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In the method of averaging the existence of periodic orbits for 
Hamiltonian systems is deduced from the existence of nondegenerate critical 
points of an averaged Hamiltonian on an associated “reduced space” (e.g., 
see [30; 1, p. 3061). Alternatively, in classical (kinetic plus potential energy) 
Hamiltonians the existence of such orbits can often be established by 
elementary geometrical arguments (e.g., see [8]). One goal of this paper is to 
unify the two approaches by exploiting discrete symmetries, including 
reversing diffeomorphisms, present in given problems. The symmetries are 
used to locate periodic orbits in the averaged Hamiltonian, and thence in the 
original Hamiltonian when the periodic orbits are continued under pertur- 
bations admitting the same symmetries. 

A second goal is to illustrate how “higher order” averaging can sometimes 
be used to overcome degeneracies encountered at first order. This is accom- 
plished by examining the Henon-Heiles Hamiltonian, which by elementary 
geometrical arguments can be shown to possess eight periodic orbits at low 
positive energies (see [8, Sect. 3]), but which yields only two such orbits at 
first order averaging, the rest being “hidden” by a circle of degenerate 
critical points of the reduced averaged Hamiltonian (see [ 4,211). We show 
the existence of all eight orbits by using second order averaging, give the 
stability status in all cases, and through symmetries identify each with those 
seen by Henon and Heiles in their original computer experiments [ 201. 

The paper opens with a brief treatment of averaging and normal forms for 
Hamiltonian systems, and then discusses the effect of normal form 
conversions on existing symmetries. All this is done in the context of graded 
Lie algebras, which seems to best reveal the elementary nature of the theory. 
We remark that the material in Section 1 is folklore. Moreover, some of the 
material in Section 2 also appears to be known, but as far as the authors are 
aware is not available in the literature in the format most relevant to this 
paper. 

In Section 3 we review the reduction process in the case of flow-induced 
free and proper S’-actions on a symplectic manifold (M, o). We then show 
how symmetries of M and the associated averaged Hamiltonians H : M- R 
induce corresponding symmetries of the reduced space and reduced 
Hamiltonians. We concentrate particularly on relative equilibria, i.e., points 
on periodic orbits of averaged Hamiltonian flows on M which project to 
equilibria for the reduced Hamiltonian system. Such a periodic orbit is then 
“symmetric” if and only if the equilibrium point for the reduced Hamiltonian 
is a fixed point of the induced symmetry on the reduced space (Proposition 
3.6). For other research in this area we refer the reader to [ 1, Chap. 4; 14; 
21; 23; 26; 27; 33; 351 and the references therein. 

In Section 4 we extend [ 2 1 ] and construct specific models for reduction by 
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an St-action in the general two degree of freedom resonance case (see 
Theorem 4.2). Here the reduced spaces turn out to be simple surfaces of 
revolution in R3. The corresponding construction of reduced Hamiltonians 
becomes a triviality, and by choosing a group of symmetries from SU(2), 
induced symmetries can be easily identified as rotations of these surfaces. 
Moreover, in the simplest case the projection to the reduced space is shown 
to be the standard Hopf tibarion of S3 over S2 (see [ 151 and Theorem 4.2) 
which motivates the introduction of generalized “Hopf variables.” The 
section concludes with a discussion of some specific symplectic and anti- 
symplectic involutions on R4, and describes the induced symmetries on the 
reduced space needed for the applications. 

Section 5 is independent of the preceding material. It concerns the 
continuation and stability classification for fixed points of one-parameter 
families of planar symplectic mappings, and collects results in a manner 
relevant to our applications. In order to apply these results to the examples 
of Section 7, we explain in Section 6 how to reconstruct the flow of the 
original Hamiltonian from that of the associated reduced Hamiltonian on the 
reduced space, and how to then reduce the problem to the study of such a 
family of mappings. Included is the introduction of coordinates, generalized 
from 15,211, which we use to compute the necessary Jacobians, Hessians, 
and twist coefficients for stability classification of the periodic orbits. The 
final results are collected in Theorem 6.4, which also examines the effects of 
symmetries on the continuation (under perturbation) of our periodic orbits. 

Section 7 concludes the main body of the paper with three applications: 
The first views Liapunov’s theorem from the standpoint of reduction, and 
fills a gap in the previous part of the paper concerning “problem” points on 
the reduced space. The second and third, respectively, detail the results of 
first and second order averaging and symmetries in the H&on-Heiles 
Hamiltonian, and how a further “degeneracy” at second order averaging is 
overcome. We include a detailed discussion of how discrete symmetries 
allow us to locate the continued periodic orbits and identify them as the ones 
formerly constructed by geometric means in (8, Sect. 31. Contrasting results 
are then given for two related Hamiltonians. 

There are two appendices to the paper. Appendix A sketches the lengthy 
computations involved in converting the Henon-Heiles Hamiltonian into 
normal form through first and second order. For other current discussions of 
normal form computations we refer to [ 16, 321. Appendix B presents the 
results on the Henon-Heiles problem in a wider perspective. We discuss 
what is currently known about the constructed periodic orbits as the energy 
increases, and describe attendant stability changes. 

In the preparation of this manuscript the authors are pleased to 
acknowledge extensive discussions with Dr. Richard Cushman. 
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1. NORMAL FORMS 

Let Y = @,“=z YF be a positively graded real or complex Lie algebra (for 
definitions see [ 19, p. 31). We subscript elements H, E Yr, and assume the 
Lie bracket in Ip satisfies 

ws9 Hrl E c-2. (1.1) 
If for F E ip we define the linear mapping ad, : Y -+ 9 by ad,(H) = [F, H], 
then (1.1) guarantees that ad, ( gr : pr + Yr when F E 5$. 

We define ad! to be the identity mapping on Y, ad: = ad,, and adi = 
ad, o adi-’ when j > 1. We will say the element H = @,“=z H, in Y is in 
normal form through terms of orser m > 2 wrt FE 9’ if ad,(H,.) = 0 for 
2<r<m. 

As an example let 9, denote the set of all real-valued homogeneous 
polynomials of degree r > 2 in the complex variables zJ = xJ + iyj, 
.Tj=xj-iyj,j== l,..., n, set P = @Fe2 Yr, and as bracket use the negative of 
the usual Poisson bracket, i.e., 

(1.2) 

Here a/az, and a/az;. are the formal derivations on .P define by 

a i a .a a 1 a .a -=- -=- 
azi ( 

-.---~-.-.- ) 
2 axj ?Yj 1 aZ;. 2 zySZs;’ ( i (1.3) 

Returning to generalities, notice from (1.1) that if K E Ik;, then ad/,(H,) E 
y2 r+JCs-2). However, for s > 3 and fixed n the equality r +j(s - 2) = n has 
only a finite number of solutions in the positive integers r and j. As a conse- 
quence, for KEYi with s > 3 we can define a linear operator 
exp(ad,) : i/’ --t Ii’ by 

exp(ad,)(H) = q’ (l/j!) ad!(H). 
1% 

We say that FE Yz splits 2 if for r > 2 we have Yr = N, @ R,, where 
N, = ker(ad,l g;“:) and R, = range(ad, ( Yr). When F splits Y, then ad,\ R, : 
R,-t R, is an isomorphism, and we let r, : R,-t R, denote the inverse. 

The following result is well known in the context Y’ = .Y (see, e.g., 
11, p. SOO]). 

PROPOSITION 1.1. Let H = OF;;, H, E P’ be in normal form through 
terms of order (m - 1) > 2 wrt Hz, and assume H, splits ii’. Let 
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H, = F,,, + G,, where F,,, E N, and G, E R,, and set K, = T,,,(G,). Then 
exp(adKm)(H) is in normal form through terms of order m wrt H,, agrees 
with H through terms of order m - 1, and has F,,, as m th term. 

Proof: exp(ad,a(H) = H, + H, + .a. + II,,,-, + H,,, + adKm(H,) + 
{terms in q with j> (m + 1)). Since H, + adKm(H,)= F,,, + G, - 
adH2(K,) = F,, we are done. Q.E.D. 

To interpret the proposition for the case of interest in this paper, let 
H, E .Fz have the form 

H,(z, Y) = i (y,/2) [zj12, (1.4) 
j= I 

where the yj are real constants and Zj = Xj + iyj. Also, write 

Zkfl=Zkl . . . 1 z;* . f;I . . . pn, (k - 1, r) = f (kj - I,) yj. (1.5) 
j=l 

By (1.2) we then have 

adH,(zkY’) = -i(k - I, r) zk.?‘. (1.6) 

Relation (1.6) implies that H, splits .Y = @,“=, ,Yr:, and that if G,(z, .F) = 
C ck,zkF is in R,, where m = JJy=, (ki + Z,), then 

(r, o G,)(z, .f) = i c (k - 1, y)-’ ck,zkf’. (1.7) 

It remains to explain the meaning of exp(ad,) in this context. 

PROPOSITION 1.2. Let H, be as in (1.4), and let H(z, z?) = Cs 2 Hj(z, 5) 
converge in some neighborhood U of the origin in R2”. Assume H, 
considered as an element of .Y’, is in normal form with respect to H, through 
terms of order (m - 1) > 2. Write H, = F, + G,, where F, E N, and 
G, E R,, set K = K, = T,,,(G,), and let p, be the jlow of the Hamiltonian 
system i = -2i(aK/X). Then 

(a) there is a neighborhood V c U of the origin such that q~, is defined 
in Vfor (tl<2; and 

03 ewW,KH) = (H 0 co1 1. 

Remark. Since the flow p, is canonical for each t, (b) shows that 
exp(ad,)(H) is simply H composed with a canonical transformation 
converting H into normal form with respect to H, through terms of order m. 
The new series may, of course, have a smaller domain of convergence. 

Proof: (a) Since K is homogeneous the origin is a rest point of rp,. The 
result follows snce flows have open domains. 
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(b) We take the Taylor expansion of F(t) = H 0 rp, and note that F’(t) = 
(d/dr)(H o 9,) = ad,(H) o (pI, F”(t) = ad;(H) o (pI, etc. (recall that our 
bracket [K, H] = ad,(H) is the negative of the usual Poisson bracket). 
Evaluating F(t) = F(0) + F’(0) t + (&) F”(0) tZ + .a. , at t = 1 gives the 
result. Q.E.D. 

We now explain why F, in Proposition 1.2 is called the “average” of H, 
with respect to the flow generated by H,, and why the conversion of a 
Hamiltonian into form is called “averaging.” 

PROPOSITION 1.3. With the hypotheses and notation of Proposition 1.2, 
let pt be the flow of the Hamiltonian system i = -2i(aH,/S). Then 

Fm(Z, f) = A\% +j’ (H, 0 p,)(z, ,?) dt. 
0 

Proof. H, = F, + G, and (d/dt)(F, 0 p,) = adH,(Fm) o p, = 0, hence F, 
is constant along orbits of pt. Now K = T,,,(G,) implies (d/dt)(K o p,) = 
G, o pt, and hence it suffices to prove that 

+-JOT (G, 0 p,) dt = + [K 0 p, - KJ 

limits to 0 as T-1 w. Each orbit p,(z, F) is given by zj(t) = zje-‘@, 
j = 1, 2,..., n, hence is bounded as the rj are real in (1.4). Thus (K o p,)(z, Y) 
is bounded, and the result follows. Q.E.D. 

Normal forms are in general not unique. For example, assume 
H = @ ,“= Z H, E 9 is in normal form through terms of order m 2 2 wrt Hz, 
let f(x) be a formal power series in x, and let G E 9: with s > 3. Then the 
Jacobi identity 

a& 0 ad, = adtod,,cG,, + ad, 0 4, 

impliesf(ad,)(H) is in normal form through terms of order m wrt H, when 
adHt(G) = 0. If H, splits 3’ and s < m a converse holds: since 
WH2 0 ad,)(H) = -(adH2 o ad,*)(G) at the s-level, and ad,, is an 
isomorphism on its range, we must have ad,*(G) = 0 for ad,(H)-to be in 
normal form through terms of order m wrt H,. 

In their paper [ 141, Cushman and Deprit use an alternate (more general) 
definition of normal forms (attributed to J. van der Meer). In our context this 
can be formulated as follows: Suppose FE Y and a complement N: c Yr 
has been chosen for R,= range(ad,jL$) for each Y > 2. Then 
H = @,“=2 H, E Y is in normal form through terms of order m > 2 wrt F if 
H, E N; for 2 < r ,< m. Proposition 1.1 now holds without the splitting 
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hypothesis on H, (which has been incorporated into the choice of 
complements), but as they show by an example having a degenerate critical 
point at the origin, this formulation allows a polynomial Hamiltonian 
H, + H, on R4 to be in normal form even when the associated differential 
equations are nonintegrable. Their particular choice of complements is 
motivated by the representation theory of Lie algebras. 

2. SYMMETRIES 

As in Section 1 let 9 = @,“=, Yr be a positively graded Lie algebra with 
bracket [ , 1. Let H, E rS, split Y with Pr = N, @ R,. Assume that a group 
.Y acts linearly (on the right) on 9 in the following manner, where g E .% 
and H, FEY: 

pr .gcprP,, (2. la) 

H,.g=H,, (2.lb) 

[H.g,F.g]=f[H,F].g. (2. lc) 

Depending on the element g E F, one chooses the appropriate sign in 
(2.1~) and fixes that choice throughout this section. In applications to the 
space 9 of formal power series considered in Section 1, Y will be a group of 
formal diffeomorphisms and the action will be composition of functions. The 
plus or minus sign in (2.1~) will occur according as g E g is symplectic or 
reversing. 

LEMMA 2.1. (a) N, and R, both Y-invariant. 

(b) E E N, and FE R, are both fixed by an element g E .kY if and only 
ifE + F is fixed by g. 

(c) Let H= ad,JF) for FE R,. Then HER,, and H is fixed by 
gE.Y ifandonly ifF.g=fF. 

(d) Let He g = H and F. g = fF for some g E Y. Then adi is 
fixed by g for all j > 0. 

(e) Let F . g = F for some g E g. Then H = @,“=2 H, is in normal 
form through terms of order m with respect to F if and only if H . g has this 
property. 

Proo$ (a) For E E N, we have [H,,Eeg]=[H,-g,E*gl= 
f [H,, E] . g = 0, and hence E . g E N,. For FE R, there is a K E R, such 
that ad,*(K) = F. Then F.g=[H,,K].g=lt[H,eg,Keg]= 
[HZ, (fK) . g] = ad,J(kK) . g) is in R,. 

(b) The result follows from (a) and the uniqueness of direct sum decom- 
positions. 
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(c) A similar computation to that in (a) gives H . g = [H,, (fF) . g] 
with ( f F) . g E R,. Since adHz] R, is an isomorphism, the result follows. 

(d) The result follows by induction; the case j = 0 being trivial. 
(e) The equalities [F, Hi] . g = f [F, Hj . g], j = 2, 3 ,..., m, imply the 

result. Q.E.D. 

THEOREM 2.2. In addition to the hypotheses of Proposition 1.1, assume 
(2.1) and that g E Yfixes H. Then g alsofixes exp(ad,J(H). 

Proof By (2.la), H, = F, + G, is fixed by g, and hence each of F, and 
G, is fixed by Lemma 2.1(b). Then G, = [H,, K,], where K, = T,(G,), 
implies K, . g = fK, by L emma 2.1(c). The result now follows from 
Lemma 2.1 (d). Q.E.D. 

To summarize, let us say that H = BE”=2 H, admits a symmetry 
corresponding to g E ,!5 if Ha g= H. Then each H, admits the same 
symmetry. Moreover, when H, splits Y then each of F, and G, also admits 
the symmetry in the direct sum decomposition H, = F, + G, of Proposition 
1.1. Finally, when H is converted into normal form through a certain order 
using that proposition, then the transformed H will admit the same 
symmetry. 

We remark that if H = @FEZ H, is in normal form through terms of order 
m wrt H, and .YH c .% is the isotropy group of H, then the index of 55; in .% 
is the cardinality ( S ] of the orbit S = (H . g] g E 55 }, By Lemma 2.1 (e) each 
H . g is in normal form through terms of order m wrt H,, and so this index 
simply counts the number of distinct normal forms obtainable from H by the 
action of .%‘. If .Y” is normal in Y, e.g., if 5H is in the center Z(.$ ) of .? , then 
1 s / = 1 .i?/.F” ( . 

We refer to [ 14, 161 for additional discussion of the effect of symmetries 
on normal form calculations. 

3. REDUCED SPACES AND INDUCED SYMMETRIES 

Let (M, o) be a real analytic symplectic manifold of dimension 2n, and 
Z = Z’(M) the space of real analytic Hamiltonians H : M + R. (The results 
of this section also hold in the C” category.) Recall that the Hamiltonian 
vector field X, on M associated with H is defined by X,-lw = dH, where--1 
denotes the left interior product. For G, H E.X we define the Poisson 
bracket (G, H} = o(Xc, X,), we set [G, H] = -{G, H}, and define ad,(H) = 
[G, H] in agreement with our earlier conventions. The local coordinate 
description of [ , ] is as in (1.2), with 

w = 4 5 Im(dTj A dz]) = f7 dx, A dyj. 
J=I JT, 

(3.1) 
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Now let F ER be such that the flow Qr of X,. is periodic and defines a 
free and proper S’-action on Z, = F-‘(h) c M, where h is a regular value of 
F. A reduced space for (at, Zh) is then an analytic symplectic manifold 
(MR, oR) together with an analytic surjective submersion rc: Z,, -+ MR = 
M,(h), called the (canonical) projection, such that rc maps distinct orbits of 
@, in Z,, to distinct points of MR, and such that 

7+u, = i*w, (3.2) 

where i : ,?Y,, -+ M is inclusion. 
Identifying R with the dual of the Lie algebra of S’, the Hamiltonian 

F : M-+ R becomes the Ad*-equivariant momentum mapping for the 
symplectic action @, (for definitions see [ 1, pp. 276, 2791). The existence of 
a reduced space for (@,, Z,,) is then a standard result [ 1, p. 2991, and we can 
easily show that any model of the reduced space is symplectomorphic to the 
orbit space Z,,/Si with the induced symplectic form oR determined by (3.2). 

Let &. = (H E Z’]ad,.(H) = [F, H] = 0). The Jacobi identity implies ad,, 
is a derivation, hence & is a Lie subalgebra of X. The following result is an 
adaptation to our context of [ 1, Theorem 4.3.5, p. 3041: 

THEOREM 3.1. Assume the notation above. Then to each H E J$ and 
h > 0 there corresponds an analytic Hamiltonian K = K, : MR -+ R satisfying 
K o z= H o i, where i : Z,, + M is inclusion and Z,, = F-‘(h). Moreover, 
7&x,=x, o z, where XKlcoR = dK and q is the tangent mapping. If Yf is 
the 30, of Xu on M, and pr the jlow of X, on MR, then ‘Pt leaves EC, 
invariant, commutes with the flow #t of X,., and satisjies z o Yl 0 i = pc 0 rt. 

Now K is called the reduced Hamiltonian, X, the reduced vector field, and 
pI the reducedflow, corresponding to HE q. and h > 0. 

Let .R be the set of reduced Hamiltonians on MR. For K, L E 59 define a 
Poisson bracket by (K, L}R = w,(X,, X,), and set [K, LjR = --(K, L},. 

PROPOSITION 3.2. If K, L E 9’ correspond to H, G E RF, then 

[K,L],o~r=[H,Gloi. (3.3) 

Proof: By Theorem 3.1 we have II* X, = X, 0 rr and 7c* X, = X, 0 z The 
result follows by evaluating the relation x*uR = i*w on (X,, X,). Q.E.D. 

If .8‘ is a group of real analytic diffeomorphisms of (M, w), then we can 
regard .V as acting in (M, W) on the left, and, by composition of functions, 
as acting on R on the right. The following result is a variation of [ 1, 
Exercise 4.3B, p. 3091. 
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LEMMA 3.3. In the notation above, assume that each g E .V fixes 
C, = F-‘(h) and carries orbits of the jlow ar of X, with energy h into other 
such orbits (reparametrizations allowed). Then 

~‘“={gE~‘7r(gx)=n(x)VxEM} (3.4) 

is a normal subgroup of G. The quotient group YR = .%/,Y* with canonical 
projection 4 : .Y + .VR acts as a group of real analytic difleomorphisms on M, 
by 

4(g) * 4X) = 4gx). (3.5) 

Proof. That g* is a subgroup of .Y is clear. To prove normality first 
observe that any f E 5? sends the X, orbit through a point p E Z,, into the X, 
orbit through f. p, ,and that g E .Y* implies that g sends this latter orbit into 
itself. But applying f -’ . (g . f. p) then gives a point back on the X, orbit 
through p. Since z : C, -+ MR maps the entire X,. orbit through p to a point in 
MR, we have rrdf-’ . g . f. p) = n(p). Thus Y* is normal in g. 

To verify that (3.5) gives a well-defined action on MR suppose 4(g) = 
#(g’). Since ZY* is normal there is an f E .Y* such that g = f. g’, and so 
n( g . p) = n(f . g’ . p) = z( g’ . p) by definition of .F?*. The action q5( g) of .VR 
on MR is thus well defined; real analyticity follows from formula (3.5). 

Q.E.D. 

Here YR is called the reduced group of Y. 

THEOREM 3.4. In the notation above assume g*o = fo and H 0 g = H 
for some g E .V and H E A?. Then 

g*x, = *x, 0 g. (3.6) 

In particular, if H = F and the above hypotheses hold for each g E Y, then 
the hypotheses, and hence the conclusion, of Lemma 3.3 hold. In this case we 
also have: 

(a> #Cd*4 = *-OR. 
(b) Let H ExF with K: MR -+ R the reduced Hamiltonian. Then 

(H 0 i) 0 g = H 0 i if and only if K 0 o(g) = K and 4(g)* X, = kX, o 4(g) 
hold. 

Proof: Taking into account f, (3.6) is just Theorem 3.3.19 of [ 1, p. 1941. 
For H = F the flow Qt of X, then satisfies g o Gp, = @+t 0 g and Lemma 3.3 
follows. 

(a) d(g)ox=rrog, i*W=n*q, and iog=goi imply 
~*(9(&9* %I = g*t n*oR) = g*(i*w) = i*(g*w) = fi*o = *x*w,. Since n 
is surjective the result follows. 
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(b) If (Hoi)og=Hoi=Kon, then Koz=Kozog=Ko#(g)oz 
Since z is surjective, this implies 4(g) fixes K, and the relation for the 
tangent map on vectorfields follows as for (3.6). The converse follows easily. 

Q.E.D. 

The reader will note that in the case g*o = --w we have never assumed 
that g is an involution. This will be the case, however, in our applications. 
Further results on involutions and reduced spaces can be found in [33]. 

If HE RF, then p E 27, = F-‘(h) is a relative equilibrium for X, if 
z(p) E MR is an equilibrium point for the reduced vector field X, on MR, 
where K o rr = Ho i. If !Yf is the flow of X,, then p is a relative equilibrium 
if and only if there is a smooth reparametrization g(t) of the S’-orbit of the 
flow Qr of X, through p such that ‘Pt(p) = QgCl,(p) [ 1, p. 3061. 

PROPOSITION 3.5. Let .!Y act as in Theorem 3.4, and let HE ZF satisfy 
H 0 g = H for all g E 55’. If p E C, is a relative equilibrium for X,, then so 
are all points in the orbit .V . p. 

ProoJ: By Lemma 3.3 the reduced group is defined. But rc*X, =X, o TC 
and nog=9(g)on then imply *X& o g)(p) = *n*X*(g *P) = 
=* g*X,(p) = 4(g) 72 X ( * * ,, p) = d(g), (X, b n)(p) = 0, where we have used 
formula (3.6). The result now follows. Q.E.D. 

Note that if !P((p) is a periodic orbit of X, corresponding to a relative 
qquilibrium p and H o g = H, then Proposition 3.5 guarantees that g . !P!(p) 
must also have this property. 

We call a set A c A4 symmetric wrt g E Y if g s A = A. In particular, a 
periodic orbit of a flow on M is symmetric wrt g if and only if it is 
symmetric wrt g as a point set. The following result is immediate from 
Proposition 3.5: 

PROPOSITION 3.6. Assume the hypotheses of Proposition 3.5, and let 
p E Z, be a relative equilibrium for X,. If Y, is the flow of X,, then the 
orbit ul,( p) is symmetric wrt g E Y if and only if n(p) E MR is a fixed point 
of #(dE%‘, 

4. EXAMPLES OF REDUCED SPACES AND INDUCED SYMMETRIES 

Let R4 N G x C have global coordinates x = (x,, x,, y,, y2) z (z,, z2) = z, 
where zj = x, + iyj, j = 1, 2, and let o be given by (3.1) with n = 2. Then 
(R4, o) is a symplectic space, and for any Hamiltonian function H : R 4 -+ R 
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Hamilton’s equations can be written as ij = -2i(3H/aFj), j = 1, 2. We will 
consider Hamiltonians of the form H = @,“=, H, with 

HA 4 = (42) M2 + (P/2) 1~21~3 a and p > 0. (4.1) 

where either (a//3) is irrational (the nonresonance case), or w.1.o.g. a and p 
are both one or are relatively prime integers (the resonance case). In the 
second instance we speak of “a -/I resonance.” Recall that H is in normal 
form wrt H, provided ad,,(H) = 0, and that H, as in (4.1) splits. The 
following result is well known: 

LEMMA 4.1. Let H, be as in (4.1), and let H : R4 + R be an arbitrary 
polynomial in (z,, z2, i,, Z;) = (z, .F). 

(a) In the resonance case ad,?(H) = 0 if and only if H can be written 
as a polynomial in the “Hopf variables” Wj = Wj(z) (see [28, p. 102]), 
where 

W, = 2 Re(ztY;), W, = 2 Im(zTi;), 

W3=aIz,12-P(z2J2, W4=a(z,/*+pIz212, (4.2) 

and 

+w:+ w;>= (“‘+J~ (“,“)“. 
(4.3) 

(b) In the case of nonresonance ad,>(H) = 0 if and only if H can be 
written as a polynomial in the Hopf variables W, and W,, i.e., as a 
polynomial in (z,l* and jz212. 

Proof: Using the notational conventions of (1.5) it suffices to assume 
H(z, .F) = zk.F’, and in this case (1.6) with y = (a, p) gives 

ad,,(zkF’) = -i(k - 1, y) zkF’ = -i[a(k, - 1,) + /I(k, - l,)] zkF’. (4.4) 

(a) If a and /I are relatively prime (or both one), then there exist 
integers u and v such that au + /Iv = 1. If (4.4) vanishes, then set 
m = (k, - 1,) v - (k, - 12) u, and note that (k, -I,)= m/3 and 
(k, - I,) = -ma. We then have 

for m > 0, 

for m < 0. (4.5) 

The forward implication is now clear since each of the factors in (4.5) can be 
expressed in terms of the Hopf variables (4.2). The reverse implication 



HAMILTONIAN SYSTEMS 371 

follows since a&( Wj) = 0, j = 1,2,3,4. Identity (4.3) follows by direct 
computation. 

(b) If (a//3) is irrational, then (4.4) vanishes if and only if each kj = lj, 
j = 1,2, giving the result. Q.E.D. 

For the remainder of the section we consider (4.1) in the resonance case, 
and assume w.1.o.g. that p > a > 1. Letting Pj be the zj plane, j = 1, 2, we 
define 

M=R4, if /?=a=l, 

=R4-PPz, if j?>a=I, 

= R4 - (P, u Pz), if p>a>l, (4.6) 

and we define F : M-+ R by F = H, (M. The flow #p, of F is then given by 

@,(z,, z2) = (eCraf . z, , em@ . z,), (4.7) 

which for 0 <t < 21~ defines a free and proper S’-action on any 
Z, = F-‘(h) c M for h > 0. We are thus in the reduction framework of the 
previous section. 

Let R3 = C x R have global coordinates w = (w,, w2, w2) 2: (w, + iw,, w3), 
and let ( , ) be the standard inner product and X the standard cross product. 
Restricting 1 w3 1 < 2h and noting (4.3) we define 

Q(w)=+(w:+~;)-2 (‘“:a”‘)’ (2h,w3)“. (4.8) 

Now let SP = (0, 0, -2h), NP = (0, 0, 2/z), and let 

M, = M,(h) = Q-‘(O), if j?=a=l, 

= Q-‘(O) - {SP}, if p>a=l, (4.9) 
= Q-‘(O) - {SP, NP), if /?>a>1 

(see Fig. 1). 

THEOREM 4.2. For each of the three cases of a and /I in (4.6) and (4.9), 
the space (M, , wR) is the reduced space for (@,, C,). The projection 
z : En -+ MR is given by the first three Hopf variables 

n(z)= (W,(z), W,(z), W,(z))- W~~,alz,/* -Plz212), (4.10) 

and the symplectic form CO,, is defined for d, f E T,M, by 

q&f l(w) = -(JaP)-’ I VQ(w)l-’ . (VQ(w), d Xf >. (4.11) 
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Moreover, the reduced Hamiltonian K = K, corresponding to HE RF is 
obtained in the following way: write H = H( W, , W,, W,, W,) using Lemma 
4.1(a), define Ke = Ki(w,, w2, WJ = H(w,, w2, w3, 2h), and set K = Ke 1 MR. 
The reduced vector-field on MR is then given by 

X, = 4a/I(VQ) x (VK’). (4.12) 

In particular, z,, E Z, is a relative equilibrium for X, if and only if 
VKe(rr(z,)) is normal to MR at rr(zO). 

Proof. Now VQ 1 MR # 0 implies MR is an analytic manifold, while (4.2) 
and (4.3) imply (Q o z)(z) = 0. It is then easy to check that 7c : C, -+ MR is 
an analytic surjective submersion, and (4.7) and (4.10) imply (7~ o Q&(z) = 
n(z). Of course we still must show that each fibre rc-‘(z(z)) is a single Qt 
orbit in Z,; that is, n(z) = n(z’) implies that z’ = Qil(z) for some t. Let 
z = (zi, z2) and z’ = (zi, zJ) with zj = rjeiej and zj = rje’ej. Then W,(z) = 
W,(z’) and W,(z) = 2h = W4(z’) imply rj = rj, j = 1, 2, and 
(W, + i W,)(z) = (W, + i W,)(z’) implies 

for some integer k. Since a and /3 are relatively prime, there is an integer n so 
that n/3 -t k = 0 (mod a). Setting 

t =p-‘(0, - 0;) + (a/3)’ (2krr) + a-‘(2mr), (4.13) 

we calculate Qt(z) = z’ as asserted. 
A direct calculation using the fact that VQ is normal to MR shows that the 

oR of (4.11) and the X, of (4.12) satisfy dK = X,1 oR. Moreover, by 
Lemma 4.1(a) the Hopf variables Wi are in RF, i = 1,2,3,4, thus giving a 
sufficient number of independent HE RF to conclude z*oR = i*o provided 
we can show 7c* X, = X, o z for the X, of (4.12). 

Let { , } be the Poisson bracket defined by w on R4. For vector-valued 
functions D = (D ,,..., 0,) and E = (E, ,..., E,) on R4 we define {D, E} = 
matrix{Di, Ej}. We regard vector fields V on R’ as partial differential 
operators, and for the vector-valued function G = (G,,..., G,) on R’ define 
T/(G) = MG,),..., V(G,)). Notice I/= I/(Id), where Id is the identity map on 
R’. 

For K and Ke = Ki as defined, we obviously have K 0 z = Ke o 7c = H 0 i 
as required, and this identity implies 

PKe) on=(V,H)oi, (4.14) 
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where V w H = (cYH/c? W, , aH/i? W,, aH/3 W,). If w{ is the flow of X,,, then 
we calculate (see [ 1, pp. 192-1931) 

{ Wj, H} =-(H, Wj} =-(d/dt)(Ho ~/)If=o 

= 2 { Wj, Wi}(aH/au/‘,), 
i=l 

(4.15) 

since {Wj, W,}=Oforj=1,2,3,4;hence 

(z, H) = (II, n) . (V,.H). (4.16) 

For B E R3 a direct calculation (using the negative of (1.2)) shows that 

and hence 

(n, n} . B = 4czP[(VQ) 0 n] x B, (4.17) 

7c* X,, = (n* X,)(Id) = X,(Id o rr) = { 71, H) = X, o z’, (4.18) 

with X, as in (4.12), and where we have used (4.14), (4.16) and (4.17). 
Q.E.D. 

We sketch the reduced spaces MR for the various cases of a and /3 in 
F,‘g. 1. Notice that in case (a) MR is simply the 2-sphere of radius 2h, and 
that when 2h = 1 the projection rr : S3 -+ S2 is the usual Hopf fibration; 
hence the name “Hopf variables.” The “pinching” in (c) and (d) reflects the 
tangential approach of MR to the w3 axis. 

Now define the Q and p normal modes of H, as in (4.1) to be the periodic 
orbits of XH, with energy h in the z, and z2 planes, respectively. Then 7c 
sends the a normal mode to NP, and the /? normal mode to SP. In cases 
(b)-(d) we thus see that our reduction process may ignore (at most two) 
periodic orbits of XM, on H; l(h). This is remedied by an application of 
Liapunov’s theorem, a point we return to in Sections 6 and 7. 

8=2,a=l /9>2,0=l 
(b) (cl 

FIGURE 1 

/3>.>1 
Cd) 
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We now consider linear symplectic actions on R4 N G x C given by 
elements of discrete and Lie subgroups of SU(2). Let (C + ill) E SU(2) and 
recall that (zi, z2) = z F x = (x,, x2,y1 ,.YJ, where zj = xj f iyj, j = 1, 2. 
Then 

(4.19) 

defines a linear symplectic action of SU(2) on (R4, o), and the map 

~JI:SU(~)-~S~(~,R)~SO(~,R),V(C+~D)= (4.20) 

is a Lie group isomorphism of SU(2) onto its image. 
The Pauli spin matrices 

‘=I= (; :, )’ ‘2= (p; ;)q (‘j= (; -;) (4.21) 

give a basis u = {or, uz, a,} for the Lie algebra su(2). Relative to this basis 
the adjoint mapping Ad V : su(2) -+ su(2) of VE SU(2) is represented by a 
3 x 3 matrix B = (bkj), i.e., 

Ad,(uj) = Vuj V-r = + bAjaA. 
k:l 

(4.22) 

We claim B E SO(3). Indeed, letting * denote the conjugate transpose of a 
matrix, the relations 

Wv(q>l* = Ad,(q), Ad,. 0 Ad, -, = Id, (4.23) 

imply B is real and invertible. Moreover, from (4.22) we have 

2 (b,)’ = -det( Vu1 Vm ‘) = -det(u,) = + 1. (4.24) 
k-L 

hence the columns of B are of unit length. Now note the Lie bracket relation 

[u,,uz]=u,u2-uZu3=-2iu3, (4.25) 

with corresponding identities on cyclic permutation of the indices. Then 

(-2i) Ad,(u,) = Ad,.( u,, a,] = [Ad&,). Ad,@,)lt (4.26) 
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when expanded using (4.22), shows that the third column of B is the 
standard cross product in R’ of the first two columns; hence B E SO(3) as 
asserted. We now easily check that the 2 to 1 map 

0 : W(2) --) SO(3), I(+v>=B, (4.27) 

where V and B are related by (4.22) is a Lie group homomorphism with 
Ker@) = { *Z2}. 

Since SU(2) and SO(3) are compact and connected, a standard result [ 1, 
Ex. 4.4D, p. 3381 implies that the exponential map of their respective Lie 
algebras is surjective. In particular, for each VE SU(2) there is an 
a = (a,, a,, a3) E R3 such that V= exp[-i(l/2)(a . a)], where a . u = 
Cj=, uioi. Now let 

0 a3 -a2 
A= -a3 0 a, E so(3), 

4 -aI 0 

set V(t) = exp [ -i(t/2)( a . o)] in (4.22) thus defining B(t) = (b,Jt)) = exp(Pt) 
with P E SO(~), and differentiate at t = 0. Using relations (4.25) we conclude 
that P = A, and hence 

B = exp(A ) = 4(V). (4.28) 

The linear action on R 3 given by w -+ Bw is thus a clockwise rotation of w 
about the axis a through an angle ]uJ (the eigenvalues of B are exp(0) = 1 
and exp(fi ]a I), and Aw = w x a). In particular, 

4h+-iW 0, I) = (j-+--+$ (4.29a) 

t 

cost 0 -sin t 
#(exp[--i(t/2)o,]) = 0 1 0 i , (4.29b) 

sin t 0 cos t 

4(expl--iW)~31) = (4.29~) 

THEOREM 4.3. (a) Suppose in (4.6) and (4.9) we take /I = a = 1, and 
let F = SU(2) act as in (4.19). Then Lemma 3.3 holds, with..a~* = (fl,}, 
and ,Fi = (,%‘/.F’*) N SO(3). Moreover, the actions of 5 on the 3-sphere 
H;‘(h) c R4 of radius (2h)“*, and of Vi on the 2-sphere MR c R3 of radius 
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(2h), are transitive. Finally, for V E .Y and 4(V) = B E 5R given by (4.27) 
we have 

n( V . z) = B . X(Z), (4.30) 

where 7c : C, -+ MR is the projection (4.10). 

(b) Suppose in (4.6) and (4.9) we take /I > a > 1, we let 55 be the one- 
parameter subgroup V(t) = exp[-i(t/2) a,] of SU(2), and we let .Y act as in 
(4.19). Then Lemma 3.3 holds, with .Y* = (+I,), and .SR = (.Y//.Y *) c SO(3). 
Moreover, the action of .Y restricts to each “ellipsoid” H;‘(h), and for 
V(t) E .Y and #(V(t)) = B(t) E .YR given by (4.27) we have 

c 

cos[ t(a + 8)/2] sin( t(a + P)/2] 0 
$( V(t)) = B(t) = -sin [ t(a + ,8)/2] cos [ t(a + ,f3)/2] 0 

1 
,(4.31) 

0 0 1 

reflecting the rotational symmetry of M, about the w3 axis in Fig. 1. 
For the proof a simple observation will be useful. If 

1 0 
04= o l 9 ( ) 

then for /3 = a = 1 the Hopf variables (4.2) can be written 

wj = (Ujz9 z)c, j= 1,2,3,4, 

where ( , )c is the usual Hermitian inner product on @ X C, i.e., 

(4.32) 

(z, u)(. = t7 zjuJ, 
,r, 

z = (z,, ZJ, u = (u, 1 UT). (4.33) 

Proof: Since the linear action on R’ given by (4.19) is symplectic. the 
induced action on M, will be symplectic by Theorem 3.4. The remaining 
results in the proposition will follow readily once we establish formula (3.5). 

(a) For /I= CL = 1, the Hopf variables are given by (4.32). Also, 
V E SU(2) implies V* = V’ and BP’ = B’ in (4.22). Thus for j = 1. 2, 3.4. 
we have 

W,(V. z) = (ojV. z, V. z)~ = (V*u, V. z, z)~ = x bja(okz, z)<. (4.34) 
k=l 

which implies (4.30). 
(b) For /3 > a > 1 and V(t) = exp]-i(t/2) a,], the action (4.19) in 

(4.2) implies 
(W,+iW,)(V.z)=exp[-it(a+P)/2].(W,+iW,)(z), 

W,( v . 2) = W,(z). (4.35) 
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Hence the projection 7~ : Z, + MR satisfies rc( V(t) . z) = B(t) . z(z) with B(t) 
given by (4.31). Q.E.D. 

In addition to SU(2) symmetries, we will also study the following 
involutions on (R4, w): 

Notice these satisfy the identities 

R,=R,oS=S~R,, RZ=R,oS=SoR,, S=R,oR,=R,oR,, 

(4.37) 

and 

R,% = -0, j= 1, 2, S”w = w. (4.38) 

R, is called “time-reversing” since in kinetic plus potential energy 
Hamiltonians it reverses time. As in computations (4.34) and (4.35) use of 
the defining relations (4.36) in (4.2) yields the following result: 

THEOREM 4.4. For each of the cases of /I and a in (4.6) and (4.9), let the 
group .Y = (I,, R,, R,, S} c GL(4, R). Then the hypotheses of Lemma 3.3 
are satisfied and .Y* = {Z4}. On both M and MR the respective actions of 
g E Y and o(g) E YR are linear symplectic or anti-symplectic, and the map 
4 : F-P & c GL(3, R) is given by 

(4.3a) 

(4.3b) 

(4.3c) 

i 

(-I)” 
d(s) = W,) . d(RJ = 0 (4.3d) 

0 

Remark a). We define the F-meridian of MR to be the intersection of 
that set with the (w,, w& plane in R , 3* it is the fixed point set of #(RI). In the 
context of kinetic plus potential energy Hamiltonians, points on the F’- 
meridian correspond to the time-symmetric orbits. 

505/49/3-4 
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Remark b). The only points in MR left fixed by both d(R,) and #(R,) 
are those poles {SP, NP) that lie in MR (see Fig. 1). Recall that these poles 
correspond to the /I and a normal modes in H;‘(h). 

5. SYMPLECTIC PLANAR MAPPINGS 

Our applications of reduced space techniques will employ some technical 
results concerning symplectic planar mappings. For the convenience of the 
reader these are assembled in this section. 

We consider an open neighborhood V c C of the origin and an analytic 
symplectic mapping M : V + C of the form 

M:u,=A,u+A,zi+A,u2+A4uti+AStiZ+A6u3fA,u2ii 

+ A,uiiZ + A,C3 + O,(u, U). (5.1) 

Note that the origin is a fixed point. 

LEMMA 5.1. For the symplectic map (5.1) we have 

(a) IAll - lA,l* = 1, 
(b) [2&A3 + A,& -A,A, - 2A,&] = 0, 

(c) [3&A, + 2A3& + A,& -A,A, - 2A4& - 3A2&] = 0, 

(d) [Re(A,x,) - Re(x2A,) + IA,]’ - 1A,12] = 0. 

In particular, a linear map u, = A, u + A, I is symplectic if and only if (a) 

holds. 

Proof. M symplectic is equivalent to the power series identity 
a(~,, G,)/c?(u, zi) = 1; now compare coefficients. Q.E.D. 

LEMMA 5.2. If in (5.1) we write A, = a + ib, then the eigenvalues of the 
fixedpoint 0 are v = a f daTi, hence that point is: 

(a) elliptic if and only if la ( < 1, 
(b) parabolic if and only if I a ( = 1, and 

(c) hyperbolic if and only if 1 a 1 > 1. 

Proof: With A, = c + id the mapping M in real coordinates is given by 

+ O&Y)* 

Using Lemma 5.1 (a), the result follows by direct computation. Q.E.D. 
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In the elliptic case suppose A, # 0 in (5.1). Then a simple calculation with 
the eigenvalue v = a + i(sgn(b)) dm shows that [ 1 - Re(vA ,)I > 0. If 
we define a real number a by the requirements aF2 = 2[ 1 - Re(vA i)] and 
sgn(a) = sgn(b), then transforming (5.1) by the canonical transformation 
u = ia[ (x, - V) w + A, fl] converts (5.1) to the form 

w, = VW + O,(w, W). (5.2) 

Conversely, Lemma 5.2(a) shows that (5.2) must be elliptic unless v = f 1. 
For the rest of this section, when we are in the elliptic case we will assume 
that the mapping (5.1) already has the form 

M:u,=vu+A,u2+A,uzi+A,zi2+A,u3+A,~2~ 

+ A,uti’ + A,ti3 + O,(u, n). (5.3) 

THEOREM 5.3. If vi # 1 for j = 1,2, 3,4 in (5.3), then the origin is stable 
provided the “Jirst twist coeflcient” 

iIm(FA,)+3(A,12 (5.4) 

is non zero (notice y is real). 

Remarks. More precisely, Theorem 5.3 states that the origin is 
surrounded by M-invariant analytic closed curves shrinking sown upon that 
point, and that collectively these curves form a set of positive measure. 
Moreover, the restriction of M to any such curve is conjugate to an irrational 
rotation of S’. The neighborhood of the origin for these invariant curves will 
in general be smaller than the original neighborhood V in (5.1). 

The case y = 0 does not rule out stability. In fact there is an infinite 
sequence of twist coefficients, any one of which being nonzero guarantees 
stability. The condition vi # 1 for j = 1, 2, 3,4, can also be relaxed, but not 
eliminated entirely. Indeed, for each qth root of unity a counterexample to 
stability is constructed in [37, pp. 222-224). 

ProoJ From [31, Theorem 2.12, p. 55 J there is a real analytic symplectic 
mapping C : u = w + O,(w, W) such that the mapping N = C-’ 0 M 0 C has 
theformN:w,=vw[l+iy(w~2]+0,( w, G). Comparing coefficients in the 
power series identity C 0 N = M 0 C, and using the identities in Lemma 5.1, 
we find y given by (5.4). The result then follows from [3 1, Theorem 2.13, 
p. 561. Q.E.D. 

THEOREM 5.4. Let V c @ be an open neighborhood of the origin, and 
consider a one-parameter family M, . ’ V -+ C of symplectic planar mappings 
of the form 

Ai?, : u, = u + &“f (u, 27; E) (5.5) 
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with 

f(u,zi;E)=B,u+B,n+B,u*+B&U+B~ii*fB6U3+B,U*li 
+ B, uzi* + B, U3 + O,(u, i& E) + O(E). (5.6) 

Here each Bj = Bj(e) is analytic in E, O,(u, zi; E) represents terms of degree at 
least 4 in u, ri, with coeflcients analytic in E, and O(E) is a function of 
(u, C, E) for ) E 1 small. In particular, f (0,O; 0) = 0. Now set 

J= WY) 
a(4 4 U=c=O 

= IBS9l’ - IB2(0)1*. (5.7) 

(a) Zf J# 0, then for JE/ small M, admits a uniquefixed point u, near 
O,andu,+Oass+O. 

(b) For suflciently small E > 0 the point u, is elliptic or hyperbolic 
according as J > 0 or J < 0. 

(c) If J > 0, B, = 0, and 

i Im(B,(O)) + 6B;‘(O) IB,(O)l’ + jB;‘(O) IBS(0)12 # 0, (5.8) 

then for small E > 0 the fixed point u, is stable in the sense of Theorem 5.3 
(note from (5.7) that J > 0 implies B,(O) # 0 in (5.8)). 

Proof: (a) By the implicit function theorem there is a unique uE, 
analytic in E for E suffkiently small, such that f (u,, ziE; E) = 0 with u,-+ 0 as 
E -+ 0. Obviously u, is a fixed point of M,. 

(b) Expand (5.5) about u, and let w = (u - u,), obtaining 

w, = (1 + e”B&)) w + e”B2(e) I? + O,(w, W; E); (5.9) 

this moves the fixed point to the origin. By Lemma 5.1(a) we have 
I1 + c”BI(e)Iz - la”B2(e)12 = 1, i.e., 

2 Re(B,(e)) = -e”(JBI(e)(* - lB2(.s)~*) z --E”J, 

hence Re(B,(s)) has the opposite sign as J for small E > 0. But by Lemma 
5.2 the fixed point (which is the origin in the new coordinates) is elliptic, 
parabolic, or hyperbolic according as 1 + en Re(B,(s)) is less than, equal, or 
greater than one, and (b) follows. 

(c) When B*(E) 3 0 (5.9) becomes 

w, = (1 + c”BI(e)) w + e”{B&) w* + ..e + B&) e3 + O,(w, W; E)} 
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which has form (5.3) with v = 1 + s”B,(s). Using 

v+l ( ) v-l 
= 1 + 2&-9?;‘(E), 

= 1 + 2~“B;‘(e){3 + 3e”B,(e) + .c~‘%:(c)}-~, 

we compute expression (5.4) in this case to be 

-i{iIm((l + P&i(e)) e”B,(s)) + 3s’” ]B,(e)(* (1 + 2s-“B;‘(s)) 

+ e2n IB,(e)12 (1 + 2~-“B;~(e)[3 + 3e”B,(e) + E”%;(E)]-‘)} 

= - i{e”[iIm(B,(O)) + 6B;‘(O) ]B3(0)]2 + $B;‘(O) (BS(0)(‘] + O(E”+‘)}. 

This gives (c) and completes the proof. Q.E.D. 

While Theorem 5.4 covers analytic symplectic perturbations of the 
identity mapping, we will also have occasion to study analytic symplectic 
perturbations of pure rotations. 

THEOREM 5.5. Let V c C be an open neighborhood of the origin, and 
consider a one-parameter family of symplectic planar mappings M, : V -+ & 
of the form 

ME : 241 = vu + &“f (24, u; 6). (5.10) 

with f as in (5.6), and 1 v) = 1, v # 1. Then for E > 0 small, M, admits a 
unique fixed point u, with u, + 0 as E -+ 0. Moreover, u, is elliptic of v # f 1, 
and elliptic stable (in the sense of Theorem 5.3) provided vj # 1, 
j = 1,2, 3,4, and 

B,(O) # 0. (5.11) 

As the proof is similar to that of Theorem 5.4, it will only be sketched. 

Proof: Setting g(u, & E) = (v - 1) u + Pf (u, 6; E), the condition that u, 
be a fixed point of (5.10) is then g(uE, U,; E) = 0. The relevant Jacobian is 
a( g, g)/~?(u, zZ) = (v - l)(V- 1) + O(E”), which for v # 1 will not vanish for 
E > 0 small. Thus u, exists. Moreover, when v # f 1 the eigenvalues in (5.10) 
vary analytically with E (for small ]&I); hence u, is elliptic. 

Expanding (5.10) about u, and setting o = (u - uE), we obtain a one- 
parameter family of symplectic planar mappings 

w, = VW + &“[B,(O) w + B,(O) I3 + B3(0) w2 + * * * 

+ B,(O) w2w + ..a + O,(w, w; E)] + O(&“f’) (5.12) 
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having the origin as common fixed point. As in the proof of Theorem 5.3, the 
condition v’ # 1 for j = 1, 2, 3,4 guarantees we can convert (5.12) to the 
form fV,:r,=yz[l +iylz]*]+O ( ., z, Z; E), where q and y depend on E, by 
means of a symplectic planar mapping C, : z = 24 + s”(C, 24 + C, U + . . .) + 
O(P+ i) which is analytic in E (for the analyticity one must examine [37, 
Sect. 231). A straightforward comparison of coefficients then shows 
y = -is’%?,(O) + O(e”+ I), and the result follows. Q.E.D. 

In our main applications the symplectic planar mappings will arise by 
integrating a periodic time-dependent Hamiltonian flow through one period. 
Specifically, in Section 6 we will consider analytic Hamiltonians of the form 

G(u, zi, A; E) = en [E(u, U) + O(E)], (5.13) 

where u varies in an open neighborhood of the origin in 6, G is periodic of 
period T > 0 in 1, E is small, and O(E) denotes a function of (u, U; I; E). The 
associated equations are 

u’ = -2i(aG/&) = -2ie”(kE/&i) + O(.c”“), ’ = d/dil. (5.14) 

Integrating (5.14) from 0 to T gives a family of symplectic planar mappings 

M,:u,=u-ED2iT($(u,zi)) +O(,c”“) (3.15) 

which is of the form (5.5). 
In this paper E will be real analytic and always have the form 

E(u,u)= ;(At* +Bq2)+ O&z+ u = t + ir], (5.16) 

with A and B constant. In this case the Jacobian J of (5.7) is simply 
J= ABT2. If J > 0 (the elliptic case), then the canonical substitution of 
(B/A) “4 . r and (A/B)“” . q for < and q converts (5.16) to the form 

E(u,~)=~(sgnA)(AB)“2Ju~2+E,u3+E4u2~+E,u~2+E,~3+E,u~ 

+ E&7+ E,u2P2 + E,,uii3 + E,,ti4 + O,(u, 6). (5.17) 

where the coefficients Ej are constant and satisfy the reality conditions 
imposed by E = ,!?. Mapping (5.15) then becomes 

M, : u, = u + E” ]-i(sgn A) T(AB) ‘I* u - 2iTE, u* - 4iTE, UU - 6iTE,ti* 

- 2iTE,u3 - 4iTE,u*ti- 6iTE,,uti* - 8iTE,,U3 

+ O,(u, U)] + o(E”+ ‘). (5.18) 
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This is in the format given in (5.5) and (5.6) with B, = 0, and here a short 
computation shows that the stability condition (5.8) in this case becomes, on 
using the reality conditions E, = ,??x and E, = E9, 

4iT(sgnA)(AB)-“2 [-(sgnA)(AB)‘12 E, + 6(jE,l’ + lE4/‘)] # 0. 

We thus arrive at the following consequence of Theorem 5.4: 

(5.19) 

THEOREM 5.6. Let V c C be an open neighborhood of the origin, and 
consider a one-parameter family M, : V -+ C of symplectic planar mappings 
arising as in (5.12) with E as in (5.13). Also consider the Hamiltonian 
system 

u’ = -2i(aG/&), 

associated with (5.13). 

’ = d/d& (5.20) 

(a) If AB # 0, then for small E > 0 there is a unique periodic orbit IIB 
of (5.20) of period T(e) such that IT, approaches the d axis and T(E) + T as 
& --t 0. 

(b) For E > 0 sufficiently small, IIt is elliptic or hyperbolic according 
asAB>OorAB<O. 

(c) If AB > 0 and E is converted to form (5.17) by the canonical 
substitution of (B/A)‘j4 < and (A/B)‘14 n for < and n, where < + in = u, then 
17, is stable for suficiently small E > 0 provided (5.19) holds. 

Remark a. “Stable” in (c) means that n, is encased in invariant tori that 
shrink down upon that orbit, and which collectively form a set of positive 
measure. 

Remark b. An alternative to (c) for proving stability is the following: 
Use Proposition 1.1 to convert E to normal form through higher order, and 
mapping (5.15) will then have the “normal form” N of the proof of Theorem 
5.3. Then y can be “read off’ as a single coefficient of the converted E. 

Remark c. A corresponding stability criterion in Theorem 5.6(c) could 
be given in the case that the quadratic terms of E(u, U) possess a cross- 
product term involving r. q. As we will see in the discussion preceding 
Proposition 6.3, such cross-product terms can, however, be eliminated by 
appropriate coordinate transformations. 

Remark d. In Section 7.A we will consider analytic Hamiltonians of the 
form 

G(u, ti, A; E) = (y/2) 1 u I* + O(P) (5.21) 
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in place of (5.13); here again u varies in an open neighborhood of the origin 
in C, G is periodic of period T > 0 in A, E is small, and O(E”) denotes a 
function of (u, zi, A; E). In place of (5.14) the associated equations now 
become 

24’ = -iyu + O(P), ’ = d/d& (5.22) 

and integrating from 2 = 0 to A= T gives a family of symplectic planar 
mappings 

M, : u1 = e-QT * 24 + O(&“) = vu + O(&“). (5.23) 

This is of the form (5.10), and continuation and stability criteria can be 
obtained from Theorem 5.5. 

6. PERIODIC ORBITS AND THEIR CONTINUATION 

Let z = (z, , z2) and 

H,(G 4 = (a/2) lz112 + v/2> M2~ a and p > 0, (6.1) 

where p = a = 1 or fi > a > 1 are relatively prime integers (the resonance 
case). Also, let M be defined as in (4.6), let F = H, (M, and let H E A$ be as 
in Theorem 4.2. As before, h is assumed to be a regular value of F, and with 
Z,, = F- ‘(h) we let i : Z,, + M be inclusion. Finally, II : M -+ MR is the orbit 
projection, and K : MR + R the reduced Hamiltonian corresponding to H. 

Recall that a relative equilibrium for H is a point p E C, such that 
X,(lr(p)) = 0; by (4.12) this is a point for which VKe(7c(p)) is normal to 
MR. In the notation of Theorem 3.1, the orbit Iu,(p) of X, is then a 
reparametrized orbit agct,(p) of X,, and thus is periodic provided 
(dg/dt) # 0 along the curve. We wish to use Theorem 5.6 to continue such a 
periodic orbit to a perturbation of H, and for this purpose we must first 
reconstruct the flow of X, on M from the flow of X,,. on MR. A great deal of 
the following construction also applies in the nonresonance case, but we 
restrict attention to the resonance case as we wish to emphasize correspon- 
dences with the reduced space MR. An alternate reconstruction of the flow of 
X,, on M from that of X, on MR can be found in [ 1, pp. 303-3041. 

For any h > 0, the level surface H;‘(h) of the quadratic Hamiltonian 
(6.1) is an ellipsoid with lz,l* < (2h/a) and 1z212 < (2h/@. If we write 
z, = JzI( eie for z, + 0 (i.e., lz212 # (2/z/@)), then we can use (z,, 0) as local 
coordinates on H;‘(h) provided we identify (z2, kn). With these conventions 
consider Fig. 2, in which the vertical axis is parametrized by 8 for 
--7c < 0 < 7~. The point p, assumed to be interior to the solid cone, is coor- 
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FIGURE 2 

dinatized by (z,, 19) as follows: z2 is simply the planar projection of p, q is 
obtained as the intersection of the “outer circle” 1 z2 1’ = (2/r/,4 with the place 
through p and the vertial axis, and t3 is the obtained as the intersection with 
the vertical axis of the line through q and p. Of course, if p is already on the 
vertical axis at a point 0, then the coordinates of p are (0, 0). We note that 
these coordinates are not valid on the “outer circle” Iz2 (* = (2/r//?). In 
keeping with the identification (z *, frr), we regard two points on the 
“boundary” of the solid cone as being identical if they have the same zz 
coordinate, e.g., A and B in Fig. 2. Thus all vertical line segments running 
from boundary to boundary are actually circles; in particular this is the case 
for the vertical axis which we call the “inner circle.” 

The flow 
Q,(z) = (e-‘“’ . 2,) eCior . z2) (6.2) 

of the quadratic Hamiltonian (6.1) is easily visualized in these terms as in 
Fig. 3. Indeed, the normal modes (eeiut - z,, 0) and (0, eeiO’ . z2) run down 
the inner and around the outer circles, respectively, and all other orbits wind 
downward around invariant tori. Moreover, on these tori the flow gives a free 

normal modes 

FIGURE 3 
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and proper S’-action in the resonance case. Indeed, Fig. 3, after removal of 
the appropriate normal mode(s) as in (4.6) can be regarded as a picture of 
the S’-action on the surface Z,, of Sections 3 and 4. 

It is important to realize that Fig. 3 can be untwisted (and the flow 
direction reversed) by a canonical transformation. To this end write the coor- 
dinates on R4%R2 XC as (Iz,L,u), u=<+iq, let 

U, = {(A, L, u) E R4 1 L > 0, I u2 I < (2L/P)}, 

and consider U, as a symplectic space with two-form 

w, = d,l A dL + dt A dry. 

(6.3) 

(6.4) 

P* I 
zl = ~1-‘/~(2L -/3 lul*)“’ ie-‘“‘, 
z2 = ue-i4.t, (6.5 1 

and let 

o = f i Im(dFj A dzj) = j’ dxj A dyj (6.6) 
j= 1 ,Yl 

be the standard symplectic form on R4 as in (3.1). Then a direct calculation 
shows that 

PXkJ)=~a (6.7) 

and 

(H, o Pam, L u) = L. (6.8) 

Thus p, is canonical and maps the domain 

v, = ((A, L, u) E u, I -(n/a) < k < (71/a), L = h) (6.9) 

in a l-l manner onto H;‘(h) less the outer circle in Fig. 3 (since lzz12 = 
( u I2 < (2L/p) = (2/r//3)). Notice that the differential equations associated 
with the new Hamiltonian (6.8) are trivial, i.e., 

i= 1, i = 0, li = 0. (6.10) 

We can visualize V, as in Fig. 2 except the vertical axis now runs from 
-(z/a) to (n/a), and t o b e consistent with previous identifications the point 
A on the “top boundary” must be identified with B on the bottom if the 
projection of A to the horizontal plane, when rotated by (2$/a), agrees with 
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the projection of B. This is just the usual identification for an (a, /?) lens 
space (see [36, pp. 217-218; 38, pp. 256-2571). The flow of (6.10) can be 
visualized as in Fig. 4, wherein once an orbit reaches the top it re-enters the 
bottom after a twist around the vertical axis of (27r/a). 

The treatment above favors the a normal mode (e-‘“’ . z,, 0) since the 
coordinates are not valid at the other mode. However, this is easily rectified 
by replacing U, by 

u,= {@,L,u)ER41L >o,(u(* < (2L/a)}, 

letting wq = w, in (6.4), and replacing p, by pa : U, + R4 ‘v C X 6, 

(6.11) 

The preceding discussion then holds with b replaced by /I, except that in 
Fig. 4 the “inner circle” now represents the /3 normal mode (0, e-‘O’ . z2). 

Set pb = p, 1 V, and define the open 2-disc 

D,=(UIIU(*<(2h/P)J=(ul(O,h,~)EV,}. 

Then we have a sequence of maps 

(6.12) 

D&+ V, 3 H;‘(h) -!+ R4, 

P” 

(6.13) 

where j(u) = (0, h, u), and i is inclusion (we will also continue to use i to 
denote the inclusion i : Z, + M). We set p, = ph 0 j, and note that j(D,) is 
the open 2-disc in the horizontal plane of Fig. 4 which is interior to the solid 
cone and transverse to the flow of (6.10). Similar definitions hold for the 

FIGURE 4 
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map p. and set Vo, where we again use j to denote the map j : D, + VO, 
j(u) = (0, h, u). Then (6.4) and (6.7) imply 

pX(i”0) = d( A dv =p,*(i*o), 

where dt A dq is a symplectic form on D, and D,. 

(6.14) 

PROPOSITION 6.1. Extend the map 7~ to 72 : H;‘(h) + R2 by (4.10). Then 
TT o p, is a symplectic a-sheeted covering of (see Fig. 1) 

(a) MR - { SP} by D, when /3 = a = 1, 

(b) MR by D, when /I > a = 1, 

(c) MR by D, - {O} when /3 > a > 1, 

where (II 0 p,)(O) = NP. Replace a by p, a similar conclusion holds with 
(7T 0 PO)(O) = SP. 

Proof: From (4.2) and (6.5) the map rc op, is given in coordinates 
(w,, w2, w3) on R3 by 

w, + iw, = 2(i)O a-4’2(2h -/3 l~l’)~” (ti)“, w3 = 2(h -/I lul’), (6.15) 

where 1 u12 < (2h//?) from (6.3) implies -2h < wj < 2h. The fact that the 
covering is a-sheeted follows from the first equation in (6.16) and the 
remainder of the proposition follows from the placement of the pinch points 
in Fig. 1 and the definition of M, in (4.9). The proof for rc 0 pn is similar. 

Q.E.D. 

Now assume for H = H, + N we have ad,,(N) = 0, hence by Lemma 
4.1(a) that N is written in terms of the Hopf variables (4.2). By (6.8) we 
have (W, o p,) = 2(H, o pa) = 2L, and so (6.16), with h replaced by L, 
implies 

Hop,=L+Nop, (6.16) 

is independent of A. Since p, is canonical the transformed differential 
equations are 

;z = 1 + a(N 0 p,)/aL, (6.17a) 

i = 0, (6.17b) 

ti = -2i a(N 0 p,)/&i. (6.17~) 

From (6.17b) we see that L is an integral, and hence on any surface of 
constant L = h we have represented the flow of X, on H;‘(h) in the new 
coordinates (,I, L, U) as a product flow on V,, governed on the disc j(D,) by 
(6.17c), and in the vertical direction by (6.17a). Note that j(D,) is a local 
cross section for the flow provided i # 0 on j(D,). 
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We now define a function E on the disc D, by 

E(u, Cl = (N 0 P,)(& h, u). (6.18) 

PROPOSITION 6.2. (a) In the notation above, assume there is a 6 > 0 so 
that i > 6 on V,. Then for u,, # 0 the point p,(& h, u,) is a relative 
equilibrium for X, if and only if u0 is an equilibrium point of X, on D, . 

(b) If a = 1, then (a) also holds for u,, = 0. 

Prooj (6.15) implies 

(n 0 p,)(u) = (n 0 P,)& h, u). (6.19) 

Since n*oR = i*w and (6.14) holds, the map (rr o p,) : D, -+ MR is a local 
symplectomorphism. Let K be the reduced Hamiltonian corresponding to N. 
Then in a suitable neighborhood of any point on MR - {SP, NP) we have 

(K 0 rc o p,)(u) = (K o x o p,)(A, h, u) = (N 0 i 0 p,)(A, h, u) = E(u, ti); (6.20) 

hence the (local) pull-back satisfies 

(x~po)*xK=xE. (6.21) 

(4 Ifp,@, k J u is a relative equilibrium for X, (equivalently, X,), then 
(6.21) states that the vanishing of X, at (Z op,)(u,,) implies XE(u,) = 0. 
Conversely, assume X,(u,) = 0. Then Eqs. (6.17) reduce at u = u, to 

i = const > 0, (6.22a) 

i = 0, (6.22b) 

li = 0. (6.22~) 

Thus the point (I, h, uO) is on the periodic orbit through (0, h, u,,). 
Restricting p, to this periodic orbit then gives a reparametrization of an XH2 
orbit, hence p,(A, h, u,,) is a relative equilibrium for X,. 

(b) This follows from the above reasoning applied to u0 = 0 since for 
a = 1 the point (rr o p,)(O) = NP E MR. Q.E.D. 

Remark a. A completely analogous result to Proposition 6.2 holds for 
points p,(A, h, uO) on taking account of the absence of various poles for MR 
in Fig. 1. 

Remark b. The condition x > 6 in Proposition 6.2 will in practice be 
satisfied after stretching variables. 

Remark c. By (6.21) we have transferred the critical points of K on MR 
to critical points of E on D,. Moreover, the transference (6.21) allows us to 
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FIGURE 5 

reconstruct the flow of X, on M from the flow of X, on M, via (6.17) on 
V a’ Figure 5 shows a typical reconstructed flow on V, under the 
assumptions of Proposition 6.2 (assuming the identifications for an (cz, p) 
lens space). 

To extend results from a truncated system in normal form to a full 
Hamiltonian we first need to recall a standard reduction technique. Let 
H(x, y) be defined on a neighborhood U c R ‘* of the origin, and assume at a 
point (x,, y,) E U we have 

If h, = H(x,, y,), then the implicit function theorem guarantees that in some 
neighborhood of (x0, y,, h,) we can solve for y1 as a function of the 
remaining variables, say 

Y, = -@,A h) (6.24) 

(the minus sign is a convenience), where y^ = (y, ,..., y,). It follows that 

H(x, 4(x, 9, h), j) = h, 

and differentiating this identity gives 

(6.25) 

S, = Wx,/H,,), Syj = WyjIHJ j = 2, 3 ,..., n. (6.26) 

Since i5, = H,,, # 0 by (6.23), we can replace the time t by the variable x, 
along orbit segments sufficiently close to (x0, y,,, h,). Letting ’ = (d/dx,), 
(6.26) then shows for j = 2, 3 ,..., n that 

xj = (ij/Hy,) = W,Iff,J = s,, 
yj = (4’j/ffy,) = -(Hx,IH,I) = -S,’ 

(6.27) 

and thus we obtain a time-dependent system with time variable x,. 
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In other words, solutions of (6.27) at fixed energy h, will give local 
reparametrizations of solutions of energy h, of the original system i = H,, 
I; = -H,, where y, is reconstructed from (6.24). The process of replacing 
these latter equations for H by (6.27) is an example of isoenergetic reduction, 
which in general refers to any technique involving a change of the time 
variable for the purpose of studying solutions of a Hamiltonian system at a 
fixed energy. 

Now consider a parameter-dependent Hamiltonian of the form 

H(x, y; E) = y, + &r-2N(2; y) + 0(&r- ‘), r> 3, (6.28) 

defined n a neighborhood U X (-E,,, E,,) c R2” x R containing the origin, 
where ,i! = (x2,..., x,) and the absence of x1 from N is intentional (recall the 
absence of ), in N 0 p, of (6.16)). Then H,,, = 1 + srP2Ny, + O(c’-‘), and so 
(6.23) holds near any point in U for sufficiently small E. A straightforward 
calculation then shows 

S = 4 + E'-'N(:; h, y") + O(E'- '). (6.29) 

In this instance (6.27) becomes, with ’ = (d/dx,) and j = 2, 3,..., n, 

x; = &‘-‘Ny, + O(E’-I), y; = -& r- 2N.y, + O(E’- ‘). (6.30) 

To apply these ideas in the case of two degrees of freedom consider 

H(z, q = H,(z, -T) + H,(z, .q + o,, I(Z, F), (6.3 1) 

wherez=(z,,z2)EC~C-R4,H2isgivenby(6.1),andH,E~~.Ifinthe 
associated differential equations we scale variables by zj --) czj, then we 
obtain a new Hamiltonian system with Hamiltonian 

H,(z, F) = eC2H(ez, EF) = H,(z, T) + E’-‘H,(z, F) + O(E’-‘). (6.32) 

Moreover, for h # 0 the mapping z -+ EZ is a conjugacy between the flow of 
(6.31) at energy c2h and that of (6.32) at energy h. In short, statements 
concerning (6.32) for fixed h > 0 and E > 0 sufficiently small reflect the 
behavior of (6.31) at small positive energies. 

Now assume the H, of (6.32) has the form 

H,=H,+E”N+O(E”+‘). (6.33) 

where ad,JN) = 0 and N is expressed in terms of the Hopf variables (4.2). 
The analog of (6.16) for (6.33) is then 

H, 0 p, = L + P(N 0 p,) + O(E”+ I), (6.34) 
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where H, = h corresponds to (H, 0 p,) = h, and (N 0 p,) is independent of A. 
Note that (6.34) is in the form (6.28) with (xi, xz,yI, yJ = (A, <, L, q), 
where u = r + iq. Then by isoenergetic reduction the study of the flow on 
(H, o p,) = h > 0 reduces (locally) to examining the analog of (6.30), 
namely, 

where 

u’ = -2Q”(~E/&i) + O(E” + ‘), ’ = (d/dA), (6.35) 

E(u, 27) = (N 0 P,)(& h, u). (6.36) 

Moreover, along a periodic orbit these “local” representations can be pieced 
together (by the uniqueness assertion in the implicit function theorem) so as 
to have (6.35) hold in a neighborhood of that orbit. 

Now (6.35) is precisely of the form (5.14). Moreover, dropping the O(c”) 
terms puts us in the context of Proposition 6.2 since i = 
[ 1 + s”a(N 0 p,)/Z] > 6 > 0 for small E > 0. Thus, if p,(A, h, u,J is a 
relative equilibrium for X, (and hence for X,,), Proposition 6.2 implies 
X,(u,) = 0 = Xx(rr 0 p,)(u,,), where K 0 71 = N 0 i (we could also define K by 
K 0 rc = (H, + N) o i). We can always translate u,, to the origin and rotate in 
the disc D, (these are local canonical transformations) so that the Hessian 
matrix of E is diagonal. In this case for X,(O) = 0 we can assume (on 
ignoring constants) that E has the form 

E(u, C) = f(At* + Bv*) + O,(u, C), u = t -I- iv, (6.37) 

as in (5.16), where the new variables are again denoted by u. 
We note that when /I = a = 1 the placement of u0 at the origin of D, can 

be effected by a linear canonical transformation of R* by some I/E SU(2). 
Indeed, as in Theorem 4.3(a), V induces a rotation of MR by B E SO(3), and 
(4.30) applied to z,, =p,(uO) results in n( V. z,,) = B . n(z,,) = NP = 
(n op,)(O). Proposition 6.3 then shows how a further rotation of MR about 
the NP will provide new local coordinates (again denoted by u = 4 + iv) 
about the origin in D, in which E has the form (6.37). 

In the statement of Proposition 6.3 we let (w,, w2) be local coordinates 
about the NP of MR, where wj =f(w, , w2) is given in terms of (wI , w2) via 
the constraint (4.3), which in the case /I = a = 1 is simply 

w: + w: + w: = (242. (6.38) 

The reduced Hamiltonian K on MR is then related to the extended function 
Ke on R3 - {O} defined in Section 4 by 

K(w, , ~2) = KYwl, ~2 ,f(w, , ~2)). (6.39) 
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where 
w3 =f(w, ) w*) = [(2/q - w; - w:]“‘. 

An analog of this proposition can be found in [2 1, p. 581. 

(6.40) 

PROPOSITION 6.3. In the notation above, assume /3 = a = 1 and that u, = 0 
corresponds to a relative equilibrium of the system in Proposition 6.2. Then 

(6.4 1) 

where VKe(NP) = (0, 0, p). Thus there is an induced rotation of MR about 
the NP by B E S0(3), where B is in the form 4.29(c), such that the 
corresponding induced rotation in the (w,, WJ plane and (& n) plane 
diagonalize the Hessian matrices in (6.41); hence E has form (6.37) in the 
new coordinates. 

ProoJ The Hopf variables ( Wj o 7~ o pa) evaluated on u = < are 

w, = 0, W, = 2(2h - r2)1’2 . c, W, = 2(h - t2), (6.42) 

and evaluated on u = in are 

W, = 2(2h - n2)1’2 . n, w,=o, W, = 2(h - n’). (6.43) 

A direct computation then gives 

cn o P,)* (a/at), = 2 dWww2),, y 

tn o P,)* (a/a), = 2 d%ahw),, . 

A further direct computation shows 

$ (NP) = 
1 

5 I (NP) - p, 

a,f2zw (NJ’) = 
1 2 

af2:L 2 (NJ’), 
I 

$ (NP) = $ (NP) -/L, 
2 2 

(6.44) 

(6.45) 
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Since K o rc op, = E by (6.20), relations (6.44) and (6.45) imply (6.41). The 
remainder of the result then follows since real symmetric matrices can be 
diagonalized by rotation matrices. Q.E.D. 

Remark. The switch in the order of the variables in (6.44) reflects the 
fact that dt; A dn is the symplectic form on D, , and oR given by (4.11) has a 
minus sign in its definition. This is also consistent with the presence of the 
factor I in the calculation of x o p, in (6.15). 

Denote by Hess [K(q)] the determinant of the 2 X 2 Hessian matrix of K 
at q E M,. Theorem 5.6 now gives (a)-(c) of the following result (we no 
longer assume /3 = a = 1): 

THEOREM 6.4. Let adHI = 0 and assume p,(& h, UJ = z,, is a relative 
equilibrium for N (hence for H, + N). Assume w0 = z(z,J is a nondegenerate 
critical point of K on MR , where K is the reduced Hamiltonian corresponding 
to N. Then for sufJiciently small E > 0 we have the following results: 

(a) System (6.32) has a unique periodic orbit II, with energy h 
through the point zJE), with period T(E), such that ZJE) --t z,, and T(E) + 2~ 
as ~1.0. When N=H, and n=(r-2) in (6.33), then PC=& *HE is a 
periodic orbit of (6.31) through the point E . zO(s) with energy E’ . h and 
period T(E). 

(b) ZZ, and P, are elliptic or hyperbolic according as Hess[K(w,)] is 
positive or negative. 

(c) Assume HE (and hence P,) is elliptic and that the function E of 
(6.36) has form (6.37) after u0 has been shafted to the origin of the disc D, 
(the new local coordinates about the origin are again denoted by u). Then on 
conversion of E from form (5.16) to (5.17), the periodic orbit HE (and hence 
P,) is stable provided condition (5.19) holds. 

(d) Let .%~ be a group of transformations of (R4, w) as in Proposition 
3.4 with reduced group %F; acting on (MA, 0,). Assume the Hamiltonian H, 
of (6.33) is fixed by some g E .Y with g*o = fw, and let Yf be the flow of 
Xh,. Then 4(g) . w0 is a nondegenerte critical point of K on MR , and 

g 9 n&i -%I(&)) = YI:,(g * z&)) (6.46) 

is a periodic orbit of Xr,, through the point g . Z,,(E) having the same stability 
status as HE. Moreover, HE will be symmetric wrt g tf and only if w,, is ftxed 
by $(g). Similar statements hold for P, in the case that H of (6.31) (and 
hence H, of (6.32)) isfixed by g. 

Proof: Results (a)-(c) follow directly from Theorem 5.6 on noting that 
the Signum of Hess[K(w,)] is independent of coordinates. Therefore, when u, 
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has been translated to the origin of D, and E has been put into form (6.37), 
we will have sgn{Hess[K(w,)] ) = sgn(AB). 

(d) Equation (6.46) and the assertions concerning nondegeneracy and 
stability type are clear. Now Proposition 3.6 implies that ZZ, is symmetric 
wrt g. If n, were not symmetric wrt g, then g*w = fw implies by (3.6) that 
(6.46) gives another family of periodic orbits (for the same Hamiltonian 
flow) emanating from n,(t; zO) as E increases from zero. This, however, 
contradicts the uniqueness assertion of the implicit function theorem as 
applied in the proof of Theorem 5.6(a), since the new periodic orbits will 
also intersect the disc p,(D,) transversely in a curve emanating from 
~,#a) n 4. Q.E.D. 

Remark a. When g is an antisymplectic involution and n, is symmetric 
wrt g in Theorem 6.4(d), it is traditional to choose the initial points z~(E) in 
the fixed point set of g, which is a Lagrangian submanifold of R4 (see 117, 
271). 

Remark b. For /3 = a = 1 a classification of the possible critical points 
of a polynomial K of degree 2 on the 2-sphere MR is given in [21, 
pp. 67-7 I]. See also [22]. 

Remark c. The “pinched” points of Fig. 1 are poles that do not lie in 
MR but correspond to the a and /3 normal modes of H,. Theorem 6.4(a) 
cannot be applied in these cases to continue the normal modes to a full 
Hamiltonian such as (6.31). However, Liapunov’s theorem does apply, and 
in Section 7.A we will present a reduction version of this result with 
corresponding stability criteria. In all other cases in Fig. 1 we have a = 1 at 
the NP (hence /I/a = integer), and /3 = a = 1 at the SP (hence a//i’ = integer), 
hence Liapunov’s theorem does not apply but Theorem 6.4(a) does. To 
summarize, for the continuation problem, if u0 = 0 we can work with 
(n 0 p,)(O) = NP for a = 1, and use Liapunov’s theorem if a > 1. 

Remark d. The proof of Theorem 6.4(b) shows that the linear stability 
classification of periodic orbits can be made either on MR or on the discs D, 
or D,. Questions of elliptic stability, however, are best posed in terms of the 
coordinates on D, or D, as we have done in Section 5, since the 
reconstructed and perturbed flows are easy to obtain in these coordinates 
(see Theorem 6.4(c) and Sections 7.B and 7.C. Theoretically this could also 
be done by the alternate flow reconstruction in [ 1, pp. 304-305 ]. 

7. APPLICATIONS 

A. 
As discussed in Remark c at the end of Section 6, when /I > a > 1 the 

problem of continuing the normal modes corresponding to those poles not 
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contained in MR (see Fig. 1) cannot be handled by reduction wrt the S’- 
action generated by the flow (4.7). Liapunov’s theorem, however, does apply 
in these other cases, and the following review of the proof (see [ 1, pp. 498- 
4991) shows that this result can be viewed as involving reduction by a 
different S’-action. 

Let H&y) be of class Ck on (R2n, w), with k > 2 and o as in (3.1). 
Assume H has a critical point at the origin with characteristic exponents 

-v,}, where V, and -v, = fll are purely imaginary and 
iyYjj;..j >’ rZti’G integer for j = 2 3 n. Writing v, = iy with y f 0, by a 
liAeair canonical change of variablks ‘ii can then assume H has the form 

H(x,Y)=L,(~,,Y,)+~,(~^,F>+O,(X,Y), (7.1) 

where .+Z = (x2 ,..., x,J, g = (y, ,..., y,), and 

L,(x, 3 Y,) = ww: + Y3 (7.2) 

Moreover, by reversing time (if necessary) we can assume y > 0. Now 
observe that XL, generates a flow giving a free and proper S’-action on 
{R2 - (O,O)} x R 2n-2 for 0 Q t < (2x/y). With L;‘(Z) = C, N S’ x RZnm2, 
the reduced space MR is (ZJS’) N R2n-2, with reduced symplectic form 
o, = CJz2 dxj A dyj. Also, ad,*(ai,) = 0, and the reduced Hamiltonian 
associated to 2, is just K = A, itself. The normal mode in the (x,, y,) plane 
for the quadratic Hamiltonian H, = L, + Ei, projects to the origin of 
MR 2: R2n-2, and this origin is a nondegenerate critical point for K = fi, 
since vj # 0. As we now indicate, this critical point is continued in 
Liapunov’s theorem in essentially the same manner as that in Theorem 6.4. 

Here the analog of the canonical transformation p, of (6.5) is 

p : x, + iy, = (2L/y)“’ iciYA: all other variables are fixed. (7.3) 

In this case (7.1) becomes, after stretching variables (as in the derivation of 
(6.32)), 

(H, 0 p)@, L, $3) = L + A, + O(E). (7.4) 

Notice that (7.4) is periodic in 1 with period (27r/y), and the associated 
differential equations are 

A = 1 $0(E), i = O(E), (d/dt) (; ) = A ( ; ) + O(E), (7.5) 

where A is a (2n - 2) x (2n - 2) constant matrix. If we employ iooenergetic 
reduction on (7.4) with A as the new time variable, then on integrating wrt A 
from 0 to (2n/y) we obtain a mapping 

( x1 1 ,. 1 

1 

Yl 
= ev [P/y) A 1 ( 1 ; + O(E). (7.6) 
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The hypothesis (vj/v,) # integer for j = 2, 3,..., IZ, guarantees that the 
Jacobian matrix of (7.6) at E = 0 does not admit one as an eigenvalue, hence 
the origin can be continued as a fixed point (Z,, 5,) of the mapping (7.6) by 
an argument similar to that in the proof of Theorem 5.5. In the case n = 2, if 
H, = L, + I?, is in form (6.1), then the fixed point is elliptic and Remark d 
following Theorem 5.6 applies to provide a stability criterion. For a concrete 
application see [ 61. 

From the above discussion we see that Liapunov’s theorem can be viewed 
as a case of 0th order averaging in the sense of Section 1; that is, the 
Hamiltonian (7.1) is already in prepared form for a continuation argument 
analogue to that in Theorem 6.4. 

B. 

In this and the following section we study a l-l resonance example, the 
Henon-Heiles Hamiltonian, using first and second order averaging. Here we 
review first order methods contained in [4,21], and extend those results by 
giving a simple geometrical description of the resulting orbits. 

The Henon-Heiles Hamiltonian H, is given by 

HAby) = f 1~1’ + v(x), (7.7) 

where x = (x, , x2), y = (y, , y2) E R 2, and where the potential V is given by 

V(x)= + /XI2 + ix; -x,x;. (7.8) 

(This is equivalent to the Hamiltonian originally studied by Henon and 
Heiles [20] through a trivial canonical transformation that renames 
variables.) If we regard x N x, + ix, and y ?y, + iy2 as being in C, then 
(7.7) remains the same, but (7.8) simplifies to 

V(x) = i 1x1’ + 3 Re(x)3. (7.9) 

From (7.9) the rotational symmetry 

Q : x -+ p43 . x (7.10) 

of the potential in R2 becomes obvious, and the lifted action 

g : (x, Y) + (fk QY) (7.11) 

is a linear canonical transformation on R4 leaving (7.7) invariant. Notice 
that the Hamiltonian is also invariant under the group .Y of Theorem 4.4. 

For fixed h E R the x-plane projection of the energy surface H- ’ (h) c 
C x C is called Hilts region corresponding to h, and simply Hill’s region 
when h is understood. For 0 < h < (6) the region has four components, and 
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FIGURE 6 

the one of interest, that containing the origin x = 0, is sketched in Fig. 6. 
This shrinks to the origin as h 10, and as h T { limits to an equilateral 
triangle whose vertices are critical points of V. We will show that at first 
order averaging (7.7) yields two periodic orbits with continuations at low 
positive energies (see Theorem 6.4) projecting to the curves n, and ZI, of 
Fig. 6. Moreover, we will show these orbits are elliptic stable at these 
energies. 

In Appendix A we use successive applications of Proposition 1.1 to 
calculate the normal form of (7.7) through terms of order 6 wrt Hz. The 
result from (A23) is 

H=HZ+H4+H6+0,, (7.12a) 

where in terms of the Hopf variables (4.2) we have /3 = a = 1 and 

H,=f W,, 

H4=+[7W;-5W:], 

H6=&[-f$W~-&W~W4-~Re(W,+iW,)‘]. (7.12b) 

We refer to H, + H, as the first order average of (7.7), to H, + H, + H, as 
the second order average, and to H as the full Hamiltonian. 

Using p = a = 1 in Theorem 4.2, the reduced Hamiltonians K, and K, 
corresponding to H, and H, are seen to be Kj = K; / MR , j = 1,2, where 

K; = &[7w; - 5(2h)‘], 

K; = &[- g-(2/+ - &(2h) w; - +w; + +w; w3]. (7.13) 

We set Ke=KT+K; and K=K,+K,. 



HAMILTONIAN SYSTEMS 399 

To apply Theorems 4.2 and 6.4 in the case of first order averaging we 
must find all points on the 2-sphere MR at which 

VK; = &(O, w2, 0) (7.14) 

is a normal vector. But this set obviously consists of the two points 
(0, +2h, 0), together with the circle of points on MR, where w2 = 0 (this is 
exactly the “.Y-meridian” introduced in the remarks following Theorem 4.4). 

We begin with an analysis of w, = (0,2/z, 0), which we first rotate to NP. 
Recall from Section 4 and the discussion preceding Proposition 6.3 that this 
can be accomplished by a linear canonical change of variables on R" 
generated by VE SU(2), with induced transformation B E SO(3) on MR 
given by (4.29a) at f = -(n/2). In a neighborhood of NP the expression for 
K, then becomes 

R, = +8[7w: - 5(2h)2] = &[2(2h)* - 7(w: + w;>j, 

where as in (6.40) we have 

(7.15) 

wj =f(w,, w,) = [(2h)* - (WY + w:)]“2. 

A simple calculation then shows 

(7.16) 

Hess[K’,(NP)] > 0, 

hence Theorem 6.4(a) and (b) gives the existence of a family n,(t) = 
Lr,(t; s*h) of elliptic periodic solutions of (7.7) at low positive energies s*h, 
with periods T(E) -+ 27r as E 1 0. Notice that the projection x: C, + MR sends 
zo = cl,/% 0, QJ7;) t o w. = (0,2h, 0), and to n,(t) can be regarded as a 
continuation of the @,-orbit of X”, through E . zo; for this reason we also 
write n,(t) = n,(t; E . zo(s)), where zo(s) -+ z. as E 1 0. 

For each sufficiently small value of the parameter E the orbit n,(t; .s*h) is 
stable. To see this we use (7.15), (6.15), and (6.20) to calculate the function 
E of (5.13) obtaining (up to an additive constant) 

E(u,C)=i(-j)hlul* +&u2zi2. (7.17) 

But then (5.19) is nonzero since E, = E, = 0 and E, = A; hence Theorem 
5.6(c) applies to give the elliptic stability of this family of periodic orbits. 

From Theorem 6.4(d) we immediately conclude the existence of a second 
family n,(t) = n,(f; s*h) = 17,(f, ER l(zo)) of elliptic stable periodic orbits, 
related to the first by 

n,(r; ER ,(zo)) = R, n,(-t; 4, (7.18) 

where R, is as in (4.36). Indeed, we have R,(z,) = (fi, 0.0, -fi) and 
n(R,(z,)) = (0, -2h, 0); hence n,(t) is associated with the nondegenerate 
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critical point #(R,) s w,, = (0, -2h, 0) of K, on MR, where #(R,) is given by 
(4.39b). 

Turning to the positioning of the projections of Z7, and n, in Hill’s region 
(Fig. 6), first note from (7.18) and the definition of R, that these x-plane 
projections must coincide (as sets). Next observe from (4.36) that R, fixes 
zo = (fi, 0, 0, Jil), and from (4.39~) that 4(R,) fixes (0, 2h, 0). Since 
R,oR,=R,oR,, Theorem 6.4(d) implies that both l7, and ZI, are 
symmetric wrt R,, and, as we observed in Remark a following Theorem 6.4, 
their respective “initial points” E . zo(e) and E s R,(zO(e)) may be chosen so 
as to be fixed by R, . Hence these orbits must have x-plane projections 
crossing the x, axis perpendicularly, in agreement with Fig. 6. Moreover, 
there can be only two such crossings in one period, since l7, and n, are 
unique continuations of periodic orbits which have this property (consider 
Hill’s region of the Hamiltonian H,, which coincides with (6.32) at E = 0). 
Finally, since (7.7) is invariant under the rotation g = exp]--i(--2x/3) u,] of 
(7.11), and since (4.29b) implies 

l 

cos(47c/3) 0 sin(47r/3) 
4(g)= 0 1 0 

-sin(47r/3) 0 cos(47r/3) i 
(7.19) 

(which we note fixes both w, and #(RI) . wo), we see by Theorem 6.4(d) that 
the orbits n,(t) and n,(t) are both symmetric wrt g. Hence their x-plane 
projections must be symmetric wrt the rotation G of (7.10) as depicted in 
Fig. 6. (The signs in (7.19) are reversed from (4.29b) since R in (7.10) is a 
counterclockwise rotation.) 

It remains to show that the projections of l7, and 17, do not intersect the 
boundary of our Hill’s region. However, if this were the case, then at such a 
point the energy relation f ] y 1’ + V(x) = h would force the velocity y to 
vanish (hence the name zero-velocity curve for the boundary). But the 
equations are time-reversible (being equivalent to f = -V,), and so orbits 
with projections touching the boundary are precisely the orbits symmetric 
wrt R r . Since this is not the case with fl, and 27, (recall that w, was not 
fixed by #(RI)), our picture is complete. 

As previously noted, the remaining critical points of K, comprise the .4=- 
meridian of MR. However, these are all degenerate, and an analysis as above 
is doomed to fail. In Section C we show how these can be handled using the 
second order average (H, + H, + H,) of (7.7). 

In view of Fig. 6, we refer to ZZ, and ZZ, as the “central periodic orbits” of 
the Henon-Heiles Hamiltonian. We now give a brief discussion of the 
corresponding orbits in two additional Hamiltonians 

H,(x,Y)=~~Y~~+~Jx~~-x~x:, (7.20) 

H,(x, y) = 4 I yj2 + + [xl2 - fx;x;. (7.21) 
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Numerical work on the Hamiltonian H, in [ 111 shows the existence of 
two elliptic stable central periodic orbits at low positive energies 
corresponding to IT, and I7,. The elliptic stability was verified in [21], and 
the methods of the present paper show that the orbit projections cross the x1 
axis perpendicularly and stay away from the zero velocity curve. 

The Hamiltonian H, was briefly discussed in 1201, and central periodic 
orbits at all positive energies were constructed by geometrical methods in 
(8, Sect. 81. Using the results of this paper we can show that at low positive 
energies these orbits are hyperbolic, in contrast with HA and H,. However, 
the orbits will still have x-plane projections intersecting the x1 axis perpen- 
dicularly, will stay away from the zero velocity curve, and will be invariant 
under rotations through an angle (7r/2). 

As with H,, the central periodic orbits of HA can be shown to exist at all 
positive energies by simple geometrical arguments [S]. However, numerical 
evidence (see [24]) indicates they become hyperbolic as h increases. The 
existence of these orbits in H, for all positive energies has yet to be 
established. 

C. 

We now study the Henon-Heiles Hamiltonian (7.7) with regard to second 
order averaging. From (7.13) we have 

VKe = V(K: + K;) = + +(2w, w), [ 2 - (h/6)] w2, w: - w:), (7.22) 

which is normal to MR = M,(h) precisely at the points 

(0, *% 0) (7.23a) 

e, = (0, 0,2h), e2 = 4(g) e, y e3 = 4(g) e2 (7.23b) 

h, = (0, 0, -2/z), 4 =4(g)kl, h, = Q(g) h, l 
(7.23~) 

where o(g) is given by (7.19). Since the critical points (7.23a) were handled where o(g) is given by (7.19). Since the critical points (7.23a) were handled 
in Section B, we concentrate on those in (7.23b) and (7.23~); these lie on the in Section B, we concentrate on those in (7.23b) and (7.23~); these lie on the 

5 5 

h4 h4 

FIGURE I FIGURE I 



402 CHURCHILL, KUMMER, AND ROD 

.%-meridian as shown in Fig. 7. In view of the symmetry of (7.7) wrt g, by 
Theorem 6.4(d) is suffices to consider only e, = NP and h, = SP. We will 
show these respectively generate elliptic stable and hyperbolic families of 
periodic orbits. We remark that our subscripting has been chosen so as to 
correspond with [8]. 

Stretching variables by z + EZ, let 

H,(z) = EC2H(&Z) = H, + &2[H, + E2H4] + O(2) 

and K, = K, + e*K,. Using (6.41) and (7.22) we calculate 

(7.24) 

Hess[K,(NP)] = (&)’ (F)’ i (12 + c*(-h + 24h*)) . (4c*(h + h’)} > 0 

(7.25) 

for E > 0 sufftciently small; hence NP is elliptic. 
To study SP we rotate that point to NP using (4.29b) at t = rr, obtaining a 

new Hamiltonian Z?, with 

Hess[gJNP)] = (&)’ (q)* a { 12 - c*(h + 24h2)} . (-4c*(h + h*)}, (7.26) 

hence the SP for K, is a hyperbolic point for E > 0 sufficiently small. By 
symmetry {e,, e,, e,} are elliptic points, and {h,, h,, h6} are hyperbolic 
points for K, on M, when E > 0 is sufficiently small. 

The critical points (7.23) of K, on MR correspond to periodic orbits of 
(H, + E*H, + c4HS); we now continue these orbits to the full Hamiltonian 
(7.7) at low positive energies. Applying isoenergetic reduction at energy h to 
(H, o p,), where H, is given by (7.24), we obtain the time-dependent one 
degree of freedom Hamiltonian 

G= (E2B, + E4[B2 -B,@B@L)] + O(E5)}L,,h, 

where the irrelevant constant has been dropped, and where 

(7.27) 

B, = (H, 0 p,) = & [ 14L<* - 7t4 - 7<*~* - 5L*], B, = (H, 0 p,). (7.28) 

Note that at L = h the B, term is degenerate at the origin, reflecting the 
associated degeneracy of K, at NP. To circumvent this difficulty we scale 
r- E< in the equations associated with (7.27). Since the Hopf variables 
(Wi o p,) are given by (6.15) with /3 = a = 1 and (IV, o p,) = 2L, it is easy 
to compute the effect of this scaling; in fact we obtain an equivalent 
Hamiltonian system with Hamiltonian G(& q; A) = E - ’ G(E{, q; A), i.e., 

G = c3 [a h<’ + $ h2q2 - qhq4 - &<‘q* + +j”] + O(c4). (7.29) 

For the periodic orbit associtated to the critical point of K, at SP, we 
again rotate SP to NP by (4.29b) at t = rr, which changes W, and W, to 
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their negatives in (7.12b). Performing the above calculations in this case and 
again stretching variables <-+ et, the analog of (7.29) becomes 

G* = c3[;ht2 - ; h*q* + qhq4 - &~*r,+ - +$I + qE4). (7.30) 

We do not appeal directly to Theorem 6.4(a) and (b) due to the additional 
scaling <+ E<, although with appropriate arguments this could be done. 
However, by Theorem 5.6(a) and (b) we obtain one family each of elliptic 
(from (7.29)) and hyperbolic (from (7.30)) p eriodic orbits at low positive 
energies for the Henon-Heiles Hamiltonian (7.7), respectively associated to 
the nondegenerate critical points NP and SP of K, on MR. 

For the elliptic (NP) case, the substitution <-+ (B/A)“4 a < and 
v -+ (A/B)“” . q with A = ;h and B = 7/z* in (7.29) gives a new Hamiltonian 
of the form (5.13) with E in the form (5.17) given by 

,Q, Q) = #“/3)“’ Iu(* + &[- g-u4 + TU3d- +u*zi* 

+ +-uu3 - $u4] + O,(u, U), (7.31) 

where u = r + iv. In terms of (5.19) we have E, = E, = 0 and E, = - s-; 
hence for small E > 0 Theorem 5.6(c) shows that the above elliptic orbits 
associated with NP are stable for (7.7) (the flow of (7.31) is conjugate to the 
flow of (7.7) via the above series of “stretching” transformations). 

We now concentrate on the placement of these continued orbits in Hill’s 
region for (7.7). First note that e, and h, are the only points in Fig. 7 fixed 
by both d(R,) and #(R,) of (4.39). These points correspond to the normal 
modes of H, as discussed in Remark d following Theorem 4.4. All the points 
{e,, e2, e3, h,, h,, h,} are fixed by #(R i), hence correspond to time- 
symmetric periodic orbits of (7.7) whose x-plane projecti.ons touch the level 
curve V= c*h twice (brake orbits in the sense of 1391). We also have 
#(R,) h, = h, and #(R,) e2 = e3. 

Recalling that our coordinates are (x, , x2, y, , v2) 2 (z, , z2) = z with 
zj=x,+iyj, for 

z, = (@, 0, 0, O), z, = (0, @I, 0, O), z, = (0, 0, 0, fi), (7.32) 

we have 

NP = n(Z,), SP = 7r(ZJ = n(Z,), (7.33) 

where {Z,, Z,} are fixed by R,, and {Z,, Z,} are fixed by R,. The 
continuations to (7.7) at energies c*h of the periodic orbits for (H, + c2H4 + 
c4H6) through these points are then symmetric wrt the corresponding action 
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FIGURE 8 

R, or R, by Theorem 6.4(d). By Remark a following Theorem 6.4, we may 
assume initial conditions 

ZZ(E) = (b*(e), bz(E), 0, o>, (7.34) 

Z&l = (c,(e)* 030, cz(e)), 

for our periodic orbits with (Z,(E), Z2(s)} fixed by R,, and {Z*(s), Zj(s)} 
fixed by R,. Since we have stretched variables, the entries of Zj(s) are O(E) 
and E-’ . Zj(s) + Zj as E 10. Note that the x, component of Z,(E) has been 
set equal to zero since Z, is fixed by both R , and R z. 

Thus for (7.7) at energies c2h the x-plane projection of the elliptic stable 
periodic orbit n, associated to e, and the hyperbolic orbit II4 associated to 
h, must appear as in Fig. 8 (where the projections are also denoted by L’, 
and 17,). Now Z7, projects to a gradient line of potential (7.8), and Z7, 
projects to a brake orbit perpendicular to the x, axis. In the Appendix to 
[8, Sect. lo] it is shown that C,(E) > 0 for E > 0 and that n4, when traversed 
with i, =y2 > 0, has positive curvature as a curve in the x plane (except at 
its endpoints on V= c2h where the curvature is undefined); this explains the 
“bow” shape of II,. 

Using the symmetries g and g2 of (7.1 l), we see that at energies c2h with 
E > 0 small (7.7) admits elliptic stable periodic orbits II, and f13, respec- 

FIGURE 9 
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tively associated to e2 and e3, and hyperbolic periodic orbits l7, and n,, 
respectively associated to h, and h,. Using the rotations Q and R* of (7.10), 
the x-plane projections of these periodic orbits are sketched in Fig. 9. The 
periodic orbits ZZj, j = 1, 2 ,..., 8, can thus be identified with the periodic 
orbits for (7.7) that were geometrically constructed in [8, Sect. 31, except 
that the labelling for 17, and n, has been interchanged. 

The Hamiltonians HB and H, of (7.20) and (7.21) also have “normal 
mode” periodic orbits analogous to n, and lI, in Fig. 8, but of different 
stability types. In fact, for HB both orbits are hyperbolic at low positive 
energies (see [ 11, 21 I). This can be shown using lirst order averaging, or, in 
the case of the continuation of the a normal mode in the z, plane, by a direct 
computation of the eigenvalues of the linearized Poincari mapping along the 
orbit (see also [8, Sect. 81). For H, the two analogs of ZZ, and fl, are elliptic 
(stable) at low positive energies [lo], and thus H, , H,, and H, provide 
examples of all three possible types of stability behavior for the continuation 
of normal modes in two degree of freedom Hamiltonians. We should note 
here that generically Hamiltonians of form (6.31) will admit two elliptic 
periodic orbits at low positive energies (31. 

For information on the continuation of the periodic orbits of (7.7) to 
higher energies we refer to [8, Appendix B ]. 

APPENDIX A: THE NORMAL FORM COMPUTATIONS 

We outline the computations involved in converting the Henon-Heiles 
Hamiltonian (7.7) to normal form through terms of order 6. However, it will 
be useful to begin at a more general level, assuming as in Section 1 a 
positively graded Lie algebra rP = @,“=* Yr with an element 

H=GH, (AlI 
r=2 

in 9 having the property that Hz splits. As in Section 1 we subscript 
HrEPr:, but now we write H,=H,.+fi,., where A,.EN, and fi,ER,. It 
will also be notationally convenient to replace &i(G) by [Kj, G], but we 
warn the reader that this notation does not respect the Jacobi identity. We 
also indicate [K’, G] E 4p, by subscripting [K’, G],.. 

If (Al) is in normal form wrt H, through terms of order (m - 1) > 2, 
where m < 6, and 

K, = I-l?,,, = (cz~,~ ( R,) - ’ (Z?,,,), (A21 
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then elaborating on the proof of Proposition 1.1 we obtain 

expWKmWi) 

= H, +H3 +H, +H, +H, 

+ FnI~H21rn + Wm,H31m+1 + [Km, HJ,+~ + [Km, Hslm+3 + 
+f[K:,,H,l,,-,+$[K~,H,l,,-,+f[K~,H,l,, 
+ t Wi,, HA,z--4 + i [K;v H,l,,-, 
+ +dK4,~ H&,--6 
+ {terms in 9$,j 2 7). 

However, by (A2) we have [K,, e21rn = -fi,, and a simple induction 
argument gives [Kj,, H,] = -[Kj,- ‘, H,]. This simplifies the formula to 

evWK,,,)(W 

= H, + H3 +H, +ff, +H, 

-I?, + IKm~H3lmt, + lKm~H~lm+~ + bL~H,lm+, 

-tlK,,1?,1,,-,+QIKt,,H,l,,-,+~[Kt,,H,l,, 
- d[Ki,, @A,-~ + Qb Pi,, H313rnp3 
- iWC~ Rl11&?-6 
+ {termsin$,j>7}. (A3) 

Applying (A2) and (A3) to (Al) in the case m = 3. we conclude that the 
normal form of (Al) wrt H,, through terms of order three (with all terms 
through sixth order included) is 

Hc3’ = exp(adKl)(H) = H, + fi3 + Hi-‘) + Hi-‘) + Hc’ + . . . , 

where 

Hi3’ = H, + 5 [K,, if?,], + [K, fi3],, 

Hi3’=H5+ [K,,H,],+t[K:,A,],+~[K:,~,], 

Hk3’=H,+ [K,,H,],+f[K:,H,],+~[K:,Ei,],+%[K:,ll,],. (A4) 

For the Henon-Heiles Hamiltonian (7.7) this simplifies considerably. 
Indeed, in that case we have 

H3=fi3, A,=o, Hj=O, j24, K,=rH,, (A.5 1 
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and with these assumptions (A4) collapses to 

where 

~(3’ = exp(adK3)(H) = H, + Hi-‘) + Hi3’ + Hr’ + * *. 3 

H$3’=f[K,,@,], 

H:“=+[K:,&], 

Hi3’=;[K:,Z?3]6. Gw 

We next apply (A2) and (A3) to (A6) in the case m = 4, hence 

K, = rI?i3’ = fT[K,, H,];. (A7) 

We conclude that the normal form of (Al) wrt H, through terms of order 
four (with all terms through sixth order included) in the case (A5) is 

Ht4’ = exp(ad,l)(H’3’) = H, + @) -t Hy’ + Hr’ + . . . , 

where 

I?:~)= ;[K~, H,]; 

H’4’ = H’3’ 5 5 

Hc’ = Hk3’ + (K4, fi:“‘] + + [K4, I?:“‘]. (A81 

But observe that Lemma 4.1 in the case of l-l resonance implies 

Thus 

H’4’ = g(4) 5 5 f $4’ = 5 0 * (A9) 

K = ,fi’“’ 5 5 = rH’4’ 5 5 (A101 

and applying (A2) and (A3) to (A8) at m = 5 gives the normal form of (Al) 
wrt H, through terms of order five in the case (A5) (with all terms through 
sixth order displayed) as 

H”’ = exp(adK5)(H’4’) = H, + fii3) + Hr’ + -. - , with H, ‘5) = Hc’, 

(A.1 1) 

where we have used the equality H, (4) = fii3) of (A8). However, using (A8) 
and (Al 1) we have 
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and we can easily check that [K,, @,“‘I,^ = [K,, fii3’], = 0. We can therefore 
summarize our calculations as follows: The normal form we want is given in 
terms of (A6) by 

ffc6’ = H, + &” + fji4’ + . . . , where fly’ = X?iy) + 4 [K4, a\“‘];. 

G412) 

Notice that although K, is needed to arrive at this form, it plays no role in 
the expressions we want, and will therefore not be computed. 

To actually perform the computations introduce . 

z=x, t ix,, w=y, + iy2 

and their associated derivations 

In this framework wt 

+=+-(&--if-), &=+($-t-i&), 
a 1 

2%=-i- ay, ay, * ( 
L+jL 

1 

check that 

H, = ;(jzI’ t I WI’>9 

af &Y af a&T --.---.- 
I az a* af aw ’ 

that 

Lfig1=2 

and hence that 

I 
ag - ag - as ag ad,,(g)= w-t w-=-z--=-z- . 
a~ a~ a~ aw i 

Also, notice that the Hopf variables (4.2) become 

W, = Im(z*) + Im(w’), W, = 2 Im(z@), 

W, = Re(z*) t Re(w*), w4=/z(* t(w12. 

Now write the HCnon-Heiles Hamiltonian (7.7) as 

H = 4 W, t Re(f ), f= 323, 

and use (A17) to check that 

K,=-+Re(g), g = (z’w + 3 w’). 

(A13) 

(A14) 

(Al51 

G416) 

(Al7) 

(A181 

(Al9) 

(A201 
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A straightforward computation then gives the terms of (A6), decomposed as 
needed in (A 12), as 

ifi3’ = &(7 w; - 5 w;>, 

Hf7:“‘=-:{; IzI”-2 /wj4++ I.@ [WI2 +&kq’+ (cv)2)}, 

H\“=&Re{(z’+ 2w2)(z2 + w2)Z-22~’ ]w]‘) =E?i3), 
04211 

fi~3’=-~Re(W4+iW,)3-&W~-~WW:W4. 

Next, using (A7) we can check that 

K, = a Re(k), k = (ffw lzl* + ;zC Iwj’). 6422) 

From (A21) and (A22) we then compute (Al2), arriving at 

fii3) = y&(7 w: - 5 w;>, 

APPENDIX B: REMARKS ON THE HBNON-HEILES HAMILTONIAN 

The periodic orbits l7,,..., Z7, of the Henon-Heiles Hamiltonian (7.7) 
sketched in Figs. 6 and 9 can be shown to exist at all energies 0 < h < 2 by 
simple geometrical arguments [8, Sect. 31; the present paper has shown their 
stability status at low energies. In Appendix B we wish to tie in these facts 
with other known results, both analytic and numerical. 

In their paper [20] introducing (7.7), Henon and Heiles used the inter- 
section of the (xi, y,) plane with the energy manifold H = e*h as a cross 
section of the flow and numerically integrated along orbits to give the 
Poincare map on this cross section. The pictures they obtained in [20] have 
been well publicized (e.g. [29, pp. 16-19; [2, p. 92; 1, pp. 6 1 l-6 12]), and at 
low energies can be explained in terms of the results of this paper. Indeed, at 
any sufficiently low positive energy they found Fig. 10 in the (x, ,y,) plane 
(which we have adjusted to our coordinate system), which has 17, as 
boundary. We note four elliptic points and three hyperbolic points, and with 
n, added this gives precisely the eight periodic orbits found in Section 7.B 
and 7.C as we have shown by the use of symmetries. 

As the energy is increased, the simple picture in Fig. 10 disintegrates, and 
single orbits repeatedly intersect the (x, , y,) plane so as to cover nearly the 
entire picture. This is no doubt caused initially by the transversal intersection 
of the stable and unstable manifolds of the hyperbolic periodic orbits n,, 
Us, and II,, but this fact awaits proof (see [ 241 for numerical verification of 
this phenomenon). What has been established rigorously is that ZZ, , l7*, and 

505/49/3-6 
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x, axis 

FIGURE 10 

17, pass through infinitely many transitions between ellipticity and hyper- 
bolicity as h T i [93, and limit to orbits homoclinic to equilibrium points at 
h = 6. (The techniques of [9, Sect. 51 sometimes apply for a stability 
analysis as h 1 0, but they failed to prove ellipticity of R, for small positive 
energies due to a degeneracy similar to the one encountered at NP for first 
order averaging in Section 7.B. Numerical evidence of (241 (also private 
communication of John Greene) suggests that l7, and II, switch to hyper- 
bolic status much below energy Q. Similar phenomena appear in the 
Hamiltonians HB and H, of (7.20) and (7.21). 

For h > { the periodic orbits n, , n,, and f13 do not exist, but are replaced 
by orbits escaping to infinity. However, in [8] it was shown that l7, and n, 
exist at all energies h > 0. More recently [ 241 has observed that f14, n, , and 
I76 also exist at all energies h > 0, and it is conjectured from numerical 
evidence of [24] that they remain hyperbolic. We now show the existence of 
R,, n,, f16 at energies h > i, recalling that [8] has already established their 
existence for 0 < h < 2. Using symmetriy it is enough to work with ZZ,. 

At energies h > 6 the level curve V= h has three branches arranged 
symmetrically as in a monkey saddle (see Fig. 11). The projected periodic 
orbits lIj, j = 1,2,3, at energies 0 < h < h lie along gradient lines Gj of the 
potential V, where G, is the x, axis and G, intersects V= h at p. (These 
gradient lines are the projections of orbits with energy h > i.) In 17,341 it is 
shown that there is a hyperbolic periodic orbit n whose x-plane projection 
lies to the left of G, and G, and intersects two branches of V= h at r and Y’ 
as in Fig. 11. Let M be the open region in Fig. 11 bounded by these two 
branches of V= h, Z7, G,, and G,. Now consider orbits (i.e., solutions x(t) 
of k = -I’, , where x = (x, , x2)) dropping from that branch of V = h above 
the xi axis from points in the open interval (r, p) on V = h. Such orbits start 
out with zero velocity on V= h, and in (7, Sect. 5) it is shown that they 
leave the region M by crossing G, or G,, never crossing ZZ in this time 
interval. We claim that after leaving Y= h such orbits havefirst intersection 
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FIGURE 11 

with the X, axis at points 4 with x,(q’) < 0. The argument is similar to the 
one in the appendix of [8, Sect. IO], and so will only be sketched. 

First recall that orbits dropping from V= h are time reversible, and so if 
our claim is false, then some such orbit as in Fig. 12 can be regarded as 
entering the region A4 at a point s’ on G, with x2@‘) > 0 as shown, and then 
rising up to a point s on V= h in the interval (r,p). We first assume 
xz(s’) > 0. But then with 

J== 
0 1 

( 1 -1 0 

the curvature k(t) = (V,, Ji) ]1(-3 (see 17, Sect. 21) of the orbit along this 
segment must be positive at s’. By standard arguments in [7] this curvature 
must be negative when the orbit crosses the equilateral triangle defined by 
the level curves V = b, since otherwise the velocity vector i =y could not 
rotate clockwise in the region above V= i so as to allow the orbit to meet 

GI 

FIGURE 12 
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FIGURE 13 

V= h orthogonally at s. It follows that as the orbit rises from s’ there must 
be a first point s” below I/= i at which the curvature passes from positive to 
negative (or zero) values. But using [ 8, Formula (10.3), p. 1291, which in 
this region gives an inequality >O, we can show that at s” the curvature must 
pass from negative to positive values as the orbit rises, hence we have a 
contradiction. If the orbit rises from the origin to a point in the interval (r,~) 
on V= h, then some nearby orbit through a point s’ on G, with x,(s’) > 0 
must come near I’= h and go through the above curvature changes, and 
hence this case is also impossible (see 18, Sect. lo] for a similar argument). 
Thus our claim has been established. 

Since n is periodic, orbits dropping from points in (r,~) on V = h near r 
cross the x, axis many times before leaving the region M. Hence there is a 
maximal open interval (q,p) of points on V= h (where q is to the right of r 
in Fig. 13) having the property that orbits dropped from this interval cross 
G, to the left of the origin only once before leaving the region M. Then the 
orbit falling from q must pass through the origin as in Fig. 13. Measuring 
angles counterclockwise from G,, note that the orbit along G, dropping from 
p has first intersection with G, in an acute angle, whereas that from q results 
in an obtuse angle. By continuity in initial conditions, there is an orbit 
starting at a point u on I’= h between q and p that intersects G, in a right 
angle, and by symmetry about G, this must be f16. This argument is valid at 
all energies h > 2. 

For a more complete discussion of the Henon-Heiles Hamiltonian and 
comparisons with the Hamiltonians H, and Hc of (7.20) and (7.21) see [8]. 
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