for this propo- 

sition. 
There are two possible solutions to the problem of defining a parallel test for reals. 

The first one consists in introducing non-deterministic or intensional operators in the 

language. The second one consists in using a different representation for real numbers. 
The first approach has been followed in [12], where an operational semantics of  a lan- 

guage similar to 5or is given using a non-deterministic operator. The second approach 

will be followed here. 

7. An operational semantics 

In the literature, real numbers are represented by sequences that are completely 
defined. We maintain that it is possible to represent real numbers using sequences that 

are undefined on some index. An example is the following. 

Definition 34. A real number x in the interval [ -1 ,  1 ] is represented by a sequence s 

of  digits - 1 ,  1 such that x = ~ i c s  ]-Io<~j<~isJ/2" 

This notation is similar to the binary digit notation. The main differences consist in 
the use of the digit - 1  instead of the digit 0 and in the fact that in this notation the 
value of a digit affects the weights of  all consecutive digits. In this notation, the real 
number 0 has two representations: the sequence ( - 1 , - 1 ,  1, 1, 1 ...) and the sequence 
(1, - 1, 1, 1, 1 ...). The two representations differ just for the first digit. Therefore, 0 can 



P. Di Gianantonio I Theoretical Computer Science 221 (1999) 295-326 319 

also be represented by the sequence {3_,-1, 1, 1, 1 ...} undefined on the first element. 
Moreover, by examining the finite initial parts of the incomplete sequence, it is possible 
to determine the number it represents with arbitrary precision. Similar considerations 
hold for any other dyadic rational number: every dyadic rational number has two 
representations, which differ for just one element. Therefore, every dyadic rational 
number can be represented also by a partial sequence diverging on one element. Every 
real number that is not rational dyadic has exactly one representation. If we allow 
that a sequence undefined on one element may be a possible representation for a real 
number, then we obtain a representation which is suitable for real number computation. 

In order to represent the whole real line we consider the following notation. 

Definition 35. A representation function v:(N ~ { - 1 ,  1}) --+ E is defined by 

v ( s ) = s ( O ) x  ( k +  ~ .<l~<s(j)/21, 
i~kO..~j~i ff 

where k = m i n { i l i  > 0, s ( / ) - - - l } .  

This is a sort "sign, integer part, mantissa" notation for the real numbers. The first 
digit gives the sign, the next consecutive positive digits determine the integer part, the 
remaining part of the sequence is the mantissa. Also, in this case, every dyadic rational 
number is represented by two sequences that differ just for one element and every real 
number that is not rational dyadic has exactly one representation. 

Definition 36. The extension of v to partial sequences is the function ~ : ( N - ~  
{ -1 ,  1 } z ) - - ~ ( ~ )  defined by 

~(s)= {v(t) lt: ~ ~ {-1 ,  1}, s E t). 

Proposition 37. The set -~(s) is an interval if and only if  

Vn.(s(n) T As(n+ 1) .L) =:~ Vm < n.s(m) ~. 

As(n + 1 ) = - 1  

AVm > n + 1 .(s(m) T Vs(m) = 1). 

Let S ~ denote the set of partial sequences s such that ~(s) is an interval. S ~ is 
a complete partial order when the subsequence order is considered. If we repeat the 
construction of Section 4, with the representation v and the set S ~ of partial elements, 
we obtain a new domain for real numbers. We call the new domain RD' (Fig. 3). In 
this case no pair of elements in S ~ contains the same information. It follows that S ~ 
and RD ~ are isomorphic. 

The structures of RD and RD' are quite similar. The main difference consists in 
the fact that for each natural number n, RD' contains the intervals [-cx~,-n] and 
[n, +~x~] and, as a consequence, the infinite points -cx~ and + ~ .  It is possible to 
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i s  ~ 0 s  
• • • 0  

~s  i t  ~s  

• • • • u 

. . . .  

~ 0 # • 0 a 0 • i • 0 t o  • 0 • • i t s  ~ 0 • i • i 0 0 

[ - ~ , 0  _ [ -1 ,1]  + o , + ~ 1  

Fig. 3. The diagram representing RD ~. 

define a representation for real numbers similar to the one given in Definition 35, in 

such a way the approximation domain obtained from it is exactly the domain RD. This 
alternative notation needs to be more complex. In order to have a simpler operational 

semantics, we prefer to use the domain RD ~ and slightly modify the calculus. Namely, 
we change one constant in ~q~, substituting the constant ( - 1 )  with the constants abs  

and compl,  which represent the functions "absolute value" and "complementation". 

Their denotational semantics is 

~l(abs)l(d ) = {[a, b] d [a, b] E d, 0 ~<a} U { [ - b , - a ]  [ [a, b] E d, b ~< 0} 

U { [ O , b ] l [ a , b ] E d ,  a < 0 < b } ,  

~ l ( c o m p ) l ( d  ) = { [ - b , - a ]  I [a, b] E d}. 

We call , f r '  this new extension of  P C F  with real numbers. The proof  of  Theorem 24 

can be trivially modified to prove that ~ r ,  is universal. 
Using S °~ as a representation for RD ~, it is not difficult to define an operational 

semantics for ~q~r'. The method we employ is the one described in the first part o f  

Section 6. 
For convenience, instead of  sequences of  - 1, 1, we use sequences of  boolean values: 

ff stands for - 1  and tt stands for 1. Sequences of  boolean values are represented by 
terms having type 1 --~ o. For each constant c in the set { (+  1 ), a bs, co rap, ( x 2), ( - 2 ) ,  
Pfl, (~<0), pifr}, the denotational value of  c induces a function g on S °~ (RD ~ and S ~ 
are isomorphic), g can be extended to a complete and computable function h on the 
domain ;7±---+ {tt, ff}± (the extension exists because S °° is an effective retraction of  
the space 77± --+ {t-t, f f}±)  and, by the universality of  L#3+p,4, h can be denoted by a 
suitable term M. The term M defines the operational semantics of  the constant c. 
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The operational semantics of ~q~r, is given by the set of reduction rules of  ~3+PA, 
with the following added rules: 

( ÷ l )  --~ 2s.2n.pifos( O ) 
then ifoZ(n) then tt else s(pred(n)) 

else Pifos (1) 
then ifo(n = 1) thenffe lse  NOT(s(n)) 
else ifoZ(n) then ffelses(succ(n))  

abs ~ 2s.2n.ifoZ(n) then tt else s(n)  

comp --~ )~.).n.ifoZ(n) then NOT(s(n)) else s(n)  

(×2)  ~ 2s.).n.ifoZ(n) then s(0) else double(2m.s(succ(m)))  

where the term double is defined by: 

double(s)(n) = Pifos(0 ) 
thenifoZ(succ(n ) ) 

thentt  
else double(  2m.s( succ( n ) ) )( n - 2) 

else Pifos (1) 
then ifoZ(n) then ffelses(n + l )  
else ifoZ(n) then tt else s(n) 

( - 2 )  ~ 2s.2n.ifoZ( n ) then s(0)else half( 2m.s( m + 1)) 

where the term half is defined by 

half(s)(n) = Pifos(O ) 
then Pifos ( l )  

then ifoZ(n) 
then tt 
else half( )~m.s( m + 2))(pred(n)) 

else ifo(n -= 1) then ff else NOT(s(n)) 
else ifoZ(n) 

thenff  
else ifoZ(succ(n)) then tt else s(pred(n)) 

PR ~ 2s.2n.ifoZ(n) 
then s(0) 

else ifoZ(succ(n)) 
then ff 

else Pifos (1) 
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then ifoZ(succ(succ(n))) then ff else tt 
e l ses (n)  

(~<o) ~ 2s.s(O) 

ifr ~ 2b.2s.2t.2n.pifob then s(n )e lse t(n) 

Proposition 38 (Adequacy). For every closed term M having type t or o, 

[ Eval(M) i f  Eval(M) is defined 
J_ otherwise. 

For every closed term M having type r: 

[a,b] E o~Mlp iff ~n.-~((Eval(M(O)) . . . .  ,Eval(M(n))))  C_[a,b]. 

Proofi The standard computability method (see [18]) can be applied to prove the ad- 
equacy of  5¢r,. There is, however, a further difficulty. It can be noted that, in L~'r, 

reduction rules do not preserve the denotational semantics of  terms. In fact, a con- 
stant reduces to its "implementation" and the semantics of  the implementation cannot 

be given using the domain RD ~. This difficulty can be easily overcome by slightly 

modifying the proof  technique. 
The predicate COMP on 5e~r,-terms is defined by 

• a closed term M having type z or o has the property COMP (is computable) if  

• ~[M]p =Eva l (M)  if  Eval(M) is defined and 
• ~UMIp ---- / otherwise; 
• a closed term M r is computable if  

[a, b] E gImlp ¢:~ 3n.-~((Eval(M(O)) . . . . .  Eval(M(n)) ~ n) C[a, b]; 

• a closed term having M (~' ~ °2) is computable if for every closed computable term 

N ~' the term M (~' ~ 2 ) ( N ~ ' )  is computable; 

• an open term M with free variables xl . . . . .  x,  is computable if  for every closed 
computable terms N1 . . . . .  N,  the term [N~/xl . . . . .  N,/xn]M is computable. 

It is straightforward to prove by structural induction that every ~ar, term is computable. 
[] 

8. Sequentiality and real number computations 

In a calculus for real numbers based on the previous representation, the use of  
parallel operators cannot be avoided. In fact, the implementation of  a total function 
on reals must contain parallel operators; otherwise, the computation will diverge as 
soon as it examines an undefined digit. We discuss whether, in general, parallelism is 
necessary to perform exact computation on real numbers. There is no straight answer 

to this question. 
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Parallel computation is not necessary in a calculus whose functions do not need to 
preserve the equivalence relation which exists among the different representations of  
the same real number and among the different representations of  the same approximated 

real. The calculus for real numbers presented in Section 3 is an example. 

In the case of  calculi where the equivalence relation is preserved, it is necessary to 
consider which kind of  representation for real numbers is being used, and what are the 

approximated reals that can be obtained as a result o f  computation. 
Given a calculus for real numbers based on a sequence representation (D, S, v), let S O 

indicate the set o f  partial sequences that can be generated as a result of  a computation. 
In the calculi proposed so far in the literature, S O is the set o f  initial sequences. 

In general, we consider the case where S O is a dense subset o f  the set o f  initial 
sequence, i.e., for each s E S and for each i c N, there exists j >~i such that s [j E S 0. 

Any sequence representation induces an information order on partial sequences. In this 

order, s is below t if  ~(s)_~ ~(t). I f  the denotational semantics of  the calculus is based 

on a domain of  approximations then the implementation of  the function must preserve 
the information order on partial sequences of  S O . 

We will prove that, in a calculus using an admissible representation, where the set 
o f  partial elements S O is a dense subset o f  the initial sequences, the use of  parallel 

operators is unavoidable. 
In order to prove this, we need to use the notion of  dI-domains and stable functions. 

We recall here the standard definition and properties. See [2] for a more complete 
account. 

A Scott domain D is a dI-domain if (i) for every finite elements d E D the set 
{d'  Id '  E d} is finite and (ii) D is distributive, that is, for d , f ,  e c D ,  if  d,d'  have 

an upper bound then (d U d I) ~ e = (d • e) U (d ~ n e). A function f :D ~ D I between 
dI-domains is stable if  it is continuous and for every bounded d, e C D if d, e have an 

upper bound then f ( d  N d r ) = f ( d ) n  f ( e ) .  f is below g in the stable order if  for all 
d, e E D if d E e then f ( d ) =  f ( e ) m  g(d). I f  D,D' are two dI-domains, then the set o f  
stable functions from D to D I with the stable order is a dI-domain. In particular, dl- 

domains and stable functions form a Cartesian closed category. Stability is a property 
that is satisfied by the sequential operators but not by the parallel ones. 

The dI-domains form a model for the language ~,e but not for the language L, epn. 

There is no stable function giving an adequate semantics to the constant pif o. 

Theorem 39. For any admissible representation (D,S, v), for any dense subset S O of  
initial sequences of  S, and for any function f :  (~  × ~)  --~ ~, i f  f is not constant 
in any of  the two variables, then there is no stable continuous functional g : [ ~ ±  --~ 

C±] ~ [ ~ ±  --~ C±] ~ [ ~ x  --+ C±] such that 
(i) g implements f ,  i.e., for all s, t in S, f (v ( s ) ) (v ( t ) )  = v(g(s)(t)). 

(ii) g respects the induced order relation on partial sequences, i.e., Jor all s, sl, t , f  
in S °, ~(s) ~_ ~(s') and -~(t) ~_ -O(t') implies ~(g(s)(t)) ~ ~(g(s')(t')). 

Proof .  By contradiction. Suppose that the function g exists. Since the function f is 
not constant, g implements f ,  and g is continuous there exist sli, tli in S °, t '  in S, 
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(a, b) rational interval, such that 

(i) ~(9(sli)(tli)) C_(a,b), 
(ii) ~(9(sb)(t')) 0 (a,b) = ~. 

Given a set of real numbers A, let Int(A) denote the interior of A, that is the largest 
open set contained in A. Let B be the set of real numbers defined by 

B = U {tnt(v(t"lj))lt"[j ~ s °, v(o(sb)(t"lD) C_(a, b)}. 

By conditions (i) and (ii), the set B is a non-empty proper subset of ~ so there exists 
a number x that belongs to the boundary of B. Let u be a representation of x such that, 
for each natural number i, x is contained in the interior of ~(uli ). Since the function 
f is not constant, the value 9(sli, u) is a partial element. By continuity of 9 there 
exist j , k  such that slj, ulk ES  ° and gfslj, ulk) is strictly more defined than 9(s]i,u). 
By construction, there exists a representation u' such that ulk = u'lk and v(u')E B. By 
definition of B, there exists l > k such that ~(9(sli, u'lt))_C(a,b). 

It follows that both 9(sli, u'[l ) and g(sb,u'l~) are initial partial sequences of digits 
strictly more defined than 9(sli, u'lk). Hence, 

g(sfi, u'll ) n g(slj, u'lk ) = min{g(sli, u'it),g(slj, u'[k )} ¢ g(sl,, u'lk). 

Therefore, g cannot be a stable function. [] 

The previous proposition cannot be generalised to arbitrary representations. With a 
suitable representation it is possible to define calculi for real numbers, which are uni- 
versal and whose operational semantics can be given by a sequential and deterministic 
set of reduction rules. 

What we are going to present here is not a sequential calculus for real numbers but 
just the idea for a possible definition. 

Consider the following representations for the integers and for the booleans. Each 
integer n has an infinite set of different representations namely the set {n* :Z  
7/ ] i E ~,  Vj < i. n * ( j ) =  1, Vj >~i. n * ( j ) =  2 × n}. The boolean value true is represented 
by any function in the set {tt* :7/ ~ 7 / l i e  ~,Vj < i . t t * ( j ) =  1,Vj>>.i. t t*(j)=2}. 
The boolean value false is represented by any function in the set {t-t* : E ~ 7/I i E N, Vj 
< i . f f * ( j ) =  1,Vj>~i. f f*( j )=O}.  

This representation can be implemented in PCF by using non-standard types a* 
defined as follows: t * = t  ~ l, o* = t  ~ t and (trl ~ tr2)* =tr* ~ try. 

To each £,aeA+3 constant c we associate a corresponding term c*. The constants 
n*, pred*, succ*, tt*, if*, Z* are defined pointwise: 

n* = 2 i . 2  x n 

if* = 2i. 0 

tt* = 2i. 2 

succ* = 2ni. ifon(i) = l then 1 else succ(succ(n(i))) 

pred* = 2ni. ifon(i) = ! then 1 else pred(pred(n(i))) 

Z* = 2ni. ifon(i) = l t h e n  1 else ifoZ(n(i)) then 2 else 0 
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• * " * * are defined as follows: Ifn, Plfn, Yz~,, 3* 

if* = 2bnmi .  ifob(i) -- 2 then n(i)  else ifob(i) = 0 then re(i) else 1 

pif* = 2bnmi .  ifob(i) = 2then n(i)  

else ifob(i) = 0 then re(i) 

else ifon( i ) = m( i ) then n( i ) 

else l 

i i * Y* = 2 f x l . . . x ,  . f (f2,, . . . . .  , , ~ , ) ( x l  ) • ( x , ) ( i )  (71 --+".--+~n --~! " " 

where f2* denotes the terms inductively defined by: f2* = f2* = 2i. 1 f2* 
- -  f f l  - " r  0"2 

and f i  is defined by 

= i x .  g~*, 

f i  = 2x . ( Y,__.r, . . . . .  . _~,(2yj.  i foZ( j ) then x else f ( y ( p r e d ( j  ) ) ) )( i ) ) 

3* = 2 f . Yt__+,( 29i . ifoi = 0 
then l 

else ifo f ( bc. l_ )( i ) = 0__ 
then 0 

else i f o f ( 2 j .  P] ( i ) ) (P2( i ) )  -= 2 
t hen2  

else g (pred( i ) )  

where P1 and P2 define two primitive recursive functions 7~l,X 2 such that for each 
natural number n, n = Qtl(n), xz(n)), for a suitable coding function (). 

Observe that all the terms c* belong to the language 5(', since they do not con- 
tain parallel operators. Given a term M, we denote with M* the term obtained by 
substituting each constant with the corresponding non-standard version. It is not too 

difficult to prove that, for any term M having type l, Eva l (M)=  n if and only if 
3i E N .  (Vj > i. Eval(m*(j_')) = 2 × n) A (Vj ~< i. Eval(m*(j ' ) )  = 1); also, Eval(m) is 

undefined if and only if for all i E ~ Eval(M*(/))  = 1. 
The idea in this representation is to internalise the undefined element. The function 

2x. 1 is a total function that represents the undefined computation. By using this rep- 
resentation for the bottom element, it is possible to emulate the parallel computation 

in a sequential calculus. 
The above representation for the natural numbers is certainly unusual. However, there 

are several representations for real numbers that are commonly used, and where infinite 
sequences do not necessarily describe totally defined real numbers, but approximations 
of  real numbers [12, 11]. If  we use representations in this form, it is possible to define 

a calculus where all terms representing real numbers generate an infinite sequence of 
digits. In this way it is possible to perform the computation sequentially. 

From a practical point of  view, a sequential calculus of  this form does not solve the 
efficiency problem caused by parallel operators. The parallelism in computation is not 
avoided, it is just emulated sequentially. 
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