
Appl. Math. Lett. Vol. 3, No. 2, pp. 69-n, 1990 
Printed in Great Britain. All rights reserved 

089~9659190 $3.00 + 0.00 
Copyright@ 1996 Pergamon Press plc 

Maximal Elements of Condensing Preference Maps 

GHANSHYAM MEHTA 

Department of Economics, University of Queensland 

Abstract. We use the methods of nonliner analysis [l-4] to prove the existence of a maximal 
element for a class of preference maps defined on a closed, bounded, and convex, but not 
necessarily compact, subset of a Banacb space. 

1. INTRODUCTION 

Suppose that K is a subset of a topological vector space E. Then each binary relation P 
on I< gives rise to a multivalued map T : K -+ 2K as follows: if t E I(, then T(z) = {y E 
K : (I, y) E P}. We say that a multivalued map T : K ---* 2K is a preference map if it is 
generated from a binary relation P on K so that y E T(Z) for x E K if and only if (I, y) E P. 
The binary relation P may be interpreted as a preference relation on a set I< of alternatives. 
A point x in K is said to be a maximal element of the preference map T if T(x) = 4. 

A standard theorem in mathematical economics [7, Theorem 2.11 on the existence of max- 
imal elements states that an irreflexive preference map with convex values and open inverse 
images has a maximal element in any compact convex subset of a Hausdorff topological 
vector space. 

The objective of this note is to remove altogether the compactness assumption on the 
domain and to prove the existence of a maximal element in a noncompact subset of a 
Banach space by using a nonexpansive or Lipschitz condition on the preference map. This 
condition may be interpreted in the following way. Let P be a preference map and D a 
subset of commodity bundles that is large in a sense to be made precise below. Then it is 
intuitively reasonable to expect that because of “diminishing returns” the size of the upper 
contour set P(D) is smaller than that of D. D.A. A preference map satisfying this condition 
is said to be a condensing map. Using the methods of nonlinear analysis [l-4], we prove that 
a condensing preference map satisfying the other usual conditions has a maximal element 
in a closed bounded and convex, but not necessarily compact, subset of a Banach space. 

2. PRELIMINARIES 

We shall use the following notation. If K is a subset of a Banach space, then int K 
denotes the topological interior of K, co K denotes the convex hull of K, and W K denotes 
the closed convex hull of K. 

Let X be a Banach space and S a bounded subset of X. Then the Kuratowski measure 
of noncompactness of S, a(S) is defined by o(S) = inf{e > 0 : S can be covered by a finite 
number of sets with diameter no larger than ,E}. 

Observe that Q(S) = 0 if and only if S is relatively compact. Hence, a closed bounded set 
S has positive Kuratowski measure if and only if S is noncompact. 

The proof of the following important theorem may be found in Lloyd [3, Chapter 61. 

Some of the work for this paper was done while visiting the London School of Economics in 1988. I should 
like to thank Professor M. Desai, Professor L. Foldes, and Dr. A. Horsley for their hospitality. 
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THEOREM (DARBO). Ifs is a bounded subset of a Banach space, then Q(S) = (I. 

Let Yl, YZ be metric spaces. Then a multivalued map T : YI -+ 25 is said to be condensing 
if for each bounded subset D such that a(D) > 0, T(D) is bounded and a(T(D)) < a(D). 

Let K be a subset of a Banach space and T : K -+ ZK a multivalued preference map. 
Then xc E K is said to be a maximal element of T if T(xo) = 4. 

3. MAXIMAL ELEMENTS 

We first prove the following lemma. The proof is an adaptation of the argument of Martin 
[4, Chapter 41 to the multivalued case. 

LEMMA. Let E be a Banach space and R a nonempty closed, bounded and convex subset 
of E. Suppose that T : D + 2O is a condensing map. Then there exists a compact convex 
subset K of D such that T is a multivalued map of K into 2K. 

PROOF: Let IO be an element of D and consider the family F of all closed convex subsets 
CofDsuchthat+sECandT:C -+ 2c. Clearly, F is nonempty. Let Co = II~&Z. Then 
CO is closed and convex and x0 E CO. If x E CO, T(z) c C for all C so that T : Co + 2co. 

It remains to be proved that Co is compact. If CO is not compact o(Co) > 0. Since T is 
a condensing map we have cr(T(Co)) < a(Co). Let Cr = ~({xs} U T(Co)). Then C1 c Co, 
which implies that T(C1) C T(Co) C Cr. H ence, CI E F and Co C Ci. Therefore CO = Cl, 
a contradiction because o(Ci) = o[E${xo) UT(Co))] = o(T(Cs)) < a(Cs) where the second 
equality holds because of Darbo’s theorem. This contradiction proves the lemma. a 

We are now ready to prove the following theorem on the existence of maximal elements. 

THEOREM. Let E be a Banach space and D a closed bounded and convex subset of E. 
Suppose that P : D --+ 2O is a multivalued preference map such that the following conditions 
are satisfied: 

(i) for each z E D, z $? cop(z); 
(ii) for each z E D such that P(z) # 0 there exists y E D such that z E int P-l(y); 

(iii) P is condensing. 

Then there exists a maximal element of P in D. 

PROOF: Suppose, per absurdum, that there is no maximal element. Then P(x) # 0 for 
each x E D. 

The lemma implies that there exists a compact convex subset K of D such that P : IC + 
2K. Define & : K -+ 2K by Q(x) = co P(z) for each x E K. Clearly, for each x E K, Q(x) 
is nonempty and convex. 

We prove next that for each 2: E K there exists y E K such that z E inte Q-‘(y) in 
the relative topology of K. Let t E K. Then since P(z) # 0, condition (ii) implies that 
there exists y E D with t E int P-‘(y). Since P(z) C Q(x) = COP(Z) for each 3: E I<, int 
P-‘(y) C int Q-‘(y) h w ere the interiors are taken in D. Hence I E Q-‘(y), which implies 
that y E Q(x) C K so that y E K. Therefore, for each x E K there exists y E K such that 
x E int Q-‘(y) where the interior is in D. It follows that there is an open neighbourhood 
U in D such that x E U c Q-l(y). This implies that U n K is open in K and t E U n K C 
relative interior of Q-‘(y) in K. This proves that for each x E K there exists y E I’ such 
that x E int Q”(y) in the relative topology of K. 

Hence, all the conditions of the fixed point theorem of Tarafdar [6] are satisfied and we 
may conclude that there exists a point 20 such that x0 E Q(x0) = co P(xo) contradicting 
condition (i). This contradiction proves the theorem. I 

REMARK 1. The method used here can also be applied to weaken the compactness assump- 
tion in the other theorems on the existence of maximal elements. The reader is referred to 
Mehta [5, Chapter 71 for further discussion. 

REMARK 2. I do not know if the theorem proved above can be extended to a topological 
vector space. This would be an interesting generalization. 
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