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K-TH SHORTEST COLLISION-FREE PATH PLANNING* 

Yuval Lirov ** 

ABSTRACT-A hierarchical approach is formulated for the shortest collision-free path 

construction problem. The new concepts of k-th neighborhood, k-th visibility graph and 

k-th shortest path are introduced. The proposed approach generalizes some earlier 

algorithms and allows for incremental improvement of the planned path. 

1. INTRODUCTION 

The class of problems of finding the collision-free paths for a moving object in the 

Euclidean plane cluttered with obstacles is known as collision-free path planning. We 

assume that the obstacles are represented by f disjoint convex polygons with n vertices 

in total. Furthermore, we assume that the two query points s and t describing the 

optimal collision free path do not lie in the interior of any polygon and that no three 

vertices are co-linear. \Ye now try to solve the Shortest Collision-Free (SCF) path 

problem which is formulated as follows: given two points s and t, and f obstacles all 

belonging to some connected region in IR21 construct the SCF path connecting the points 

s and t in the shortest possible time. 

The most popular method for collision-free planning is probably the one using the 

visibility space concept [Lozano-Perez, 19811. It is based on the idea to shrink the object 
into a single point while at the same time expanding the obstacles according to the shape 

of the object. The visibility graph indicates all collision-free straight line paths among 
the vertices of the expanded polygonal obstacles. The search for the minimum path is 
subsequently performed on the visibility graph. 

The main disadvantage of this method is the high demands for the preprocessing time. 
There exists an inverse relation between the amount of time invested in the initial 

computations and the resulting path optimality. Knowledge about the nature of the 

above tradeoff would allow the planner to choose the proper path planning algorithm 

according to the planning and the path traversal time requirements. Such a knowledge is 
also important in order to perform sensitivity analysis on the computed path [Bellman 
and Kalaba, 19601. 

First, we note that the SCF path must consist only of the edges of the polygons and of 
the supporting lines between them [Rohnert, 19861. Next, we introduce a hierarchy of 
visibility graphs using a concept of neighborhood. A corresponding hierarchy of the 
shortest collision-free paths is obtained subsequently. 
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2. HIEXARCHICAL ALGORITHM 

Definition 2.1: Let P, and P, denote two obstacles (convex polygons). Define the 
distance between two polygons P, and P, via the relation 

dist (P,,P,) = mi; dist(z,y) 

VE6Pi 

where dist(z,y) is the Euclidean distance between two points z, yfIR* and 6P stands for 
the boundary of polygon P. Note, that dist (P1,P2) can be computed in 
O(log nr + log n2) where nr, and n2 are the number of vertices of P, and P, respectively 
[Edelsbrunner, 19851. 

Definition 2.2: Let 8 denote the set of the given polygonal obstacles. Let PC@. The set 
Iv,(P) of polygons P, . . . P,E8, that are closer to P than to any other polygon in 8, 
constitutes the l-neighborhood of the polygon P. Define N,(P), the k-th neighborhood of 
P, by the union of all l-neighborhoods of all Pj E Nk_-l(P), excluding Pj, i.e., 

N,(P) “= ;1 Nl (Pp)) - N,_,(P) 
i-l 

where P(k-l) belongs to the (k-1)-th neighborhood of P for every i = l,...,m, and 

II; Pp) = A$_JP) . 

i-l 

Definition 2.9: Define Vo, the O-visibility graph by V. “= 8 U {s,t}. Define V,, the k-th 

visibility graph, to be the union of the (k-1)-th visibility graph and of the set of all useful 
supporting segments between every polygon PE8 and every polygon Ptk) in its k-th 
neighborhood. (A supporting segment s is useful if sn int P = 0, VPEe.) More 
formally, let Sk(j) d enote the set of all useful supporting segments between polygon Pi 

and all the polygons belonging to its k-th neighborhood N,(Pj), and let S, “= 6 S,(j), 

where j’ 2 1 V, 1 = j+2. Then V, = V’_, U Sk. 

j-l 
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Algorithm (Hierarchical SCF Path Planning): 

Start with the l-visibility graph. 
repeat 

Construct all the useful supporting segments within the current hierarchy 
level; 
Solve the SCF Path Problem in the resulting visibility graph; 
Increment the hierarchy level 

until last hierarchy level is reached. 

Definition 2.4: The SCF path resulting from the Algorithm at the k-th hierarchy level 

( or, in other words, from the k-th visibility graph), is called the k-th SCF path. 
(Figures 1, 2). 

3. COMPUTATIONAL COMPLEXITY 

The most natural way to view the k-th visibility graph is through the available proximity 
computation mechanisms since the k-th visibility graph is defined via the neighborhood 
concept. Let us associate an internal point Ti with every polygon P&8. By constructing 
the Voronoi diagram [Preparata and Shamos, 19851 on the set { Ti} and using the edges of 
the diagram as pointers defining the neighbors, one can prove the following lemmas: 

Lemma 9.1: I 

Lemma 3.2: I 

Nk(i) I = O(f), k=O ,..., f, i=l,..., f. 

E( v-k) I = 0(kf+n) 

,’ 
,’ 

--. 

.s’ 

--_ 

‘. . 

Figure 1. l-visibility graph of P. Figure 2. l-optimal path from s to t. 
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Corollary 3.i: I E( V,) I = O( I2 + n). 

Now, using the above two lemmas, the technique developed by Rohnert [Rohnert, 1986, 
proofs of lemmas 3 and 51, and mathematical induction, one can obtain 

Theorem 5.1: The k-th visibility graph V, can be constructed in O(f.k log n + n) time 

and 0( f*k+n) space. 

segments of convex polygons can be 

time [Lemma 4, Rohnert, 19861. 

Corollary 9.8: The non-useful supporting segments in V, can be eliminated in O(n) time 

and O(J) space [Lemma 7, Lirov, 19871. 

orting lines between the neighboring polygonal obstacles can be 

time [Theorem 2, Lirov, 19871. 

And finally, by applying Dijkstra’s algorithm [Fredman and Tarjan, 19841, we obtain our 
main result: 

Theorem 9.2: The k-th SCF path can be computed in O(li. f+n log n) time after 

O(k. f log n+n) preprocessing. 

Corollary 3.5: The SCF path can be computed in 0(n+f2) space and 0(f2+n log n) time 

after 0(n+f2 log n) preprocessing [Theorem, Rohnert, 19861. 

Corollary 9.6: l-optimal path can be computed in O(n+f) space and O(f+n log n) time 

after O(n+f log n) preprocessing [Theorem 3, Lirov, 19871. 
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