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Abstract

Algebras of generalizefiinctions offer possiltities beyond tte purely distributional approach in
modelling singulaquantities innonsmooth differential geometryhis article presents an introduc-
tory survey of recent developments in this field and highlights some applications in mathematical
physics.
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1. Introduction

Nonsmooth differential geometry provides an important tool in a variety of applications,
in particular in mathematical physics. Agamples we mention nonsmooth Hamiltonian
mechanics [25,26] and the analysis of singupacetimes in general relativity (cf., e.g.,
[2,11,34] and [35] for a recent survey). Linedistributional geometry [9,25,30] is only
of limited use in a genuinely nonlinear context, as, e.g., in general relativity, where the
nonlinearity of the Einstein field equations and the interest in curvature quantities intro-
duces requirements on the underlying theorgeferalized functions which distribution
theory is unable to meet. A nonlinear extension of linear distributional geometry display-
ing promising capabilities for overcoming these conceptual problems has been developed
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over the past years based on Colombeau’s theory of generalized functions. It is the aim of
the present paper to provide an introduction to this field and some of its applications.

In the remainder of this section we fix some notation and terminology from differen-
tial geometry and distribution theory. Section 2 gives a quick introduction to some of the
fundamental ideas of Colombeau theory bathitie local and in the manifold setting. In
Section 3 we consider generalized functions taking values in a differentiable manifold, a
construction which has no analogue in distribution theory yet is of central importance for
nonlinear distributional geometry as it allows to formulate a functorial theory of general-
ized functions in a global context. In particular, it allows to introduce notions like flows
of generalized vector fields or geodesics of generalized metrics. Finally, in Section 4 we
develop a generalized pseudo-Riemanniamgetry in this setting and give some applica-
tions of the resulting theory in general relativity.

In what follows, X andY always mean paracompact, smooth Hausdorff manifolds of
dimensiom, respectivelyyn. We denote vector bundles with base spacdey (E, X, rx)
or E — X for short and write a vector bundle chart over the cle&tty,) of X as(V, ¥).

For vector bundleg — X andF — Y, by HOm E, F) we mean the space of vector bundle
homomorphisms fronk to F. Given f € Hom(E, F) the unique smooth map frok to

Y satisfyingry o f = f o mx is denoted byf. For vector bundle chart@/, @) of E and
(W, &) of F we write the local vector bundle homomorphism

foo =Wofod Lig(VN W) xK" = p(W) x K"
in the form

foa(x, &) = (f5h (), f2(x) ).

The space of smooth sections of a vector buritile X is denoted by (X, E). T} (X)
is the (r, s)-tensor bundle oveX and we use the following notation for spaces of ten-
sor fields7; (X) := I'(X, T/ (X)), X(X) := (X, TX) and2%(X) := I'(X, T*X), where
T X andT*X denote the tangent and cotangent bundl& pfespectivelyP (X, E) is the
space of linear differential operataf¥ X, E) — I'(X, E). FOrE = X x R we write P (X)
instead of P (X, E).

We denote by VdlX) the volume bundle ovek, its smooth sections are called one-
densities. The spad®’ (X, E) of E-valued distributions oX is defined as the topological
dual of the space of compactly supported sections of the buitie Vol (X),

D'(X,E):=[I.(X, E*®Vol(X))] "

For E = X x R we obtainD’'(X) := D'(X, E), the space of distributions aki. The iso-
morphism ofC*°(X)-modules

D'(X, E) =D/ (X) ®cox) I'(X, E)

shows thatz -valued distributions can be viewed as sections with distributional coefficients.
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2. Colombeau generalized functions on differentiable manifolds

When trying to extend linear distribution theory to a nonlinear theory of generalized
functions one is faced with certain fundamerdbktacles. To give a simple example, let
vp(1/x) be the Cauchy principal value of £ onRR. Then since

1 1
0= (S(x) -x) -vp; #8(x) - (x . vp;) =48(x),

it follows that the usual multiplication 06°° x D’ cannot be extended to an associative
and commutative multiplication o®’ x D’. Similarly, it can be shown tha®’ cannot

be endowed with the structure of an associative commutative algebra compatible with the
usual product inL>: with H the Heaviside function, the fact that?> = H would by the
Leibniz rule entail(H2) = 2HH’, (H3) = 3H2H’, so 2HH' = H' = 3H H'. But then

8 = H' =0, a contradiction. For a comprehensive analysis of the problem of multiplication
of distributions see [27].

Apart from nonlinear analysis on certain (function-)subalgebrd® ¢Sobolev spaces)
the second main option therefore consists in embedding the space of distributions into
an appropriate (associative and commutative) algghwageneralized functions, the aim
being to retain as many of the standard features of distribution theory as possible. In par-
ticular, we wan( to be a differential algebra with unjt(x) = 1 and derivation operators
extending those o®’. Our previous example demonstrates that under these assumptions
the product inG cannot extend the pointwise product of functiondjfj.. Furthermore,
by a celebrated result of L. Schwartz [32], it cannot extend the pointwise proda@ét of
functions for anyk € Ny either. Due to these differential-algebraic constraints the maximal
possible compatibility of the produetn G is that-|¢~ ¢~ coincide with the usual point-
wise product of functions.

Differential algebras satisfying this maximal set of requirements were first constructed
by J.F. Colombeau in the early 1980s [3—7]. The basic principles underlying his approach
are regularization through convolution and asymptotic estimates in terms of a regulariza-
tion parameter. In the so-called special version of the construdiaiiR”) is embedded
into a certain subalgeby, (R") of C°(R")! (with I := (0, 1]) through convolution

D'(R") > w > (W * pe)eel-

Herep is a Schwartz function with" p = 1 andp, (x) = 1/&" p(x /). C®@®M! is a dif-
ferential algebra with operations defined componentwise and the above map is obviously
linear and commutes with partial derivativ€3n the other hand, a natural way of embed-
ding C>®(R") into C*(R") is the diagonal embedding

CPMRY) > f > (fleer-

Clearly this map preserves the pointwise product of smooth functions. The idea, therefore,
is to factor&y (R™) by an ideal\V' (R") containing(f * p. — f). for eachf € C*R").

The resulting quotient algebra would therisy the above maximal set of requirements

on a differential algebra containing the space of distributions. Now (assuming for

the moment), Taylor’'s theorem gives
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(f *pe — HHx) = /(f(x =) = f(0)pe(y)dy
/ Z CE 000 p () dy

=)™ )
_— -6 dy.
+/ D) f (x —0ey)p(y)dy
If we additionally suppose thaf p(x)x*¥dx = 0 for all k > 1 then this expression con-
verges to zero, faster than any poweeptiniformly on each compact set, in each deriva-
tive. The natural candidate fov' (R") therefore is

NR") = {(ug)g cC®®R"! |VK € R", Va € N, Vi € N:

sup|a®u, (x)| = O (™) ase — 0}.

xekK

Elements of\/ (R") are callechegligible The definition ofA/(R") in turn fixes the maxi-
mal subalgebr&y, (X) (the algebra omoderatenets) ofC>°(R*)! in which N'(R") is an
ideal as

Ey(RY) = {(ug)g cC®®"! |VK € R", Yo € N!, AN e N with

sup|9%us (x)| = 0(e ™) ase — o}.

xekK

The (special) Colombeau algebra & is then defined as the factor algeli&R") =

Eu (RN /N R™). As indicated above, the map D'(R") — G(R"), «(w) = [class of

(w * pg)e] provides a linear embedding which coincides with the diagonal embedding
C®[@R") - GR™), o (f) = [class of( f).] onC*>(R"), hence verifies all the requirements
made above. From here one may proceed, using partitions of unity and suitable cut-off
functions to construct embeddin®$(£2) — G(£2) for any open subse&® of R”. Instead,

we turn directly to the manifold case [1,10,15,20]. The basic features of the following
definition are in close correspondenodtie Euclidean case discussed above.

Definition 2.1. Let X be a smooth, paracompact Hausdorff manifold andégét) .=
(C*®(X))!. The Colombeau algeb@(X) on X is defined as the quotiedt, (X)/N (X),
where

Ep(X) = [(ug)g cE(X)|VK € X, VP € P(X), AN € N:

sup|Pus(p)| = 0(e™") ase — O},
peK

N(X) = {(ug)g cE(X) |VK € X, VP € P(X), Vm € N:

sup| Pug(p)| = O(e™) ase — 0}.
peK
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We write u = [(u;),] for the class ofu,). in G(X). Restrictions of elements ¢f(X)
to open subsets of are defined componentwise on representativegi@nylis seen to be
a fine and supple (but not flabby) sheaf of differential algebras [8,10,29].

Our first fundamental observation concerning the structugk &% is that\V'(X) can be
characterized as a subspac&gf(X) without resorting to derivatives ([12, Theorem 13.1],
[20, Section 4]),

NX) = [(ug)g cEu(X)|VK € X, Vm e N: Su[?|u8(p)| = 0(em)}. (1)
pe
This characterization is a e convenient means both withColombeau theory (as we
shall see shortly) and in applications to partial differential equations (where it considerably
simplifies uniqueness proofs).
An important feature distinguishing Coldreau algebras from spaces of distributions

is the availability of a point value desctipn of Colombeau funtions. Componentwise
insertion of points ofX into elements ofj(X) yields well-definedyeneralized numbers
i.e., elements of the ring of constaris.= £y /N (with =R or K =C for K=R or
K =C), where

Em = {(”s)s eK! | AN e N: |re| = 0(87N)}’
N ={(re)e €K' [Vm e N: |re| = O(e™)}.

Example 2.2. Let ¢ € D(R), [¢ =1, ge(x) := e lp(x/e) and setu, (x) := @e (x — €).
Thenu, — § in D'(R), sou :=[(u.).] is not 0 inG(R). Nevertheless, it is easily seen that
every point value of every derivative ofis zero inkC.

Thus point values on “classical” poingse X do not characterize elements @X).
As can be seen in the above example, the reémothis failure is that Colombeau func-
tions are capable of modelling infinitesimal quantities which standard points are unable
to detect. Borrowing an idea from nonstandard analysis, the plan is therefore to introduce
“nonstandard points” which themselves may move around in the manifold in order to keep
track of the infinitesimal behavior of elements®fX). To this end we define an equiva-
lence relation~ on the spacé, := {(p.)e € X! | 3K € X, Jeo> 0s.t.p. € K, Ve < g0}
as follows: for any Riemannian metrikcon X with distance functionl,,, two nets(p; ).,
(ge)e are called equivalentp;). ~ (ge)e if dn(pe, qe) = O(e™) for eachm € N. We call

X.:= X,/ ~ the space of compactly supported generalized points. Obviously this defini-
tion does not depend on the specific Riemannian méatridhen we have

Theorem 2.3. Letu € G(X) and p = [(pe).] € Xe. Thenu(p) := [(ug(pg))g]js a well-
defined element &€. Moreoveru = 0 if and only ifu(p) =0in K for all p in X..

For the proof, see [20,28]. To give an idea of the argument, let us have a look at the case
X =R” (following [29, Proposition 3.1]). lit =0 G(R") andp, € K € R" for ¢ small
then it is immediate from the definition &f (R™) that (u.(pe))e € N, i.e.,.u(p) =0e K.
Conversely, suppose thatp) =0 forall p € R'g and letk € R”". For eaclr € I denote by
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pe the pointinK where|u,| attains its maximum. Singg = [(p¢)] € Rﬁ, the negligibility
estimates of order 0 fau.). on K follow from (u.(p.)). € N. But thenu = 0 due to (1).

Note that in Example 2.24(p) # 0 for p = [(g).] if ¢(0) £ 0.

There are essentially two ways of connegtiimear distribution paces with Colombeau
algebras. Firstly, one can construct injective sheaf morphisq_) < G(). This can
be done either using de Rham regularizations or, which basically amounts to the same, di-
rectly by convolution with a fixed mollifier in charts (cf. [10,20]). The resulting embedding
is noncanonical, i.e., it depends on the ingratieof the construction (partition of unity,
mollifier, cut-off functions, etc.). The main field of application of the special version of
Colombeau algebras therefore lies in areas where a regularization procedure for the singu-
lar quantities to be modelled suggests itself by hature of the problem (cf. [10,13,27]).
For so-called full variants of Colombeau algebras on manifolds, allowing éananical
embedding of the space of distributions we refer to [12,14].

The second link to linear distribution theory is the concept of association: two elements
u, v of G(X) are calledassociatedu ~ v if uy — v, - 0iND'(X). If [uzp — (w, w) for
somew € D'(X) and each compactly supported one dengity.e., if u, — w in D'(X)
thenw is called associated distribution to Clearly these definitions do not depend on
the chosen representatives. Besides this concept of “equality in the sense of distributions”
one may also introduce more restrictive equivalence relationg(an. In particular, we
mention the concept @*-associationu, v € G(X) are calledC*-associatedy ~ v if for
alll <kandallég,...,& e X(X), Lg, ... Lg (ue — ve) — 0, uniformly on compact sets.
In applications it is often the case that modedliof singular quantities and analytical treat-
ment of the problem at hand (e.g., solution of a nonlinear PDE) is carried ditiimile
a distributional interpretation of the result is effected through the notion of association.
Concerning the examples inspected at the beginning of this section we note th@k)in
x - § is associated but not equal to 0 aHd' # H, but H™ ~ H for all m € N. This com-
plies with the intuitive feeling that over and above the distributional picture, modelling in
G allows to fix the “microstructure” of singat quantities, reflected in a notion of equality
which is more restrictive than equality in the distributional sense. It can also be viewed as
a further nonstandard aspect of the theory (cf. [27, §10], for an in-depth discussion).

For a vector bundl&Z — X we define the spaces of moderate, respectively, negligible
sections as

e, (X, E) = [(ss)ge, eI'(X,E) |VPeP(X,E), VK € X, AN e N:
sup| Puc (p) | = 0™},
pekK

Iv(X,E)= {(sg)ge, eI'X,E) |VP e P(X,E), VK € X, Vm e N:
sup| Puc (p)| = 0™},
pek

where || - || denotes the norm induced on the fibersfofby any Riemannian metric.
Ig,, (X, E) is aG(X)-module with submodul&)/ (X, E) and we define thg(X)-module
I'G(X, E) of generalized sections of the bundie— X as the quotient’s,, (X, E)/

I'nv (X, E). As in the scalar case we may omit all differential operators from the defin-
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ition of I'y/(X, E) if we suppose thés.). to be moderate. Important special cases are
the spacey! (X) of generalizedr, s)-tensor fields and the spa@é(X) of generalized
k-forms, corresponding t& = 7/ (X) andE = /\" T*X, respectively.

I'g(_, E) is afine sheaf 0§ (_)-modules. Its algebraic structure is clarified by the fol-
lowing theorem [20, Section 6].

Theorem 2.4. TheG(X)-modulelg (X, E) is projective and finitely generated. Moreover,
the following isomorphisms @¢°(X)-modules hold

Ig(X, E) = G(X) ®cwx) ['(X, E) = Lesox) (I (X, E¥), G(X)).

In particular, this implies that generalized sections may be viewed as smooth sections
with generalized coefficients (in complete analogy to the distributional case). In addition,
for spaces of generalized tensor fields we have

G (X) = Lo (G2(X)", G3(X)*: G(X)) asG(X)-module,
Gr(X) = Lesox) (21X, X(X)*; G(X))  asC>®(X)-module.

Contrary to the purely distributional pictunéhere ill-defined products of distributions have
to be avoided carefully, our current setting allows unrestricted application of multilinear
operations like tensor product, wedge product, Lie derivatives w.r.t. generalized vector
fields, Poisson brackets, etc.

The relationship to the distributional setting is again governed by the notion of associ-
ation: a generalized sectiare I'z(X, E) is calledassociated tav € D' (X, E), s ~ w, if
forall u e I'.(X, E* ® Vol(X)) and one (hence every) representatig. of s,

jim /(W) = (w, 1),
e—0
X
Here,(-|-) denotes the natural pairing

tre®id: (E® E*) @ Vol (X) = (X x C) ® Vol (X) = VWol(X).

Stronger notions of association like; are defined analogously to the scalar case. Typi-
cally, multilinear operations on generalized sections display compatibility properties with
their distributional counterparts expressible in terms of association relations. For example,
if £ € GH(X) andg ~n e D'§(X), 1 € G1(X), t Moo u € T/ (X), thenLe (1) ~ Ly (u).
Furthermore, classical theorems of smooth and distributional analysis (cf. [25]) like the
Poincaré lemma, Stokes’ theorem, or the elatarization of generalized vector fields as
derivations on generalized functions can be extended to the Colombeau setting [13,20].

3. Manifold-valued generalized functions

When applying generalized function tecfués to problems of global analysis one
inevitably encounters situations where a concept of generalized functions defined on a
manifold X and taking values in another manifold is needed. Examples include flows of
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generalized vector fields or geodesics ofrilisitional spacetime metrics. Within classical
distribution theory, clearly no such concepfavailable. Colombeau algebras on the other
hand put more emphasis on the function-character of the generalized functions (as op-
posed to the description as linear functals on spaces of test functions in esetting),

which allows to develop an appropriate theory in this framework. One main requirement
with respect to such a construction is that it be functorial. In particular, it must allow for
unrestricted composition of generalized functions. In the local case, the problem of compo-
sition of Colombeau functions was first addressed in [1]. The construction suggested there
formed the basis for the manifold case presented in [16,22]. Since Colombeau functions
by construction are localized on compact stbf their domain (in the sense that they
are completely determined by the behavior of their representatives on such sets, for small
values of the regularization parameter), in order to satisfy this requirement we have to sin-
gle out representatives, ). € C*(X, Y)! which arecompactly bounde(br c-bounded)

in the following sense:

VK €X, 3e0>0, IK' €Y, Ve <ep: u:(K) CK'.

Moderateness of nets:,). € C>°(X,Y)!, on the other hand, is formulated using local
charts. We thus arrive at the following definition.

Definition 3.1. The spacey[X, Y] of compactly bounded (c-bounded) moderate maps
from X to Y is defined as the set of alk, ), € C*®(X, Y)! such that

(i) (ue)e is c-bounded.
(i) Vk e N, for each char{V, ¢) in X, each char{W, ) in Y, eachL € V and each
L’ & W there existsV € N with

sup | DP@ ous 00 H(e(p)|=0E"").
peLNuz (L")

Note that the “safety compact sets”and L’ in this definition are needed in order to
control the potentially arbitrarily fast growth of chart diffeomorphisms towards the bound-
ary of their domains.

In the absence of a linear structure on the target spgose have to introduce an
equivalence relation ifiy/ [ X, Y] which precisely reduces to negligibility of differences of
representatives in the cage= R™. We do this in a two step process. First, we assure that
the distance between representatives as measured in any Riemannian mEtgoesto
zero. Growth conditions on derivativeeghen formulated in local charts:

Definition 3.2. Two elements(u,)., (ve). Of Ey[X, Y] are called equivalentu,), ~
(ve)e, if the following conditions are satisfied:

(i) Forall K € X, sup,cx din(us(p), ve(p)) — 0 (¢ — 0) for some (hence every) Rie-
mannian metri¢ onY.
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(iiy Vk € No, Vm € N, for each chartV, ¢) in X, each chartW,v) in Y, eachL € V and
eachL’ e W:

sup IDP W ous 0™ =y ov: 00 N (0(p)) | = O™
peLnuzY(L)nv (L)

Finally, we define the space of Colombeau generalized functions defingdon tak-
ing values inY asG[X,Y]:=E&ul[X, Y]/ ~. Elements ofG[X, Y] typically model jump
discontinuities, whereas delta-type singitlas are excluded by the c-boundedness of rep-
resentatives (on the other hand, it seems unclear anyways what a delta-type singularity
should be in a manifold whtout additional structure).

In analogy to (1) one would expect that condition (ii) in Definition 3.2 need only hold
for k =0 in case(u.). is assumed to be moderate. It turns out, however, that a proof of
this fact cannot be carried along the lines of the local result (based in turn on a classical
argument by Landau [24]). Similarly, one would hope for a point value characterization of
elements ofj[ X, Y]. However, in the absence of an analogue to (1) this seems difficult to
obtain.

The remedy for both problems lies in a nonlocal characterization of c-boundedness,
moderateness and equivalence [22, Section 3]. The key idea is to replace composition with
charts in the target space by composition with globally defined smooth functions.

Proposition 3.3. Let (1), € C*°(X, Y)!. The following conditions are equivalent

() (ue)e is c-bounded.
(i) (f oug)e is c-bounded for allf € C*°(Y).
(i) (f oue)e is moderate of order zero for ajf € C*(Y), i.e.,

VK € X, 3N e N: sup|f ous(p)| = 0(™™)
pek

forall f € C(Y).
(iv) (ue(xe))e € Ye forall (x,)e € Xe.

Based on this result, moderateness can be characterized as follows.

Proposition 3.4. Let (us). € C®°(X, Y)!. Then(u,). € Ey[X, Y]ifand only if(f oue), €
En(X) forall feC>®(Y).

Finally, concerning the equivalence relatieton £y,[ X, Y] we obtain

Theorem 3.5. Let (u.),, (ve)e € Ey[X, Y]. The following statements are equivalent

(i) (ue)e ~ (ve)e-
(i) For every Riemannian metriconY, everym € N and everyk € X,

supdy (us(p), ve(p)) = O(™) (¢ — 0).
pek

(iil) (fous— fove)e e N(X) forall feC®(Y).
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Since by [16, Theorem 2.14], condition (ii) itheorem 3.5 is equivalent with conditions
3.2(i) and (ii) withk = 0, we obtain the desired characterization-ofThis in turn provides
the key building block in the proof of the following point value description of manifold-
valued generalized functions.

Theorem 3.6. Letu = [(us):] € GIX, Y] and p = [(pe)e] € Xc. Thenu(p) := [(ue(pe))e]
is a well-defined element @f. Moreoveru, v € G[ X, Y] are equal if and only if their point
values in each generalized point agree.

Once this point value characterization is established, also the problem of composition
of generalized functions can be resolved ([16, Theorem 2.16], and [22, Theorem 3.6]):

Theorem 3.7. Letu = [(ug)1 € GIX, Y], v=[(ve)e] € G[Y, Z]. Thenv o u := [(ve 0 ue)e]
is a well-defined element 6l X, Z].

Although by the c-boundedness of represéwts the “worst” singularities that can
be modelled by elements @f[ X, Y] are jump discontinuities it is to be expected that
derivatives (i.e., tangent maps) of such generalized maps will béHéke We must there-
fore provide for a concept of generalized vector bundle homomorphisms (containing such
tangent maps as special cases) with substantially less restrictive growth conditions in the
vector components.

Definition 3.8. For E — X, F — Y vector bundles£YB[E, F] is the set of all(u,), €
Hom(E, F)! satisfying

() (up)e €EmlX, Y.
(i) Yk € Ng, V(V, @) vector bundle chart inE, V(W, ¥) vector bundle chart inF,
VLE@V,VL @W,3N €N, J¢1 > 0,3C > 0 with

[P (G ()] < e

foralle <erandallpe LN g;l(L/), with || - || any matrix norm.
Definition 3.9. (us)e, (ve)e € EYPIE, F] are called vb-equivalent(u,). ~vb (ve)e) if

(I) (23)8 ~ (23)8 In 6‘]VI[)(’ Y]'
(i) Vk € Ng, Vm € N, V(V, @) vector bundle chart irE, V(W, ¥) vector bundle chart
in F,YLEV,VL @W, 3¢1 > 0,3C > 0 such that

2 2
I p® (“,gv}cp - Uéqu)(fﬂ(P)) | <ce™
foralle <epandallp e L nu (L) Nu ().
We now set Hom[E, F1:= EYPIE, F1/ ~w. Foru e Homg[E, F1, u := [(u,):] is @

well-defined element off[ X, Y] uniquely characterized byo my = ny o u. The tangent
mapTu :=[(Tu.).] ofanyu € G[X, Y]is then awell-defined element of Hgi 7' X, T Y.



466 M. Kunzinger / J. Math. Anal. Appl. 297 (2004) 456471

Also in the context of generalized vector bundle homomorphisms a global characteriza-
tion of moderateness is available:

Proposition 3.10. Let (u;), € HOm(E, F)!. Then (u;). € E)PIE, F] if and only if
(fous)e € EYP(E,Rx R™) forall f e Hom(F,R x R™).

A similar statement holds foryy, [22, Proposition 4.1 and Theorem 4.2]. Based on
these results, appropriate point value descriptions of elements of;,Hakh 7Y] can be
derived. As a final ingredient, in Theorem 3.12 below we shall make use bytral space
G"[X, F] whose elements are defined &nand take values itF, c-bounded in the base
component and moderate in the vector commbifigl,22]. All of the above constructions
are functorial (with compositions defined unrestrictedly). We do not go into the details
here (cf. [21,22]) but instead turn to another concept which is of relevance in applications
to nonsmooth pseudo-Riemannian geometry (cf. Section 4). Denote by

Homy(E, F) :={ve HOM(E, F) | v =u}

the space of generalized vector bundle homomorphisms over the generalized\Wiaite

in the smooth setting the corresponding space can trivially be endowed with a vector space
structure, the main obstruction in extending this property to the present context is that, a
priori, representative@, )., (v,). of elements, v’ of Hom, (E, F) need not project onto

the same representative.). of u = v =" € G[X, Y], so that simple fiberwise addition

is in general not possible. The followingsdt [22, Proposition 5.7 and Corollary 5.8]
remedies this problem.

Proposition 3.11. Let u = [(u¢).] € G[X, Y] andv € Hom, (E, F). Then there exists a
representativév, ), of v such thatv, = u, for all ¢ € I. Consequentlydom,(E, F) is a
vector space.

To conclude this section let us have a look at the problem of determining the flow
of a generalized vector field gé(X). We first note that in the distributional setting
already the notion of the flow of a distributional vector figlds problematic, as it would
have to denote a “manifold-valued distribution.” In [25], a regularization approach is used
to cope with this problem, by introducing a c-bounded sequence of smooth vector fields
& approximating:. Eaché, has a classical flomd? and under certain assumptions the
assignment =lim._,o ®¢ allows to associate a measurable flgwto the distributional
vector field¢. This approach is naturally related to the Colombeau picture, where any
& = (&). =~ ¢ can be viewed as a regularization of the distributional vector fielive
first give a basic existence and uniqueness result for flows of generalized vector fields [17,
Theorem 3.6].

Theorem 3.12. Let (X, h) be a complete Riemannian manifold and supposeftlw(%()()
satisfies

(i) & =1[(&)] with eachg, globally bounded with respect in
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(iiy For each differential operatorP € P(X,TX) of first order and eachk € X,
sup,ex [[(P&)plln < Clloge| (with 2 any Riemannian metrjc

Then there exists a unique generalized functor G[R x X, X], the generalized flow
of &, such that

%é(r,x) =&(®(t,x)) InG"[Rx X, TX],
®(0,.)=idy ing[X, X],
D(t+s,)=d(t,d(s,.) inG[R?x X, X].

Example3.13. Let X = T2 = 51 x ST and& =[(&,).] € G3(X) with
(' )= (', €11, 1= poe)(@)).

Here, p is a test function with unit integral ang(e) = | log(e)|~1. Then sinceX is com-
pact, eaclt; possesses a global flow* and® = [(®°).] € G[R x X, X] is the unique
generalized flow of. @ possesses a discontinuous pointwise lignjtnamely

. . i(o+t) i(a+t)
D (1 '@ zﬂ) _ e N e
PE ) ZN B[ potey (1) dy) Pl (B —H@+D)+H @) |>
which satisfies the flow property,, = ¥, o ¥; for all s, ¢ € R.

In general the question whether the uniqueeyalized flow of a generalized vector field
possesses a limiting (measurable) flow is quite involved, cf. [17,25].

4. Generalized connections and nonsmooth Riemannian geometry

Applications in general relativity have constituted one of the main driving forces behind
the development of nonsmooth differentigametry in the setting of Colombeau general-
ized functions (see [34]). As an example, we consider so catipdlisive pp-wave.e.,
impulsive gravitational waves with parallel rays, cf. [2,33]). These are described by a dis-
tributional pseudo-Riemannian metric with line-element

ds? = f(x,y)8(u)du® — dudv + dx® + dy>. )

To extract physically relevant information frothis spacetime metric one has to be able to
calculate curvature quantities and find smos of the correspondg geodesic equations
(determining the trajectories of particles in the spacetime at hand). However, all of these
operations are undefined within linear distribution theory: the former due to the nonlinear
operations involved in their calculation, the latter due to the lack of a concept of manifold-
valued distributions. On the other hand, as we have seen in the previous sections, algebras
of generalized functions make available all the necessary tools to address these issues.

The following result forms the basis for the description of singular pseudo-Riemannian
metrics in the Colombeau framework [21, Theorem 3.1].
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Theorem 4.1. For any generalized0, 2)-tensorg € gg(X), the following are equivalent

(i) Foreach chart(V,, v) and eachp € (¥ (Vy)). the mapg, (p) : K" x K" — K" is
symmetric and nondegenerate.
(i) g:G3(X) x G3(X) — G(X) is symmetric andlet(g) is invertible inG(X).
(i) det(g) is invertible inG(X) and for each relatively compact open détC X there
exists a representativig. ). of g and angg > 0 such thatg.|y is a smooth pseudo-
Riemannian metric for al§ < &g.

Definition 4.2. Let g € gg(X) satisfy the conditions in Theorem 4.1. If, in addition, there
existsj € Ng such that the index of the. as in Theorem 4.1(iii) equals we callg a gener-
alized pseudo-Riemannian metric of indgand (X, g) a generalized pseudo-Riemannian
manifold. If j =1orj=n —1, (X, g) is called a generalized spacetime.

It follows from finite-dimensional perturbation theory that the index so defined does not
depend on the chosen representating. of g. With respect to applications, the most im-
portant characterization in Theorem 4.1 is (iii), as it guarantees that locally any generalized
metric has a representative consisting entirely of smooth pseudo-Riemannian metrics.

We note first that the above way of modelling singular metrics is considerably more
flexible than the purely distributional approach: In [25], a distributiq@aP)-tensor field
g€ D’g(X) is called nondegenerategfé, n) =0 for all n € X(X) impliesé =0e X(X),
while in [30], g is called nondegenerate if it is nondegenerate (in the classical sense) off
its singular support. The drawback of the firgffidition is its “nonlocality,” which is too
weak to reproduce the classical notion: edy2 = x2dx? is nondegenerate in this sense
although it is clearly singular at = 0. The second notion, on the other hand, does not
provide any restrictions og at its points of singularity.

SinceG(X) is an algebra, all curvature quantities (Riemann tensor, Ricci and Einstein
tensor..) of a generalized metric can be calculated unrestrictedly. Moreover, in parallel
to the smooth setting, we may develop a generalized pseudo-Riemannian geometry based
on the above notions. Our first basic result towards that goal is the following [21, Proposi-
tion 3.9].

Proposition 4.3. Let (X, g) be a generalized pseudo-Riemannian manifold.

(i) g is nondegenerate in the following sene € G3(X)andg(&, n) =0, Vn € G3(X),
thené = 0.

(i) g induces ag(X)-linear isomorphisngs(X) — GY(X) by — g(&, ).

The isomorphism in (ii) can naturally be extended to higher order tensor fields, so that,
as in the smooth case, generalized metrics can be used to raise and lower indices.

Definition 4.4. A generalized connectio® on X is a mapGa(X) x G3(X) — G3(X)
satisfying

(D1) Dgn is R-lineariny.
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(D2) Denis G(X)-linear iné.
(D3) bg(un) = uf)gr) + &) forallu € G(X).

With this notion we have the followinqundamental lemma of pseudo-Riemannian
geometnf21, Theorem 5.2]).

Theorem 4.5. On each generalized pseydo—Riemannian manifaldg) there exists a
unique generalized Levi-Civita connectidnsuch that for allg, n, ¢ in gé(X):

(D4) [£,n] = Den —Aﬁné and
(DS) £g(n.¢) =g(Den, &) + g, De?).

Suppose now that € G[J, X] is a generalized curve iX defined on some interval
J C R. Using a representativg; ). as in Theorem 4.1(iii) we may componentwise define
an induced covariant derivativer &’ on the spacég(u) := {£ € GhMX,TY]| & =u)
of generalized vector fields op. Its basic properties are summarized in the following
result [21, Proposition 5.6] and [22, Section 5].

Theorem 4.6. Let (X, g) be a generalized pseudo-Riemannian manifold andylet
GglJ, X]. Then

() (F&1+5&) =7&1 458 (7.5 €K, 1,5 € Xg(y)).
(i) (&) = (du/dn)é +us' (ueG(J),§ € Xg(y)).
(i) Eoy) =DyuHEinXg(y) (e Q&(X))-

(iv) (d/dt)gE.m)=gE . n)+gE& n) E neXgy)).

Note in particular that property (iv) only makes sense due to Proposition 3.11. Now that
we have induced covariant derivatives at disposal we may as in the smooth case (and
contrary to the distributional setting) give the following definition.

Definition 4.7. A curve y € G[J, X] in a generalized pseudo-Riemannian manifold is
called geodesic if” = 0. Herey” is the induced covariant derivative of the velocity vector
field y’ of y.

Locally, therefore, the determination &t geodesics of a given singular metric amounts
to the solution of a system of ordinary differential equations in the Colombeau setting.
This program has been carried out for our first example (2) in [19,33]. Using a generic
regularization procedure for the delta-term in (2), the resulting system is uniquely solvable
in G[R, X]. Moreover, fore — 0 (i.e., in the sense of association) this unique solution
displays the physically expected behavior of broken, refracted straight lines as geodesics.
As a further aspect of the spacetime (2) we note that its analysis naturally leads to the
concept of manifold-valued generalized functions: In [31], R. Penrose introduced a discon-
tinuous coordinate transformatid@hthat formally transforms the distributional metric (2)
into a continuous form. Although the two forms of the metric are physically equivalent (in
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the sense that they have the same geodesics), the transformation relating them is clearly
ill-defined in the distributional picture. In [18], howevéF, was identified as an element
[(Te)e] of G[ X, X] with eachT, a diffeomorphism. In this sengeitself may be considered
a “discontinuous diffeomorphism.”

Recently, generalized pseudo-Riemanniaongetry in the sense of the present section
has been identified as a special case of an epegsing theory of generalized connections
on fiber bundles. For this theory as well as for first applications to singular solutions of
Yang—-Mills equations we refer to [23].
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