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ABSTRACT

Recently, mixed treatment comparisons (MTC) have been
presented as an extension of traditional meta-analysis by
including multiple different pairwise comparisons across a
range of different interventions. MTC allow for indirect com-
parisons and can therefore provide very useful information
for clinical and reimbursement decision-making in the
absence of head-to-head data. In this article, we provide an
introductory overview of MTC illustrated with example
analyses of different drug treatments in rheumatoid arthritis
using a continuous patient-reported end point. As a back-

ground, we start with an overview of the traditional meta-
analyses for pairwise trials, and the difference between a
traditional approach and a Bayesian approach. Next, the
Bayesian MTC for continuous outcomes are presented. We
finish with a discussion of how MTC can best be presented in
order to maximize acceptance by target audiences, i.e., clini-
cians and market access decision-makers.
Keywords: Bayesian methods, evidence synthesis, meta-
analysis, mixed treatment comparisons.

Introduction

Systematic reviews are considered the standard prac-
tice to inform evidence-based decision-making regard-
ing the efficacy and safety of medical technology. As
part of a systematic review, quantitative results of
several similar studies can be combined by means of
meta-analysis to summarize the available evidence into
a pooled estimate of the outcome of interest. Recently,
mixed treatment comparisons (MTC) have been pre-
sented as an extension of traditional meta-analysis
(where all included studies compare the same interven-
tion with the same comparator) by including multiple
different pairwise comparisons across a range of dif-
ferent interventions [1–3]. With MTC, the relative
efficacy (or safety) of a particular intervention
versus competing interventions can be obtained in the
absence of head-to-head comparisons; indirect com-
parison of two interventions is made through a
common comparator. These types of evidence synthe-
sis methods are often performed as a basis for cost-
effectiveness decision-making [4]. Moreover, MTC
provide very useful information regarding the relative
clinical value of medical interventions and can there-
fore support medical decision-making; MTC allow
us to rank-order available interventions regarding effi-
cacy, safety, or patient-reported outcomes.

In this article, we provide an introductory overview
of MTC illustrated with a example analysis of a con-

tinuous patient-reported outcome in rheumatoid
arthritis. To provide a background, we start with an
overview of traditional meta-analyses for pairwise
trials, and the difference between a frequentist and a
Bayesian approach. Next, Bayesian MTC for continu-
ous outcomes are introduced with a fixed-effects model
and a random-effects model. We conclude with a dis-
cussion of how MTC can best be presented in order to
maximize acceptance by target audiences.

Standard Meta-Analysis for Pairwise Trials

This section briefly reviews the basic features of stan-
dard meta-analysis. For a more thorough description,
see for example Sutton et al. [5]. Meta-analysis is
the statistical tool for estimating a treatment effect
obtained from several sources of evidence available.
One of the aims of meta-analysis is to combine results
of comparable studies in order to obtain an overall
estimate of effect (e.g., odds ratio, relative risk, or
difference in change from baseline) thereby reducing
uncertainty. Meta-analysis uses the magnitude of the
effect and its uncertainty from each study to produce a
weighted mean. Roughly, meta-analyses can be differ-
entiated into fixed-effect approaches and random-
effects approaches, and meta-analysis can be
performed with traditional frequentist statistics or
with Bayesian statistics.

Fixed-Effect and Random-Effects Meta-Analysis
With the fixed-effect approach, the assumption is made
that each of the individual studies aims to estimate the
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same true treatment effect (i.e., the underlying effect),
and that differences between studies are solely due to
chance. The observed effect of each study equals a
fixed effect common to all studies plus sampling error.
The true treatment effect (estimated with the pooled
effect) is calculated as the weighted average of study-
specific effects, with weights based on the inverse of
the uncertainty (standard error squared) of each study.
The uncertainty of the pooled estimate is calculated as
the sum of inverse weights [5]. This method is often
referred to as the inverse-variance-weighted method.

With the random-effects approach, it is assumed
that, in addition to sampling error, differences between
studies are caused by heterogeneity between studies. In
other words, it is assumed that for each of the different
studies, the true effect may be study specific and vary
across studies. In addition, it is often assumed that
these true effects are described by a normal distribu-
tion [6]. Hence, the variation in observed individual
study results is caused not only by sampling error (as
with the fixed-effect approach) but also by the varia-
tion in the true (underlying) effects of each study,
which is called the random-effects variance. The use of
the random-effects model has been advocated if there
is heterogeneity between study results, caused by dif-
ferent study populations across studies, or method-
ological differences, for example. Again, the true
treatment effect is calculated as the weighted average
of study specific effects. Now, however, the weights are
based on a combination of the uncertainty (standard
error squared) of each study and the random-effects
variance. The uncertainty of the pooled estimate is
calculated as the sum of inverse weights [5]. Hence, the
confidence interval of the pooled estimate obtained
with the random-effects model is a function of both
sampling error of the individual studies and between-
study variance, and is therefore wider than the confi-
dence interval obtained with a fixed-effect model.

Neither of the methods is ideal. Fixed-effect models
ignore heterogeneity, but the random-effects model
uses distributional assumptions for the heterogeneity
that can be argued to be unrealistic or unjustified. In
general, when there is evidence of heterogeneity that is
not explained by covariates in a meta-regression analy-
sis, random-effects methods are preferred [5].

Traditional Approach and Bayesian Approach
With a frequentist approach, the result of the meta-
analysis is a point estimate along with a 95% confi-
dence interval. It has to be noted that confidence
intervals obtained with a frequentist approach cannot
be interpreted in terms of probabilities (the 95% con-
fidence interval does not mean there is 95% probabil-
ity that “true” or population value is between the
boundaries of the interval) [7].

Bayesian methods involve a formal combination of
a prior probability distribution (that reflects a prior

belief of the possible values of the pooled effect) with
a (likelihood) distribution of the pooled effect based
on the observed data to obtain a posterior probability
distribution of the pooled effect [5]. (The likelihood
informs us about the extent to which different values
for the parameter of interest is supported by the data.
Frequentists use the sampling distribution as the basis
of statistical inference that is proportional to the like-
lihood function) [8]. The posterior distribution (as
obtained with the Bayesian approach) can be inter-
preted in terms of probabilities, which allows for a
more intuitive interpretation (e.g., “There is an x%
probability that treatment A results in a larger choles-
terol reduction than treatment B”). This is in contrast
to findings with a conventional frequentist approach.
Another major advantage of the Bayesian approach is
that the method naturally leads into a decision frame-
work to support decision-making [5,9,10]. Other
advantages of a Bayesian meta-analysis include the
straightforward way of making predictions, and the
possibility of incorporating different sources of uncer-
tainty [5,10]. In order not to influence the observed
results by the prior distribution, an often heard cri-
tique of the Bayesian approach, a noninformative prior
distribution can be used for the pooled treatment
effect. With such a “flat” prior, it is assumed that
before seeing the data, any value for the pooled effect
is equally likely to occur. As a consequence, posterior
results are not influenced by the prior distribution but
totally driven by the data as with a conventional fre-
quentist meta-analysis.

Within the Bayesian framework, analyses consist
of data, likelihood, parameters, and a model [4]. The
simple Bayesian random-effects meta-analysis for con-
tinuous outcomes [11] can be written according to
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where diffi reflects the observed treatment effect (e.g.,
difference in a continuous end point) of treatment A
versus B in study i (the data). The observed diffi is
described by the study-specific true effect di and sam-
pling Error si, according to a normal distribution. This
is called the likelihood. (Often, the standard error of
a study is used for si). The model describes how the
true study-specific effects di are distributed. The basic
parameters of the model are the pooled treatment
effect d and between-study variance σδ

2 reflecting the
heterogeneity of the true study-specific effects, which
both need to be estimated. (Actually, the objective of
the meta-analysis is to estimate the pooled treatment
effect d and heterogeneity σδ

2 .) In essence, the model
describes how the parameters d and σδ

2 relate to the
data. (If σδ

2 is set to 0, this implies there is no between-
study heterogeneity, and the model reflects a fixed-
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effect approach.) Because the analysis is performed
within a Bayesian framework, prior distributions need
to be defined for d and σδ

2 reflecting prior belief of the
likely values for these parameters. [-,-] symbolizes
an arbitrarily prior distribution for the pooled effect
and heterogeneity. (For example, a normal distribution
with a mean of 0 and a variance of 1000 can be used,
and an inverse gamma prior distribution for the het-
erogeneity). The prior distributions are updated
according to the data to result in a posterior distribu-
tion for d and σδ

2. It is not an easy task to assign
uninformative priors, in particular to variance param-
eters reflecting the heterogeneity, and therefore the
model should be tested for sensitivity to alternative
specification of uninformative priors. (Remark: with
random-effects meta-analysis according to a tradi-
tional frequentist approach, the between-study vari-
ance is calculated and the uncertainty in this estimate
is ignored in the confidence interval of the pooled
estimate. Therefore, in contrast to a Bayesian random-
effects meta-analysis, a frequentist random effects
meta-analysis results in underestimates of uncertainty
of the pooled effect estimate) [12].

Indirect Comparisons and Mixed
Treatment Comparisons

There is often an interest among physicians, decision-
makers, and drug manufacturers to identify the most
effective treatment or to rank-order the treatments
among a range of alternatives. A randomized controlled
trial (RCT) comparing all different interventions
provide such information. However, RCTs are often
designed for registration purposes and therefore do not
include all available comparator interventions. The
comparator arms of such trials are often limited
to a placebo intervention as well as one common or best
practice intervention. In order to obtain insight into the
relative efficacy (or safety) versus excluded interven-
tions, one has to rely on indirect comparisons. Of key
importance in indirect comparisons is not to “break
randomization” [13]: For example, if one trial com-
pares drug A versus placebo regarding cholesterol
reduction and a second trial compares drug B versus
placebo, it is incorrect to simply compare the absolute
cholesterol reduction observed with drug A with the
absolute reduction observed with drug B. One reason is
that part of the absolute reduction can be attributed to
the efficacy of the drug, whereas another part is due to
a placebo effect. (RCTs are designed to separate drug
effects from other effects.) Another reason to avoid
“breaking randomization” is that differences may be
observed in absolute treatment effects as a result of
different baseline risks, even where the relative risk is
consistent between trials [5]. In order not to “break
randomization,” one can only compare the relative
effect of drug A versus placebo from one trial with the

relative effect from other trials (this principle also
applies to combining results of similar trials in a meta-
analysis; only placebo-subtracted or relative effects are
pooled, otherwise we “create” an observational study).

Meta-analysis of placebo controlled drug-A trials
(PA trials) provides a direct estimate of the true relative
effect of A versus placebo (dPA). Meta-analysis of PB
trials provides a direct estimate of the true relative
effect dPB. If the included PA and PB trials are alike
and the fixed-effects assumption applies (i.e., the true
comparison-specific relative effects are fixed and dif-
ferences between PA and PB trials are only caused by
the different treatment and no other factors) or the
random-effects assumption applies (i.e., the true
comparison-specific relative effects are drawn from a
population of effects and exchangeable), then the true
relative efficacy of the different types of comparisons
are mathematically related, as illustrated in Fig. 1a. In
the absence of “head-to-head” evidence comparing
drugs A and B, an indirect estimate for the relative true
effect of B versus A (dAB) can be obtained from the true
effect dPA and from the true effect dPB. In essence, this
implies that the same true dAB is obtained as would
have been estimated in a meta-analysis focusing on
drug A versus B using three-arm PAB trials, if avail-
able. Fundamentally, the only difference between
combining results of two PA trials and an indirect
comparison of one PA and one PB trial is that we are
not taking the (weighted) average of two treatment
effects, but are now subtracting two treatment effects.
Both are calculations with two treatment effects.

MTC is a generalization of standard meta-analysis
for pairwise trials to a simultaneous analysis of mul-
tiple pair-wise comparisons [2]. As for the example
illustrated in Fig. 1a, the meta-analyses for PA and PB
trials are performed simultaneously. Figure 1b repre-
sents the situation when, in addition to interventions A
and B, the intervention C is of interest as well. For this
latter intervention, direct estimates from AC trials are
available. Given the network of direct comparisons
across the range of interventions, indirect estimates
can be obtained for dPA, dPB, dAB, dBC, and dPC. Given
the mathematical relations between the true underly-
ing estimates of the different comparisons in the
network, we have both direct and indirect evidence
available for all the pairwise comparisons, except for
the BC comparisons (only indirect evidence) and the
AC comparisons (only direct evidence; see Fig. 1b).
Hence, the advantages of the simultaneous analysis
with MTC are that 1) estimates for indirect compari-
sons are obtained; and 2) indirect comparisons can
support evidence for direct estimates [4].

In general, with MTC, the same assumptions apply
as with traditional meta-analysis for one type of com-
parison. If it is assumed appropriate to combine results
of different studies with standard meta-analysis for
one type of comparison with a fixed- or random-effects
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assumption, then MTC have to be considered an
appropriate methodology when studies across the
range of interventions can be considered identical or
exchangeable (other than differences in treatments
compared). With MTC with a fixed-effects model, it is
assumed that differences in true relative treatment
effects (whether estimated directly or indirectly) are
only caused by the difference in treatment and no other
factors. There is no heterogeneity in true relative treat-
ment effects beyond differences in treatment effect
caused by the differences in the types of interventions
compared. With a random-effects assumption, differ-
ences in study-specific treatment effects (beyond the
differences attributable to the interventions compared)
are exchangeable (and heterogeneity is constant
between the different comparisons).

As outlined earlier, a meta-analysis within a Baye-
sian framework has advantages over frequentist analy-
sis. For MTC, an additional advantage of a Bayesian
approach is that it allows calculation of the probability
which of the treatments is best and which directly
appeals to clinicians and reimbursement decision-
makers, among other probability statements and pre-
dictions [7]. The random-effects model according to

Equation 1 can be extended with terms reflecting indi-
rect or mixed treatment comparisons (as presented in
Fig. 1). With [-,-] representing arbitrarily prior distri-
butions, the Bayesian random-effects model for MTC
can be written according to
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Now diffi reflects the observed relative treatment
effects of the different comparisons (for example: the
observed difference of treatment A versus placebo or A
versus C in study i). Again, the observed relative effects
are described by the study-specific true relative effects
according to the likelihood. The model defines how the
true study and comparison-specific relative effects di,b,k

are distributed and related according to basic param-
eters as illustrated in Fig. 1 (db,k = dP,k - dP,b). P refers
to the placebo intervention, k refers to the active inter-
vention, and b is a comparator intervention. Because
we use a Bayesian approach we need to define prior

dAB reflects relative effect of 
intervention B versus A (i.e. 
absolute effect of B minus 
effect of A) 

dPA

dAB

P

dPB

   P

(a)

(b)

   A

A BB

Direct estimate  Indirect estimates given 
available direct comparisons

P A B C

dPA

dAB

dPB

P   A

  C dAC
B

dAB = dPB  - dPA

dPA = dPB  - dAB

dPB = dPA + dAB

dAB = dPB  - dPA

dBC = dAC - dAB

dPC = dPA + dAC

Figure 1 Network of studies reflecting indi-
rect comparison of treatment A and B given PA
trials with PB trials (a), and network of studies
reflecting mixed treatment comparisons of PA
trials, PB trials, AB trials, and AC trials (b). See
text for explanation of direct and indirect
estimates.
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distributions for these true direct and indirect esti-
mates as well as for the heterogeneity (σδ

2).

Example: Health Assessment Questionnaire
(HAQ) in Rheumatoid Arthritis

In Table 1 six RCTs are presented that report change in
HAQ in rheumatoid arthritis by different interventions
that form a network according to Fig. 1b. In Table 2,
the study-specific comparisons are presented as differ-
ences in HAQ. (For the sake of this example, we
assume that all treatments are an option for a given
level of disease severity, and not that one treatment is
considered first-line and another second-line, for
example. Also, we did not differentiate between differ-
ent anti-TNFa compounds. The selected studies were
not identified by means of a thorough systematic
review, but were primarily selected to create an
example that, in our opinion, helps understanding of
MTC using continuous outcomes. Hence, the pre-
sented output of the MTC needs to be interpreted with
caution because additional relevant evidence might
be available) [14–19]. The different studies can be
combined with a fixed-effects model or a random-
effects model. Bayesian analyses were performed with
WinBUGS v1.4, a Bayesian software package using
Markov Chain Monte Carlo (MCMC) simulation.

Meta-Analysis of Pairwise Comparison
In Table 2, the pooled results of the three studies com-
paring anti-TNFa-methotrexate versus methotrexate
using a frequentist and a Bayesian meta-analysis are
presented. The confidence interval of the frequentist
random-effects model is wider than obtained with
the frequentist fixed-effect model because with the
random-effects model it is assumed that differences
between studies are caused by both sampling error and
heterogeneity. The results of the Bayesian fixed-effect
model are the same as with the frequentist approach
given the use of a noninformative prior distribution.
Regarding the random-effects models, the interval
obtained with the Bayesian approach is wider than
with the frequentist approach because uncertainty in
the between-study heterogeneity is taken into consid-
eration with the Bayesian approach. (To differentiate
the uncertainty regarding the point estimate with a
Bayesian approach, 95% credible intervals were used
instead of 95% confidence intervals.)

Mixed Treatment Comparisons; Fixed-Effects Model
Figure 1 shows the network of direct and indirect
comparisons possible given the six studies analyzed
simultaneously. With a fixed-effects mixed treatment
comparison, differences in the observed effect across
studies focusing on the same comparisons are solely

Table 1 Change in HAQ score by intervention as observed in different clinical trials

Placebo (P) Methotrexate (A) Anti-TNFa (B) Anti-TNFa +methotrexate (C)
Mean SD N Mean SD N Mean SD n Mean SD n

Strand et al. 1999 [14] 0.07 0.50 101 -0.30 0.47 169
Van de Putte et al. 2004 [15] -0.07 0.49 110 -0.39 0.60 434
Genovese et al. 2002 [16] -0.19* 0.58 217 -0.24* 0.60 415
Keystone et al. 2004 [17] -0.24 0.52 200 -0.58 0.53 419
Weinblatt et al. 2003 [18] -0.27 0.57 62 -0.58 0.58 209
Maini et al. 1999 [19] -0.30 0.75 88 -0.40 0.85 340

*Change in HAQ estimated from proportion of subjects showing reduction of at least 0.5 point.
HAQ, Health Assessment Questionnaire; SD, standard deviation.

Table 2 Change in HAQ score expressed in differences for specific pairwise head-to-head comparisons

Comparison Study

Difference

Mean SE/SD 95%CI/95%CrI

Methotrexate vs. placebo Strand et al. 1999 [14] -0.37 0.06 -0.49; -0.25
Anti-TNFa vs. placebo van de Putte et al. 2004 [15] -0.32 0.05 -0.42; -0.22
Anti-TNFa vs. methotrexate Genovese et al. 2002 [16] -0.06 0.05 -0.16; 0.04
Anti-TNFa +methotrexate vs. methotrexate Keystone et al. 2004 [17] -0.34 0.04 -0.42; -0.26

Weinblatt et al. 2003 [18] -0.31 0.08 -0.47; -0.15
Maini et al. 1999 [19] -0.10 0.09 -0.28; 0.08

Pooled results, anti-TNFa +methotrexate Frequentist fixed-effects model -0.30 0.03 -0.37; -0.24
vs. methotrexate Frequentist random-effects model -0.27 0.07 -0.40; -0.13

Bayesian fixed-effects model* -0.30 0.03 -0.37; -0.24
Bayesian random-effects model* -0.27 0.16 -0.51; 0.03

*Several analyses were performed with different normal prior distributions for the treatment effect, all distributions with a mean of 0 and different values for the variance (>10,
given the boundaries of the HAQ [0–3 points]). Results were similar for all prior distributions. For the heterogeneity of the random-effects model, an inverse gamma prior
distribution was used.
95%CI, 95% confidence interval of individual studies and frequentist meta-analysis; 95%CrI, 95% credible interval for the Bayesian analysis;HAQ,HealthAssessment Questionnaire;
SE, standard error of individual studies and frequentist meta-analysis; SD, standard deviation of posterior distribution of Bayesian meta-analysis.
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caused by sampling error, and σδ
2 for these treatment-

specific comparisons are assumed to be zero. There is no
heterogeneity across comparisons other than due to
comparison-specific effects. Hence, with a fixed-effects
MTC, the di,b,k ~ N(dP,k - dP,b, σδ

2) of the random-effects
model (Equation 2) translates into di,b,k = dP,k - dP,b,
where d is true effect, P refers to the placebo interven-
tion, k refers to the active intervention, and b is a
comparator intervention. In order not to influence the
observed results by the prior distribution, noninforma-
tive (“flat”) normal distributions were defined for dP,k.
In Table 3, the results of direct and indirect estimates
are presented.

It is interesting to compare the results of the fixed-
effects model presented in Table 3 with the results
presented in Table 2. The point estimates of methotr-
exate versus placebo, anti-TNFa versus placebo, and
anti-TNFa versus methotrexate are slightly different
with the MTC given the closed network of the avail-
able head-to-head comparisons [14–16]. (In Fig. 1b,
the interventions correspond to nodes P, A, and B.)
More important, the uncertainty intervals obtained
with the fixed-effects MTC are smaller because more
evidence (i.e., both direct and indirect evidence) is
available. The result for anti-TNFa + methotrexate
versus methotrexate is similar with the MTC as with
the pairwise meta-analysis because there is no addi-
tional indirect evidence for this comparison (See
Fig. 1b, node C and A). Furthermore, the MTC pro-
vides indirect estimates of anti-TNFa with methotr-
exate versus placebo and anti-TNFa + methotrexate
versus anti-TNFa.

Given the Bayesian nature of the analysis by
which the posterior distributions can be interpreted
in terms of probabilities (and the use of MCMC
simulation), it is also possible to calculate which
intervention is best, i.e., determine for each of the
intervention the probability that it results in the
greatest improvement in HAQ given the level of
uncertainty (see Table 3).

Mixed Treatment Comparisons; Random-Effects Model
The uncertainty intervals of the comparisons with the
random-effects model are larger than those observed
with the fixed-effects approach because between-study
heterogeneity is also taken into account (Table 3). The
model is adjusted accordingly by including a second-
level statistical model that describes the distribution
of true effects, as well as a prior distribution for the
variance reflecting heterogeneity. Heterogeneity is esti-
mated using all available data, i.e., all the different
studies, and accordingly the heterogeneity is assumed
constant between the different comparisons (see Equa-
tion 2). As a consequence, the estimated heterogeneity
is also assumed applicable to comparisons where only
one study is available (and for which no heterogeneity
could have been assessed without other studies). It can
be argued that an advantage of MTC is that in the
absence of multiple studies focusing on one particular
comparison, it is still possible to take heterogeneity into
consideration for this comparison (given the availabil-
ity of other pairwise comparisons). In essence, it is
assumed that factors responsible for differences in true
effects for one type of comparison apply to and have the
same impact in other comparisons. Given the assumed
constant heterogeneity between comparisons with
random-effects MTC, the results are arguably more
persuasive than results from indirect comparisons
where heterogeneity is not taken into consideration.

Acceptance and Value of Indirect Comparisons
or Mixed Treatment Comparisons to Support
Medical Decision-Making

Both for national reimbursement and local market
access (i.e., local payers, budget holders, and formu-
lary committees) it is important to provide evidence
that demonstrates the added value of a new drug
versus other treatment options. RCTs comparing the
alternative interventions of interest provide the most
convincing evidence. However, randomized direct or

Table 3 Results of MTC with a fixed-effects model and a random-effects model

Comparison

Fixed effects* Random effects*

Mean 95%CrI Mean 95%CrI

Methotrexate vs. placebo -0.32 -0.41 -0.23 -0.33 -0.73 0.06
Anti-TNFa vs. placebo -0.35 -0.43 -0.27 -0.35 -0.75 0.04
Anti-TNFa +methotrexate vs. placebo -0.63 -0.74 -0.52 -0.60 -1.06 -0.10
Anti-TNFa vs. methotrexate -0.03 -0.11 0.06 -0.02 -0.42 0.37
Anti-TNFa +methotrexate vs. methotrexate -0.30 -0.37 -0.24 -0.27 -0.53 0.03
Anti-TNFa +methotrexate vs. anti-TNFa -0.27 -0.38 -0.17 -0.24 -0.70 0.26
P (placebo is best) 0% 1%
P (methotrexate is best) 0% 1%
P (anti-TNFa is best) 0% 8%
P (anti-TNFa +methotrexate is best) 100% 90%

*Several analyses were performed with different normal prior distributions for the treatment effects, all distributions with mean 0 and different values for the variance (>10, given
the boundaries of the HAQ [0–3 points]).Results were similar for all prior distributions. For the heterogeneity of the random-effects model, a uniform distribution for the standard
deviation was used.
95%CrI, 95% credible interval.
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head-to-head comparisons of the comparisons of inter-
est are often not available. As an alternative, one has
to rely on indirect comparisons or MTC. In order to
convince target audiences of the findings of indirect
comparisons or MTC, they do need to understand the
methodology, the method needs to be presented trans-
parently, and assumptions regarding the comparability
of trials need to be tested or evaluated.

In essence, MTC is a combination of two or more
meta-analyses. Hence, the same methodological diffi-
culties apply to ordinary meta-analysis where results of
several studies are combined (e.g., differences in meth-
odological quality, length of follow-up, patient charac-
teristics, etc.) [13]. Now with MTC, the comparability
of the different types of comparisons must also be
considered. With an indirect comparison of trials, the
value of randomization of patients assigned to inter-
ventions indirectly compared does not hold across
trials. (The value of randomization only applies to the
treatments compared within a study. Please note that
the same applies to traditional meta-analysis.) As a
result, there is the risk that patients assigned to the
different trials are not comparable and the indirect
estimates can be biased in a comparable way to selec-
tion bias in observational studies. If, in addition, there
is also an association between these patient character-
istics and treatment effect (i.e., the patient characteris-
tics are known or expected to be effect modifiers),
these patient characteristics will act as confounding
variables on the observed indirect effect estimate in a
comparable fashion to confounding bias in an obser-
vational study. Hence, the similarity of all the trials
involved should always be inspected and inclusion of
different studies or comparisons in the indirect com-
parison or MTC should be based on clinical grounds
and preferably be evaluated with multiple analyses.

We want to make several suggestions that, in our
experience, improve transparency and helps nonstatis-
tical targeted audiences understand the methodology
and findings. First, present the placebo-subtracted or
relative effects of the individual studies (as illustrated
in Table 2) rather then presenting findings per inter-
vention (as in Table 1). This allows for the straight-
forward comparison of the “input data” with the
results of the MTC analysis, thereby greatly improving
transparency (e.g., compare Table 2 with Table 3).
Second, it is very helpful presenting results of Bayesian
meta-analyses for each type of direct comparison
available before presenting results obtained with the
simultaneous analysis of the MTC. Third, it is sug-
gested to perform a series of MTC starting with two
types of pairwise comparisons (i.e., one indirect com-
parison) in the first analysis and build upon this by
including the other head-to-head comparisons in the
analysis. This provides insight into whether and how
the inclusion of additional pairwise comparisons influ-
ences the relative (pooled) estimates of the initial com-

parisons. This might be indicative of discrepancy and
bias between direct and indirect estimates caused by
heterogeneity across comparisons. Sensitivity analysis
by excluding or including different studies can be
helpful as well.

It is tempting to incorporate a covariate in the
analysis in an attempt to make studies more exchange-
able thereby adjusting for “meta-confounding”
[20,21]. This can be considered a key issue in assessing
rheumatoid arthritis treatments because patient char-
acteristics such as disease duration and severity can
have a significant impact on relative treatment effect.
Nixon et al. have recently presented an analysis that
simultaneously compared several rheumatoid arthritis
treatments with adjustment for study-level covariates
[21]. The number of studies, however, is often rela-
tively low and the observed impact of patient charac-
teristics can therefore be questionable [13,22,23].

An interesting question is whether an indirect com-
parison of RCTs provides greater evidence of the rela-
tive effect of one intervention relative to another than
a nonrandomized study comparing these two interven-
tions directly. With nonrandomized studies, there is
the risk of confounding bias caused by unknown or
immeasurable covariates that are associated with the
outcome of interest and that are not comparably dis-
tributed over the two intervention groups. With indi-
rect comparisons of RCTs (or any meta-analysis),
differences in covariates or patient characteristics can
exist between the trials in a similar fashion to between
intervention groups in nonrandomized studies. Glenny
et al. [13] and Deeks [24] have outlined that it can be
expected that differences in patient characteristics
across trials in indirect comparisons of RCTs with
binary outcomes (i.e., success or failure) result in less
bias than observational direct comparisons (i.e., non-
randomized controlled clinical trials or cohort studies).
In contrast to an observational study, the impact of
covariates on the observed number of events would
affect both intervention groups in an RCT in a propor-
tionate manner because the distribution of covariates
is comparable. Hence, the effect measure of interest
(i.e., odds ratio or relative risk) is not influenced by
differences in patient characteristics; despite differ-
ences in patient characteristics across trials, the
observed effect measures are comparable. Indirect
comparisons are only biased if patient characteristics
or baseline risk differences across trials are associated
with differences in the observed treatment effect. In
other words, indirect comparisons are biased if the
factors that differ across trials are known to be effect
modifiers of the (direct) treatment effect (and this het-
erogeneity cannot be taken satisfactory into consider-
ation with a random-effects approach).

In this article, we focused on a Bayesian approach.
Indirect comparisons can also be performed with a
non-Bayesian approach. The adoption a Bayesian
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approach, however, has both methodological advan-
tages and advantages regarding interpretation and pre-
sentation, as outlined earlier [5]. In our experience, the
ability to calculate the probability which intervention
provides greatest outcomes resonates well with target
audiences. An additional advantage is the ability to
predict the observed treatment effect when a new head-
to-head study will be performed. This can help answer
the question of whether it is worthwhile to perform
such a study. To avoid the often mentioned prejudice
toward a Bayesian approach (which relates to the use of
prior belief), it is advised to use a flat prior distribution
by which the findings are only driven by the data.

In this introductory article, we have illustrated MTC
with an example with a continuous end point. Of course
dichotomous outcomes (i.e., frequency measures) can
be used as well, and the same principles apply. Other
published illustrations of the flexibility of a Bayesian
framework include MTC with outcomes measured
repeatedly over time [25], incorporation of study
weights based on the internal validity of individual
studies [20], the use of continuous effect sizes (e.g.,
standardized treatment effects) [26], and combination
of RCTs and real-world studies [27]. In last example the
difference in treatment effect between RCTs and real-
world studies was taken into consideration in addition
to the (indirect) treatment effect. This predictive distri-
bution of the difference was used to predict the expected
real-world findings based on RCT evidence for a new
drug not yet available on the market.

In conclusion, MTC has been presented as an exten-
sion of traditional meta-analysis by including multiple
different pairwise comparisons across a range of dif-
ferent interventions. The advantages of Bayesian MTC
include comparison of drugs in the absence of head-
to-head data; probability statements that one drug is
better (e.g., more efficacious, safer) than another; and
probability calculations that your drug is best (rank-
order the interventions). Hence, MTC can provide
very useful information for (medical) decision-making.

We would like to thank Professor Tony Ades of the University
of Bristol for his useful comments on earlier versions of this
article. The suggestions of anonymous reviewers are also
greatly appreciated.
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