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Abstract

We recast Selinger’s CPM-construction of mixed states completely positive maps [11] as an axiomatization
of maximally mixed states. This axiomatization also guarantees categories of completely positive maps
to satisfy the preparation-state agreement axiom of [3], and admits a physical interpretation in terms of
purification of mixed states and CPMs. Internal traces, which are crucial in quantum information theory,
are the adjoints to these maximally mixed states.

Keywords: †-compact category, completely positive maps, purification, internal trace.

1 Introduction

In [11] Selinger proposed an intriguing construction of mixed states and completely
positive maps given any †-compact category representing a semantics for pure state
quantum informatics in the sense of Abramsky and the author [1,2]. Conceptually
speaking, in Selinger’s construction an ancillary system is introduced in such a
way that the distinct possible interactions between pure quantum channels and this
ancillary system exactly give rise to all CPMs, and hence also all mixed states, when
considering their preparation procedures as a special case of quantum channels.

Since for each †-compact category Selinger’s construction provides another †-
compact category, it doesn’t truly provide a profound structural grasp on quantum
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mixedness in the usual axiomatic sense. In this paper we observe that an (ad-
mittedly quite minor) adjustment enables this construction to be recast as a true
axiomatization. Moreover, this adjustment exactly imposes the preparation-state
agreement axiom of [3] on the category of CPMs, that is, it explicitly requires that
if two preparation procedures of pure states coincide then the resulting pure states
should also coincide — note that while for FdHilb the category of finite-dimensional
Hilbert spaces and linear maps CPM(FdHilb) does satisfy this requirement, for
C an arbitrary †-compact category CPM(C) doesn’t (cf. [3]+[11]).

Let’s change perspective now. Given a †-symmetric monoidal category [11],
passing to a †-compact category adjoins and hence axiomatizes Bell-states [1,2],
generating at its turn all entangled states and multi-partite operations. In the same
vein, in this paper we adjoin and hence axiomatize maximally mixed states, generat-
ing mixed states and CPMs. Moreover, the adjoints to the maximally mixed states
provide and hence axiomatize the internal traces, which, rather than the Joyal-
Street-Verity (JSV) partial traces [7] which in a †-compact category canonically
arise as

TrCA,B(f : C ⊗ A → C ⊗ B) :=

λ†
B ◦ (�1C� ⊗ 1B)† ◦ (1C∗ ⊗ f) ◦ (�1C� ⊗ 1A) ◦ λA : A → B ,

play a crucial role in quantum information theory. To our knowledge, the need for
an abstract notion of internal trace has so far only been indicated by Delbecque in
[5], motivated by the fact that while in Selinger’s construction they arise from an
underlying JSV-trace in some other categories they enjoy an autonomous existence.

This same idea can also be implemented at the level of graphical calculus. While
the passage from †-symmetric monoidal to †-compact introduces for each type a new
primitive ingredient, e.g. ‘pink triangle’ in [4], which is subject to a yanking axiom,
here we again introduce for each type a new primitive ingredient, which we will refer
to as ‘black triangle’, which is again subject to some axiom. It remains to be seen
how (dis)advantageous this graphical presentation is as compared to Selinger’s, but
it does seem to have advantages when graphically trying to conceptualise the messy
zoo of all recently proposed quantum informatic quantities (e.g. [9]).

Finally, the notion of purification of mixed states and mixed channels, which
plays an important role in the quantum information theory literature (e.g. [8,10]),
provides a simple physical interpretation for our adaptation of Selinger’s CPM-
construction.

2 Denoting types and variances

For the basic definitions of †-compact categories and their interpretation as se-
mantics for quantum mechanics we refer to the existing literature [1,2,3,11] and
references therein. We will refer to †-symmetric monoidal categories as (⊗, †)-
categories, to †-compact categories as (⊗, †, �1�)-categories, and to the categories
which in addition to (⊗, †, �1�)-categories also contain maximally mixed states as
(⊗, †,⊥)-categories (see Definition 3.1 below).
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When expressing naturality we will use indices on objects to refer to the involu-
tions (−)†, (−)∗ and (−)∗ which alter the variance in that variable e.g. in the case
of (⊗, †, �1�)-categories

C(I, A∗ ⊗ B) � C(A, B) � C(A∗ ⊗ B†, I)

stands for commutation of

C(I, A∗ ⊗ B) �� C(A, B)
�� C(A∗ ⊗ B, I)

C(I, C∗ ⊗ D)

(f∗ ⊗ g) ◦ −
�

�
� C(C, D)

g ◦ − ◦ f

�

�
� C(C∗ ⊗ D, I)

− ◦ (f∗ ⊗ g†)

�

and hence in ordinary compact closed categories where we have

C(I, A∗ ⊗ B) � C(A, B) � C(A ⊗ B∗, I)

the ∗-symbol now also specifies alteration of the variance (besides merely assigning
the dual object). The same convention applies to typed expressions since f � : A� →
B� stands for f � ∈ C(A�, B�), and we can compress the size of the expression
f � : A� → B� by setting f �

A�→B� . Dirac notations for states |ψ〉 and co-states 〈ψ|
respectively arise as ψI→A and ψ†

A†→I
so our notation is in fact a refinement of

Dirac’s by providing explicit types and additional data on variances.
When setting C := A, D := C, f := 1A and using compositionality [1]

g := λ†
C ◦ (�1B∗� ⊗ 1C)† ◦ (1B ⊗ �g�) ◦ ρB : B → C

in the left square of the above diagram we obtain a natural propagation of compo-
sition diagram

C(A, B) × C(B, C)
− ◦ −� C(A, C)

C(I, A∗ ⊗ B) × C(I, B∗ ⊗ C)

�
�

−�−
� C(I, A∗ ⊗ C)

�
�

(1)

where

�f���g� := (1A∗ ⊗ λC)† ◦ (1A∗ ⊗ �1B∗� ⊗ 1C)† ◦ (�f� ⊗ �g�) ◦ ρI

i.e. we obtain a CUT-like composition (cf. [1]).

3 Maximally mixed states, internal trace, purification

The following definition introduces maximally mixed states (⊥-states) as the gener-
ator of mixedness, in analogy to �1�-states constituting the generator of entangle-
ment.
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Definition 3.1 A ⊥-structure on a (⊗, †)-category C comprises

(i) a maximally mixed state ⊥A : I → A for each object A which moreover satisfies
⊥I = 1I and ⊥A⊗B = (⊥A ⊗⊥B) ◦ λI,

(ii) an all-objects-including sub-(⊗, †)-category CΣ of pure states which comes
equipped with a �1�-structure,

which are such that for all f, g ∈ CΣ we have

f ◦ f † = g ◦ g† ⇐⇒ f ◦ ⊥dom(f) = g ◦ ⊥dom(g) .(2)

In words, axiom (2) states when two mixed states f ◦ ⊥dom(f) and g ◦ ⊥dom(g)

obtained by acting with pure operations f and g on a maximally mixed state ⊥
coincide. There are two important special cases. i. Setting dom(f) = dom(g) := I
in axiom (2) and using ⊥I = 1I we obtain

ψ ◦ ψ† = φ ◦ φ† =⇒ ψ = φ(3)

i.e. the preparation-state agreement axiom [3]. ii. Setting g := 1codom(f) in axiom
(2) we obtain

f ◦ ⊥dom(f) = ⊥codom(f) ⇐⇒ f ◦ f † = 1codom(f)(4)

which expresses under which pure operations the maximally mixed state remains
invariant, in particular including all unitary operations. Also, from naturality of
λA, ρA, σA,B, αA,B,C and their coherence, together with ⊥A⊗B = (⊥A ⊗ ⊥B) ◦ λI

and ⊥I = 1I we obtain

⊥I⊗A = λA ◦ ⊥A ⊥B⊗A = σA,B ◦ ⊥A⊗B ⊥(A⊗B)⊗C = αA,B,C ◦ ⊥A⊗(B⊗C) .

Definition 3.2 In a (⊗, †,⊥)-category the partial internal trace is the map

trCA,B : C(A, C ⊗ B) → C(A, B) :: f → λ†
B ◦ (⊥†

C ⊗ 1B) ◦ f

for every three objects A, B and C, and the full internal trace is the map

trC : C(I, C) → C(I, I) :: ψ → ⊥†
C ◦ ψ

for every two objects A and B.

Somewhere in the middle between the partial and the full trace we encounter
the cases

t̃r
C
A : C(A, C) → C(A, I) :: f → ⊥†

C ◦ f

and

trCA : C(I, C ⊗ A) → C(I, A) :: Ψ → λ†
A ◦ (⊥†

C ⊗ 1A) ◦ Ψ .

Definition 3.3 In a (⊗, †,⊥)-category define a purification of an operation f : A →
B to be a pure operation g : A → C⊗B (i.e. in CΣ) which is such that f = trCA,B(g).

An operation is purifiable if it admits a purification. A purifiable operation
can (and usually does) admit many different purifications, even many different
purifications of the same type. A special case of purifications are purifications
Ψρ : I → C ⊗ A of mixed states ρ : I → A, which play an important role in the
standard quantum information theory literature.
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Next we generalize the canonical JSV-traces which exist in (⊗, †, �1�)-categories
by relaxing the unit of compactness �1A� : I → A∗⊗A to the name �f� : I → C⊗A

of arbitrary morphisms f : C∗ → A, or equivalently, by compactness, to arbitrary
bipartite states Ψ : I → C ⊗ A.

Definition 3.4 Given Ψ : I → C ⊗ A in a (⊗, †,⊥)-category the Ψ-trace is

Tr(Ψ) : C(A ⊗ E,A ⊗ E′) → C(E,E′) ::

f → λ†
E′ ◦ (Ψ ⊗ 1E′)† ◦ (1C ⊗ f) ◦ (Ψ ⊗ 1E) ◦ λE .

Denote by ϕρ : C∗ → A the pure operation which is such that �ϕρ� = Ψρ, where
Ψρ is a purification of a mixed state ρ. Below read “ Ψρ” as “some purification of
ρ ”, with obvious analogue for “ϕρ”, to which we, in the vein of †-compactness, will
also refer to as a purification of ρ.

The following result provides a physical interpretation for axiom 2.

Proposition 3.5 With the assumptions of Definition 3.1 the following are equiva-
lent :

i. axiom (2),

ii. for all purifiable ρ, ρ′ : I → A we have

ϕρ ◦ ϕ†
ρ = ϕρ′ ◦ ϕ†

ρ′ =⇒ ρ = ρ′ ,

iii. for all purifiable ρ, ρ′ : I → A we have

Tr(Ψρ) = Tr(Ψρ′) =⇒ ρ = ρ′ .

Proof: We have i ⇔ ii by the definition of ϕρ and ii ⇔ iii since by

Tr(Ψρ) = λ†
E′ ◦ (�1A� ⊗ 1E′)† ◦ ((ϕρ ◦ ϕ†

ρ)
∗ ⊗−) ◦ (�1A� ⊗ 1E) ◦ λE

and ϕρ ◦ ϕ†
ρ = Tr(Ψρ)(σA,A) it follows that Tr(Ψρ) and ϕρ ◦ ϕ†

ρ are in bijective cor-
respondence. �

The last implication expresses that Tr(Ψρ) does not depend on the particular
choice of purification. This for example implies that Schumacher’s [10] entanglement
fidelity of a state ρ with respect to channel/operation f : A → A, in our language
defined as Tr(Ψρ)(f), does not depend on the “particular details of the purification
process”.

4 Properties of purifiable operations

Denote by Cpurif the ‘(⊗, †, �1�,⊥)-category’ of all purifiable operations (see Propo-
sition 4.1 below).

Proposition 4.1 In a (⊗, †,⊥)-category C the �1�-structure of CΣ and the fact
that CΣ satisfies the preparation-state agreement axiom lift to Cpurif , which also
inherits the ⊥-structure from C.
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Proof: One easily verifies that ‘purifiability’ is closed under ◦, ⊗ and †, that
operations in CΣ are trivially purifiable, and in particular that �1A� is a purification
of ⊥A. Hence the only non-trivial part of the proof constitutes satisfaction of
preparation-state agreement. It suffices to show that for all ρ, ρ′ : I → A we have
ρ⊗ ρ∗ = ρ′ ⊗ ρ′∗ ⇒ ρ = ρ′ (see [3]). For ϕρ (resp. ϕρ′) a purification for ρ (resp. ρ′)
we have that ϕρ ⊗ (ϕρ)∗ (resp. ϕρ′ ⊗ (ϕρ′)∗) is a purification of ρ⊗ ρ∗ (resp. ρ′⊗ ρ′∗)
‘up to ⊗-natural isomorphisms’. We have

ρ ⊗ ρ∗=ρ′ ⊗ ρ′∗
⇔ (ϕρ ⊗ (ϕρ)∗) ◦ (ϕρ ⊗ (ϕρ)∗)† = (ϕρ′ ⊗ (ϕρ′)∗) ◦ (ϕρ′ ⊗ (ϕρ′)∗)†

⇔ (ϕρ ◦ ϕ†
ρ) ⊗ (ϕρ ◦ ϕ†

ρ′)∗ = (ϕρ ◦ ϕ†
ρ′) ⊗ (ϕρ′ ◦ ϕ†

ρ′)∗

⇔ϕρ ◦ ϕ†
ρ = ϕρ ◦ ϕ†

ρ′ ⇔ ρ = ρ′

by Proposition 3.5, bifunctoriality, preparation-state agreement for CΣ and again
Proposition 3.5 respectively, what completes this proof. �

Since Tr(Ψρ) does not depend on the choice of purification we can denote it
by Trρ. More generally, due to the �1�-structure, also for any purifiable operation
g : B → A the mapping

Trg : C(A ⊗ E,A ⊗ E′) → C(B ⊗ E,B ⊗ E′) ::

f → (h ⊗ 1E′)† ◦ (1C ⊗ f) ◦ (h ⊗ 1E)

where h : B → C ⊗ A is any purification of g : B → A is well-defined. Recall from
[3,11] that a morphism f : A → A in a (⊗, †)-category is positive if it decomposes as
f = g† ◦ g for some morphism g : A → B. Denote all purifiable states of type I → A

by Cpurif(I, A) and all positive morphisms in CΣ of type A → A by Cpos
Σ (A†, A).

We will use the notation �Σ to denote naturality with respect to composition with
pure operations.

Proposition 4.2 Axiom (2) is equivalent to the existence of a monoidal natural
bijection

mix : Cpos
Σ (A†, A) �Σ Cpurif(I, A) .

This monoidal natural bijection moreover induces commutation of

Cpurif(I, A∗ ⊗ B) × Cpurif(I, B∗ ⊗ C)
−�− � Cpurif(I, A∗ ⊗ C)

Cpos
Σ (A∗ ⊗ B, A∗ ⊗ B) × Cpos

Σ (B∗ ⊗ C, B∗ ⊗ C)

mix−1

�

−♦−
� Cpos

Σ (A∗ ⊗ C, A∗ ⊗ C)

mix−1

�

(5)

where f♦g is defined to be

(1A∗ ⊗ λC)† ◦ (1A∗ ⊗ �1B∗� ⊗ 1C)† ◦ (f ⊗ g) ◦ (1A∗ ⊗ �1B∗� ⊗ 1C) ◦ (1A∗ ⊗ λC) .
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Proof: Setting

mix : f ◦ f † → f ◦ ⊥dom(f) ,

the restriction to Cpos
Σ assures totality, the forward implication of axiom (2) assures

well-definedness, the backward direction assures injectivity, restriction to Cpurif as-
sures surjectivity, and monoidal naturality, i.e. commutation of

Cpos
Σ (A, A)

mix� Cpurif(I, A)

Cpos
Σ (B, B)

g ◦ − ◦ g†

�

mix
� Cpurif(I, B)

g ◦ −
�

where g is pure together with ‘good’ behavior of mix w.r.t. ⊗, follow straightfor-
wardly — note in particular that the action g ◦ − ◦ g† : Cpos

Σ (A†, A) → Cpos(B†, B)
indeed preserves positivity of morphisms. When setting ⊥A := mix(1A) the converse
is also straightforward. For f : D → A⊗C pure and h : B → C⊗A a co-purification
of g : B → A we have

mix(h ◦ (1C ⊗ f ◦ f †) ◦ h†
︸ ︷︷ ︸

Trg(f◦f†)

) = h ◦ (1C ⊗ f) ◦ ⊥C⊗D = h ◦ (⊥C ⊗ 1D) ◦ λD
︸ ︷︷ ︸

g

◦mix(f ◦ f †)

so we also have commutation of the more general diagram

Cpos
Σ (A, A)

mix� Cpurif(I, A)

Cpos
Σ (B, B)

Trg

�

mix
� Cpurif(I, B)

g ◦ −
�

(6)

where g now only has to be purifiable. Diagram (5) now also easily follows. �

From diagram (6) in the above proof it follows that axiom (2) in Definition 3.1
can in fact be extended from pure operations to all purifiable operations.

Corollary 4.3 In a (⊗, †,⊥)-category for all f, g ∈ Cpurif we have

Trf = Trg ⇐⇒ f ◦ ⊥dom(f) = g ◦ ⊥dom(g) .(7)

5 Recovering Selinger’s CPM-construction

Denote by Cpos the graph with the same objects as C but morphisms restricted
to the positive ones. 3 We will now present Selinger’s CPM-construction of [11],
slightly modified such that it fits better the needs of this paper. Given a (⊗, †, �1�)-

3 Note that above we implicitly made the convention Cpos
Σ := (CΣ)pos.
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category C define a new category CPM(C) which has the same objects as C, but
which has as morphisms

CPM(C)(A, B) := Cpos(A∗ ⊗ B, A∗ ⊗ B)

with ♦ as composition and hence which has �1A� ◦ (�1A�)† as identities. Selinger
went on showing that CPM(C) is again a (⊗, †, �1�)-category and in particular that
CPM(FdHilb) is the category which has completely positive maps as morphisms
and (not necessarily normalized) density matrices as its elements i.e. morphisms
with as type C → H. Note here that if f ∈ CPM(C)(A, B) = Cpos(A∗⊗B, A∗⊗B)
then by positivity f = g† ◦ g, and each choice for such a g† : C → A∗ ⊗ B yields in
fact a purification for the operation f in the sense of Section 3.

Theorem 5.1 If C carries a ⊥-structure then CPM(CΣ) � Cpurif .

Proof: By Proposition 4.2 we have

Cpurif(A, B) � Cpurif(I, A∗ ⊗ B) � Cpos
Σ (A∗ ⊗ B, A∗ ⊗ B) Def.= CPM(CΣ)(A, B)

and diagrams (1) and (5) guarantee that also composition carries over. �

Selinger also introduced the canonical identity-on-objects mapping

FCPM : C → CPM(C) :: f → �f� ◦ (�f�)†

which due to the variances (cf. composition in CPM(C) is ♦)

C(A, B)
FCPM� C(A∗ ⊗ B†, A∗ ⊗ B) =: CPM(C)(A, B)(8)

provides a functorial passage from C to CPM(C), and the intended interpretation
of the range of this functor are pure operations/states. In general FCPM is not
faithful and this is due to the fact that in general C does not satisfy preparation-
state agreement. 4

Lemma 5.2 For a (⊗, †, �1�)-category C the following are equivalent:

1. Cpos satisfies the preparation-state agreement axiom ;

2. Cpos � FCPM[Cpos] ;

3. CPM(C) satisfies the preparation-state agreement axiom ;

4. CPM(C) � CPM(FCPM[C]) ;

5. CPM(C) � CPM(C′) for some C′ which satisfies preparation-state agree-
ment ;

where all isomorphisms are assumed to be canonical ones.

Proof: Equivalences 1⇔2 and 3⇔4 follow by the fact that the preparation-state
agreement axiom can be stated as f = g ⇔ FCPM(f) = FCPM(g), and 1⇔3 fol-
lows straightforwardly by the definition of CPM(C). 3,4⇒5: if CPM(C) satisfies
the preparation-state agreement axiom then so does FCPM[C], hence 5 follows by

4 In [3] the preparation-state agreement axiom was derived as a fixed point with respect to FCPM, which
was introduced as a construction which ‘eliminates global phases’, independent of the Selinger’s CPM-
construction.
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4 for C′ := FCPM[C]. 5⇒3: if C′ satisfies the preparation-state agreement axiom
then so does CPM(C′) and hence so does CPM(C). �

The equivalent conditions 1–5 in Lemma 5.2 do not require C itself to sat-
isfy the preparation-state agreement axiom i.e., equivalently, C � FCPM[C]. A
counter example is FdHilb. But they are slightly stronger than only requiring
that FCPM[C] satisfies the preparation-state agreement axiom i.e., equivalently,
FCPM[C] � FCPM[FCPM[C]].

Theorem 5.3 If C is a (⊗, †, �1�)-category then

⊥A := FCPM(1A) and CPM(C)Σ := FCPM[C]

define a ⊥-structure on CPM(C) iff the equivalent conditions 1–5 in Lemma 5.2
hold.

Proof: Since CPM(C)Σ(A, B) = FCPM[C(A, B)] and the fact that positivity is a
compositionally defined property with FCPM being functorial we have

CPM(C)pos
Σ (A†, A) = FCPM[Cpos(A†, A)] .

Hence, since we also have that

CPM(C)purif(I, A) Def.= Cpos(I∗ ⊗ A†, I∗ ⊗ A) � Cpos(A†, A)

condition 2 in Lemma 5.2 (i.e. the restriction of FCPM to Cpos is faithful) suffices
in the light of Proposition 4.2 to establish a ⊥-structure on CPM(C). �

Hence we can indeed conclude that:

⊥-structure ≡ CPM-construction + preparation-state agreement

That is, more precisely, carrying a ⊥-structure coincides with the subcategory of
purifiable operations being isomorphic to a category CPM(C) which is the re-
sult of applying Selinger’s CPM-construction to a category C which satisfies the
preparation-state agreement axiom (cf. 5 in Lemma 5.2), and this satisfaction of
the preparation-state agreement axiom of that underlying category in turns coin-
cides with the subcategory of purifiable operations, or equivalently, CPM(C) itself
satisfying the preparation-state agreement axiom (cf. 3 in Lemma 5.2).

6 Introducing black triangle, and outlook

Graphically (cf. [4]), Selinger’s CPM-construction, of which we now consider the
covariant version of [11] (and not the version considered above), boils down to
‘restricting’ to operations of the shape:
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f
B

A

f
B*

A*

C C*
*

where f : A ⊗ C → B is a (co)purification of the operation of type A → B under
consideration. This pictures carries some sort of redundancy in that they both
involve f and a copy of it subjected to (−)∗. We can reduce this notation by
introducing a new primitive notion, referred to above as maximally mixed states,
and depicted as a black triangle:

f
B

A

C

which is subject to the graphical counterpart to axiom (2). In this representation
quantitative notions such as Reimpell and Werner’s channel fidelity, Schumacher’s
entanglement fidelity and Devetak’s entanglement generating capacity (see [9] and
references therein) emerge naturally as:

f
C

f
C

f
Cg

g*

ρ

We intend to systematically analyse these important quantitative notions of
quantum information theory in this qualitative manner, and cast them within a
uniform theory. We expect that new canonical and unifying notions will emerge.
This work is still in progress, and hence is not fully represented here, but we do
expect a compositional theory on quantum informatic resources to emerge, which
substantially extends the recent proposals by Devetak, Harrow and Winter in [6].
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