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Abstract

A simple approximate method for solving a general hypersingular integral equation of the first kind with its kernel consisting
of a hypersingular part and a regular pariéveloped here. The method is illustdhtsy considering some simple examples.
(© 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

A general hypersingular integral equation of the first kind, over a finite interval, can be represented by

1

f b (t) [ kdt, 0 fL, x)] dt=fo0, —1<x<1, (1.1)
-1 t—x)

with ¢(+1) = 0, whereK (t, x) andL (t, xX) are regular square-integrable functiong ahdx, andK (x, x) # 0. In

(1.1), the hypersingular integral denoted ;ﬁil(?i(;))zdt, (=1 < x < 1) wherepi(t) = ¢(t)K(t, .) is defined as

1 —& 1 —
f ¢1() dt = fim |:/X ¢1() ot +/ p1(t) . p1(X+e) + X —¢)
X

dt
—1(t — x)? e—0t [ Jo1 (t—x)2

2 ) _1SX§17
+s(t—X) &

(1.2)

and is understood in the sense of the Hadamard finite part. The solutionsifiite hypersingular integral equation

1
f_l(td)_(ti)zdt =fXx), —-1<x<1, (1.3)

with ¢ (£1) = 0, is well known (cf. [L,2]) and is given by

x—=1
1—xt+{(1—x2)(1—1t2))3

dx, —-1<t<l (1.4)

1 1
o(t) = —2/ f(x)In
e Jaa
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A somewhat less general form of a first-kind hypersingular integral equation given by

1
f (9] [ ! 5 + L, X)} dt = f(x), —-1<x<1, (1.5)
-1 t—x)

with ¢ (+1) = 0, arises in a variety of mixed boundary value problems in mathematical physics such as water wave
scattering and radiation problems a@tving thin submerged plates (cB+49), and fracture mechanic4 (). Eq. (1.5)

is usually solved approximately by an expansion—collocation method, the expansion being in terms of a finite series
involving Chebyshev polynomiald; (t) of the second kind. In particulag,(t) in (1.5)is approximated as

n
PO~ L-t)2 Y AU (1.6)

i=0

whereg; (i =0, 1,...,n) are unknown constants. Substitution(®f6)in (1.5)produces (cf.3])

n
Y aAx=fx), -1<x=<1 17)
i=0
where
1 1
AX) = —7( + DUi (x) +/ (1—t3)2L(t, x)U;j (t)dt. (1.8)
-1
To find the unknown constantg (i = 0,1,...,n), weputx = Xj (j = 0,1,...,n) where thex;’s are sitable
collocation points such thatl < xj < 1. This produces the linear systems
n
Y aAj=f, j=01...n (1.9)
i=0
with Ajj = Ai(xj) and fj = f(xj). These can be solved by standard methods. The collocation points are usually

chosen to be the zeros 0fi11(x) or Thy1(x) (Chebyshev polynomials of the first kind). The method described above
becomes somewhat unsuitable for solving general hypersingular integral equatfri)due to the presence of the
factorK (t, x) with (t — x) 2. Here we develop a mdified method for approximately solving Eg..1). This method
stems from recent work of Chakrabarti and Vanden Berdhg¢\wherein anapproximate method has been developed
to sdve a general type of first-kind singular integral equation with a Cauchy-type kernel, given by

1
][ o) [K(t’ 4L x)} dt = f(x), —1<x<1, (1.10)
-1 t—x)

¢ (1) satisfying appropriate conditions at the end points, and the integral invog%'g{lgs in the sense of the Cauchy
principal value(K (x, x) # 0). The pproximate method developed below appears to be quite appropriate for solving
the most general type of first-kind hypersingular integral equatiot) assuming of course th#t (t, x) andL(t, X)

can be approximated as ih]]. Some simple examples are given to illustrate the method.

2. Method of solution

The unknown functiom (x) satisfying¢ (+1) = 0 can be represented in the form
$00=(1-xDiyx), -l<x=<1 (21)

wherey (x) is a well-behaved unknown function ofe[—1, 1]. Approximatingy(x) by means of a polynomial of
degreen, given by

n .
SEDINIT (2.2)
=0
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wherecj’s (j =0, 1, ..., n) are unknown constants, the original integral equatiof) produces
1
n 1-t2)2K(t, t! ! : i
> g f( ) (2 X) dt+/ A—tH2Lt, xtldt | = f(x), —-1<x<1 (2.3)
i=0 (t—x) -1
The functionK (t, x) andL (t, x) can be approximated as (for fixedcf. [11])
m S
K(t,x)~ Y KpotP, Lt x)~ > Laoot? (2.4)
p:O q:O
with knownexpressions foK p(x) andLq(x). Then(2.3)gives
n
Ciaj(x)=f(x), —-l=<x<1 (25)
j=0
where
m S
aj(X) =Y KpOOUp+j(X) + Y vq+jLq(X) (2.6)
p=0 gq=0
with
1 21/2 ptj
(1 —t5)7 Pt
Uptj(X) = ———dt, —-1<x<x<1, 2.7
p+i () ffl (t — x)2 @7
1 .
Yot+j = f (1 - t2) 7%+, (2.8)
-1
which can be easily evaluated. The unknown constantg = 0, 1, ..., n) are now obtained by putting = x (I =
0,1,...,n)in (2.5) where—1 < x < 1 and are to belwsen suitably. Thus we obtain a system(oft+ 1) linear
equations, given by
n
ZCja“:ﬁ, | =0,1,...,n (2.9)
j=0
where
ajl =aj(x), fi=fx), (2.10)
for the deternination of the(n+ 1) unknowngj (j =0, 1, ..., n). This ompletes the description of the approximate

method for solving1.1). Below we give some simple examples to illustrate the method.

3. lllustrative examples

Example 1. If we considerK (t, x) = 1, L(t, x) = 0, then Eq(1.1)reduces to Eq(1.3) whose solution is given by
(1.4) However, we use the @thod developed above to obtain the solution for the particular forcing funttion= 1.
For thiscase Kp(x) andLq(x) in (2.4)are given by

Kox) =1, Kp(xX)=0(p>0) and Lq(x)=0(q=>0). (3.1.2)

Hence we find that relatiof2.5) produces

n
chu,- x)=1 -1<x<1 (31.2)
j=0
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where

Uo(X) = —1r, U1(X) = —27X, Ux(X) =7 (% — 3x2) ,

1 3
Us(X) = 7(X — 4x3), ua(X) =7 <§ + Ex2 — 5x4> e (3.1.3)
Substituting(3.1.3)in (3.1.2)and comparing the coefficients on both sides, we obtain
1
=——, C=C=---=0 (314)
3

1
pO) = —=(1-x3):
T
which is in fact the exact solution ¢1.3)for f (x) = 1 obtained by using the relatiqt.4).

Examples 2. Next we onsiderthe equation

! 1
f [ s+t + x)} pt)dt = f(x), —-1<x<l1 (32.1)
1Lt —=X)
with ¢ (£1) = 0. This corresponds t (t, X) = 1 andL (t, X) = t + X. This,however, is also of the forifi.5), and in
view of this, we use the method developedaction 3and the method described $ection 1to obtain approximate
solutions of(3.2.1)for the purpose of comparison. Now, hekg; (x) andLq(x) are given by

Ko=1 KpxX)=0(p=>=1 and Lox)=X, Lix)=1 Lgqx)=0(q=2). (3.2.2)
Thus(2.6)gives
aj(X) =uj(X) +yiXx+vyj+1, j=01,... (3.2.3)
whereu;j(x) (j =0,1,...) are the same as these giver{311.3)and
1 .
m2l(j+3) .
i+1=0, = ———"" =0,1,... 3.2.4
Y2j+1 ¥2j 25 10! j ( )

so thatug(X), @1(X), . . . etc are obtained in closed forms.

For simplicity, if we choose the forcing functiori (x) to beof the form f (x) = bp + bix wherebp andb; are
known constants, then we can determine the unknown constamts . . . directly by comparing the coefficients of
various powers ok on the two sides of2.5), as both sides are now polynomials. This produces

2 16 [bo A
Co=—5—(160+b), & =——— <7+b1>, cj=0(j>2 (3.2.5)

and the solution of3.2.1)in this case is obtained as

$(X) = (Co+ ) (1 — xD)2. (3.2.6)
However, if we usehe expansion of (x) in terms of Chebyshev polynomials given 4.6), then in ths case the
functionsA; (i =0, 1,...) are obtained as

Ag(X) = —1 + %x, A1(X) = % —4xx, Ax(X) =37 —167Xx%, Az(x) = 167rx% — 327x3,... (3.2.7)

and comparing the coefficients of both sides of the relatlon) we obtain

2 8 (bo :
80 =—3—(16bo+by), & =-7— <7+b1>, a=03(=>2. (3.2.8)

Noting thatUp(x) = 1 andU; = 2x, we findfrom (1.6)that¢ (x) is exactly the same as that given($12.6) It may be
noted that the collocation method used to obtain the unknown constaints: 0, 1, ...) in(2.2)anda (i =0,1,...)
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in (1.6) for this problem can be used if for simplicity we chooké&x) = 1 + 2x so thatbp = 1 andb; = 2 alove.
Choosingn = 3 in the &xpansion(2.2), the unknown constant®, c1, Cz, c3 are determined from the linear system

3
Y cjaj="f, 1=0123 (3.2.9)
j=0

If we choose the collocation points ag= —1, X1 = —%, Xo = % x3 = 1, thenthe linear equatiof3.2.9)produces
Cco = —0.3696501 c; = —-0.4107224 c,~0, c3=~0 (32.10)

which are almost theasne as thas given in(3.2.5) Similarly, choosingn = 3 in (1.6), we e that the unknown
constantsy, ai, ap, ag are to be found by solving the linear system

3
> aAj="f, j=0123 (3.2.11)

i=0
Choosing the same set of collocation pointd,, —%, % 1, we find that the linea3.2.11)when solved produces
ap = —0.3696500 a; = —0.2053610 a,~0, az3=~0 (32.12)

which are again almost the same as those givgB.i2.8) It may benoted that on increasing the sameaesilts as
above are obtained for both the methods.
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