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SUMMARY

The deformation patterns of a large set of re-
presentative proteins determined by essential
dynamics extracted from atomistic simulations
and coarse-grained normal mode analysis are
compared. Our analysis shows that the defor-
mational space obtained with both approaches
is quite similar when taking into account a repre-
sentative number of modes. The results provide
not only a comprehensive validation of the use
of a low-frequency modal spectrum to describe
protein flexibility, but also a complete picture of
normal mode limitations.

INTRODUCTION

Flexibility is a key determinant of protein function (Daniel

et al., 2003; Eisenmesser et al., 2002; Hinsen et al., 1999;

Luo and Bruice, 2004; Ma and Karplus, 1998; Remy

et al., 1999; Sacquin-Mora and Lavery, 2006; Waldron

and Murphy, 2003; Yang and Bahar, 2005), but, due to dif-

ferent technical problems, its systematic study has been

possible only in recent years. From these analyses we

know that the essential deformation space of proteins is

related to the conformational space sampled by evolution

in protein families (Leo-Macias et al., 2005; Qian et al.,

2004), that side chains at protein-binding sites are ‘‘entro-

pically trapped’’ even in the holo form of proteins (Bartlett

et al., 2002), and that interactions at binding sites alter the

entire dynamics of the protein (Ming and Wall, 2006). Many

studies have shown the close relationship between pro-

tein function, or even catalysis, and collective dynamics

(Yang and Bahar, 2005). Similarly, other studies have

demonstrated that deformability patterns are guiding

some allosteric transitions responsible for cooperativity

in proteins (Gerstein et al., 1994; Ma and Karplus, 1998)

All of these evidences suggest that a hidden flexibility
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code has been printed by evolution in the structure of

biological macromolecules in order to optimize their bio-

logical action (Qian et al., 2004). The knowledge of protein

flexibility is then crucial for understanding protein function

and evolution.

Different experimental approaches have been devel-

oped to examine protein flexibility, but they are still not

of general applicability and, in most cases, provide only

rough measures such as atomic B factors. This has fuelled

the use of theoretical approaches to study the deformabil-

ity of equilibrium structures of macromolecules. Two main

algorithms are used to compute essential deformations: (i)

essential dynamics (ED), and (ii) normal mode analysis

(NMA). In ED (Amadei et al., 1993), the deformation modes

are obtained by diagonalization of the (mass-weighted)

covariance matrix obtained from molecular dynamics

(MD) or Brownian dynamics (BD) simulations, while, in

NMA (Cui and Bahar, 2006; Go et al., 1983; Levitt et al.,

1985), the deformation modes are obtained by diagonal-

ization of the (mass-weighted) Hessian matrix. In the first

case, a real potential trying to reproduce the physics of

macromolecular interactions is used, without an a priori

decision about the minimum energy structure of the mac-

romolecule. In the second case, the known structure of the

macromolecule is defined as a minimum, and the detailed

atomic potentials are often replaced by simple harmonic

or quasi-harmonic potentials between interacting atoms

or residue pairs (Cui and Bahar, 2006; Tirion, 1996).

Thus, despite the similarity, there are intrinsic differences

between the way in which NMA and ED define the essen-

tial deformation pattern.

Ten years ago, Tirion pioneered the use of simplified

potentials to study the deformation modes (Tirion, 1996).

This idea was further extended to use coarse-grained

(Ca) protein representation by several research groups,

including those of Bahar (Bahar et al., 1997), Haliloglu

(Haliloglu et al., 1997), Hinsen (Hinsen, 1998), Sanejouand

(Tama and Sanejouand, 2001), Jernigan (Song and Jerni-

gan, 2006), and Brooks (Zheng et al., 2006). Web-based

database systems such as MolmovDB (Alexandrov et al.,
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Table 1. Number of Eigenvectors Needed to Explain 90% of the Variance and Comparative Measures of
Deformational Patterns Obtained with NMA and ED of Selected Proteins Grouped by Size and CATH Categories

Size

Protein

(Residues) CATH

Number of
Eigenvectors,

90% Variancea g (90% ED)

Z Score

(90% ED)

g (50

Eigenvectors)

Z Score (50

Eigenvectors)

Small 1OPC (99) a 46/104/18 0.56/0.59 70/74 0.63/0.68 82/92

1FAS (61) b 53/54/12 0.52/0.52 31/32 0.63/0.70 25/36

1FVQ (72) a+b 78/84/30 0.62/0.68 49/57 0.68/0.75 59/72

Medium 1OOI (124) a 130/145/37 0.59/0.66 135/155 0.63/0.71 128/150

1BSN (138) b 70/108/9 0.50/0.52 41/43 0.59/0.63 70/79

1CHN (126) a+b 28/129/15 0.48/0.52 124/136 0.61/0.66 134/148

Big 1GND (430) a 520/448/30 0.53/0.56 283/300 0.56/0.61 328/361

1CZT (160) b 139/152/38 0.58/0.64 112/130 0.60/0.65 102/114

1SUR (213) a+b 172/198/19 0.58/0.61 192/202 0.63/0.68 201/221

Multidomain 1BR5 (267) - 353/284/85 0.62/0.68 223/253 0.58/0.64 187/211

2PIA (321) - 366/331/96 0.60/0.65 209/235 0.57/0.62 179/198

1E9S (2545) - 3598/3114/790 0.55/0.60 2434/2681 0.42/0.44 2204/2327

For the last four columns, two definitions of the ‘‘important space’’ were used: (i) eigenvectors needed to explain 90% variance, and

(ii) the first 50 eigenvectors (values in those columns are listed as distance cutoff NMA$ED/inverse exponential NMA$ED).
a Values in this column are listed as distance cutoff NMA/inverse exponential NMA/ED.
2005), ProMode (Wako et al., 2004), or iGNM (Yang et al.,

2005) give access to numerous examples of the good cor-

relation between low-frequency normal modes and the

collective, large-amplitude observed motions in proteins.

These tools are complemented by other web servers

such as Elnémo (Suhre and Sanejouand, 2004), Webnm@

(Hollup et al., 2005), AD-ENM (Zheng and Doniach, 2003),

Movies (Cao et al., 2004), UMMS (Jang et al., 2006),

NOMAD-ref (Lindahl et al., 2006), oGNM (Yang et al., 2006),

or Dfprot (Garzón et al., 2007), which also provide online

normal-mode calculation with a variety of extra functional-

ities. Using these and other tools, NMA has been used to

simulate protein deformations at extended-length scales

(Bahar and Rader, 2005; Ma, 2005), or even to represent

the flexibility of very low-resolution structures in which Ca

cannot be located (Chacon et al., 2003; Kong et al., 2003).

However, the extended use of the technique cannot hide

the fact that coarse-grained NMA calculations still need

validation by comparison with more detailed atomistic

simulations based on physical potentials. Previous com-

parisons between NMA and MD simulations were limited

to a few proteins and to short MD trajectories, often ob-

tained in nonphysiological environments (Hayward et al.,

1994, 1997). Thus, 10 years after the first coarse-grained

NMA formulation, no evidence exists that the essential

deformation space obtained by NMA properly represents

that obtained in atomistic MD simulations in explicit water.

Furthermore, both the individual predictive power of de-

formation modes obtained by NMA analysis and the sim-

ilarity of the macroscopic flexibility properties of proteins

derived by NMA and MD calculations are unknown. The

lack of this benchmarking generates uncertainty about
566 Structure 15, 565–575, May 2007 ª2007 Elsevier Ltd All rig
the quality and reliability of NMA-derived results to de-

scribe the flexibility of proteins in solution.

In this paper, we present a very wide comparison of

coarse-grained NMA and atomistic MD-derived ED simu-

lations on a data set containing all protein metafolds

(Rueda et al., 2007). The study presented here, the largest

done to our knowledge, represents a massive use of

supercomputer resources (�100 CPU years) and provides

a complete picture of the quality and limitations of coarse-

grained NMA approaches.

RESULTS AND DISCUSSION

Stiffness Analysis

It is not possible to directly compare the size of the fluctu-

ations given by the two methods. On one hand, the total

MD variance depends on the length of the simulation

(see Table S2 in the Supplemental Data available with

this article online). On the other hand, the total variance

explained by the NMA directly depends on the choice of

the spring constant (see Figure S1), which was chosen

to reproduce experimental B factors, mimicking then the

reduced flexibility allowed by the crystal lattice (Rueda

et al., 2007). Note that the rigidification of the system

expected in NMA calculations performed with standard

parameters can be corrected by reducing the Ca-Ca force

constant (see Figure S2) or, alternatively, by scaling down

the force constant associated with the normal modes

(when necessary, the later approach was used in experi-

ments described in this paper). In any case, we should

emphasize that much caution is needed before translating

NMA-detected fluctuations into sampling variances,
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Figure 1. Force Constant Associated with Harmonic Deformations of Selected Proteins as Determined by ED and the Two NMA
Methods

The force constant is measured as kcal/mol Å2, harmonic deformations are ordered by rank, and selected proteins are classified according to size and

CATH annotation. The insert corresponds to the first ten eigenvectors.
because the technique is not designed to properly repro-

duce total variance.

Our analysis shows that fewer modes are needed in ED

to capture the same threshold of variance (see Table 1).

Thus, a number of NMA eigenvectors approximately equal

to the number of protein residues is needed to explain

90% variance, while a much smaller number is needed

when using ED eigenvectors (see Table 1). Quite interest-

ingly, the point that divides the low- and high (ED)-defor-

mation modes is clearly found to be (approximately) 1.8

times the number of residues (see Figure 1), and such

a sharp division among modes does exist in NMA calcula-

tions. In summary, the essential deformation space re-

ported by ED is wider, but simpler (i.e., defined by a smaller
Structure 15,
number of essential deformations), than that suggested by

the simpler NMA treatments. There is then a systematic

and fundamental difference between NMA and ED that

cannot be ignored (note that this limitation holds if other

Ca-Ca force constants are used; see Figure S3). However,

if we limit our interest to the low modes (see inserts in Fig-

ure 1), NMA is found to describe ED deformability quite

well, especially after suitable scaling (see Figure S2).

Detailed analysis of our results (see Figure 1) shows that

the nature of the protein, as quoted by the CATH family,

does not have any obvious influence on the relative ED/

NMA stiffness, and that the effect of the protein size (or

the presence of several domains) is to expand the size

of the ‘‘important space’’ without adding any apparent
565–575, May 2007 ª2007 Elsevier Ltd All rights reserved 567
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Figure 2. Difference in Rank between a Given NMA Eigenvector and the One from ED Displaying the Best Overlap with It
difficulty for NMA to describe the protein flexibility. Finally,

the presence/absence of specific interactions, such as

saline bridges or disulfide bridges, does not introduce

advantages/problems in the ability of NMA to describe

deformation modes.

Analysis of the Deformation Pattern

There is a poor pair correspondence between essential

modes determined from NMA and ED, as noted in eigen-

vector-eigenvector dot products that are generally small

along the diagonal (see selected examples in Figure S4).

The correspondence becomes worse as the size of the

important space increases, as noted in the rank difference

between optimally overlapped vectors (see Figure 2).

Similar findings are reached from Gerstein’s indices along

the diagonal (i = j in Equation 13; see Figure S5), which are

not far from those of a random model (O = 0.5), indicating
568 Structure 15, 565–575, May 2007 ª2007 Elsevier Ltd All righ
that the atomic displacements in diagonal NMA eigen-

vectors do not correlate with the corresponding ED atomic

displacements. It is worth noting that the difference

between NMA and ED eigenvectors not only stems from a

permutation in the rank of identical eigenvectors (see Fig-

ure 2), but also to the spread of each NMA eigenvector

in many ED modes. This is illustrated in Figure 3 and

Figure S4, which also show that, in general, better results

are obtained when the inverse exponential NMA is used.

Though the preceding results warn against the use of

individual NMA eigenvectors to describe major flexibility

patterns, they do not necessarily imply that the information

contained in the ED essential deformation space is not

contained in the NMA space. This can be investigated

by computing the g index for a given ‘‘important’’ space

and the associated Z score. After inspection of the cumu-

lative variance versus eigenvector rank and a similarity
ts reserved
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Figure 3. Spread of NMA Eigenvectors in the ED Space for Selected Proteins

See Equation 14.
index for selected examples (see Figure S6), we have con-

sidered two definitions for ‘‘important’’ space: (i) the first

50 eigenvectors (a value that always represents a large

percentage of variance), and (ii) the number of ED eigen-

vectors needed to explain 90% of the MD variance. Simi-

larity indices obtained for the first 50 eigenvectors are in

the range of 0.4–0.7 (see Table 1), with larger values ob-

tained for smaller proteins. The similarity indices become

less dependent on the protein size (0.5–0.6; see Table 1)

when the ‘‘important’’ space is defined by using the eigen-

vectors needed to explain 90% of the variance; however,

in any case, the differences obtained by using the two

definitions of the ‘‘important’’ space are small. It is worth

noting that the correspondence in the movements remains

unaffected when using longer simulation times (see Table

S2). As noted in the very large Z score values, all similarity

measures are far from random noise, indicating that, de-
Structure 15
spite the poor pair correlation between eigenvectors, the

essential deformation space of proteins measured by

NMA and ED is reasonably similar. Detailed analysis of

deformation pattern again shows the slightly superior

performance of the inverse exponential algorithm with

respect to the standard distance cutoff procedures. Ac-

cording to our results, the use of larger intraresidue cutoff

values for the distance-based approach does not improve

the similarity values (see Figure S7). Finally, we notice that

there is a lack of any differential trend in the performance

of NMA models regardless of the CATH family, protein

size, or the presence/absence of disulfide or saline

bridges in the structures.

Sampling of the Cartesian space modeled by activating

the first 50 ED modes in a Metropolis Monte Carlo pro-

gram reproduces the original sampling from the MD simu-

lation (a of �1.9 and U of �0.99), without significant
, 565–575, May 2007 ª2007 Elsevier Ltd All rights reserved 569
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changes if alternative definitions of the important space

are used, indicating that the Monte Carlo procedure can

properly capture the space obtained by MD simulation in

spite of the drastic reduction in space dimensionality

(from 3N � 6 in MD to 50 in Monte Carlo simulations). Ap-

plication of this technique, but by now using the sampling

obtained by ED eigenvectors as a reference, allowed us to

recognize the excellent similarity of important deformation

spaces obtained from ED and (scaled) NMA calculations.

Thus, ED/NMA cross-rmsd differences (see Equation 16)

are �1.8–2.0 Å (Table 2), which matches the normal self-

cross rmsd generated in a MD trajectory by thermal noise

and yields similarity indices close to 1.

To finish our study, we focus our analysis on the residue

level, by comparing the Ca B factors derived from NMA

and ED models, which also show a very good correspon-

dence (Spearman’s correlation coefficients �0.7–0.8 for

the set of proteins considered here). If no scaling of

NMA forces is done, NMA-derived B factors are always

smaller than those predicted by MD; however, after the

scaling procedure, NMA and ED B factor profiles are not

only qualitatively close, but are also quantitatively close

(see a few examples in Figure 4). It is interesting to note

that the profile of B factors is well preserved if larger intra-

residue cutoff values are used within the distance cutoff

NMA procedure (see Figure S8). Finally, it is worth noting

(see Table 3) that, after this scaling, NMA-computed

atomic displacements are able to capture the macro-

scopic character of proteins that emerge as a solid core

surrounded by a near-liquid environment (Rueda et al.,

2007; Zhou et al., 1999).

In summary, even though each individual eigenvector

obtained in NMA has a small value, their combination

generates an extremely correct representation of the Ca

conformational space of proteins, as defined by ‘‘state

of the art’’ atomistic MD simulations. As found systemati-

cally throughout this paper, this finding is independent of

the protein family or size, suggesting that this is a general

behavior in proteins, and that, bearing in mind its intrinsic

Table 2. Cross-Rmsd Distance and Similarity Index
between Cartesian Samplings Obtained from Monte
Carlo in Important Spaces Defined by the First 50
Eigenvectors Obtained by ED and the 2 Versions of
NMA Considered in This Paper

Size Protein a U

Small distance cutoff 1.90 0.97

inverse exponential 1.91 0.98

Medium distance cutoff 2.04 0.97

inverse exponential 2.09 0.98

Big and multidomain distance cutoff 1.70 0.97

inverse exponential 1.70 0.98

Calculations are performed considering only Ca, and values

shown here correspond to averages obtained for all of the pro-

teins in each category. For cross-rmsd distance (a in Å), see

Equation 16; for similarity index (U), see Equation 17.
570 Structure 15, 565–575, May 2007 ª2007 Elsevier Ltd All righ
limitations, NMA can be safely used to trace the flexibility

of proteins.

Conclusions

A very wide systematic comparison of essential deforma-

tion modes performed thanks to a very large database of

atomistic MD trajectories of representative proteins has

allowed us to get a proper picture of the quality of limita-

tions of simple NMA techniques compared to MD simula-

tions. Results obtained here are very stable, irrespective

of the protein family and size, and we are quite sure that

they can be safely translated to the entire proteome. We

found that individual NMA eigenvectors have small value,

but that the ‘‘important’’ space defined by the first, most-

relevant NMA eigenvectors provides an extremely correct

picture of the trace flexibility of proteins in aqueous

solution.

EXPERIMENTAL PROCEDURES

The Benchmark

A total of 30 proteins representative of all protein metafolds were

selected as described elsewhere (see Table S1 and Day et al. [2003]

and Rueda et al. [2007]); additional PDB entries were added to account

for large or multidomain proteins. Thus, the comparative study in-

cludes mono- and multidomain proteins of very different sizes—from

very small (31 residues) to extremely large (2545 residues)—with differ-

ent folds, amino acid compositions, secondary structures, topology,

and stability. We can expect then that consequences derived from

this massive analysis can be safely translated to the entire proteome.

Normal Mode Analysis

Even though other approaches are available (Doruker and Jernigan,

2003; Jeong et al., 2006; Tama and Sanejouand, 2001; Zheng et al.,

2006), we have used here the standard elastic network NMA approxi-

mation based on the use of Ca-Ca distances as descriptors of mole-

cular deformations. The molecular Hamiltonian defining the energy

necessary to distort a protein from its equilibrium geometry (the crys-

tallographic or the MD-averaged conformation) is given by the follow-

ing pairwise Hookean spring potential (Tirion, 1996) between Ca:

E =
X

Kijðdij � dij ½eq�Þ2; (1)

where Kij is a distance-dependent force constant (Equation 2) that

restrains the Ca-Ca interaction ij at the equilibrium distance, dij(eq)

(Doruker et al., 2000), taking from the MD-averaged structure.

Kij = dðdijÞC; (2)

where C is a constant equal for all interactions (10 kcal/mol Å2 [Suhre

and Sanejouand, 2004]) and d(dij) is 1 when dij is smaller than a thresh-

old distance (values of �8–9 Å are used) and 0 otherwise.

This approximation, referred to as distance cutoff, provides, despite

its simplicity, reasonable descriptions of large-scale molecular mo-

tions (Bahar and Rader, 2005; Ma, 2005), but it presents a source of

arbitrariness regarding the need to use a cutoff to remove springs for

distant interactions. Thus, other approaches have been developed to

define continuum functions for the spring constant. Among others

(Hinsen et al., 1999), Kovacs et al. (2004) have developed a simple

function that assumes an inverse exponential relationship between

the distance and the force constant (see Equation 3). The approach,

which provides good results in several examples (Kovacs et al.,

2004), maintains the simplicity of the original method, allowing us to

avoid the problems intrinsic to the use of an empirical cutoff.
ts reserved
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Figure 4. Examples of B Factor, Ca, Profiles Predicted by Activating the First 50 Modes in NMA and ED Simulations

As a reference, the MD values (typically almost superposed by the ED values) are shown. NMA values shown here were obtained after the scaling of

force constants (see text).
Kij = C

 
d0

ij

dij

!6

+ asij ; (3)

where C is a stiffness constant (taken as 40 kcal/mol Å2), and d0
ij is a

fitted constant, taken as the mean Ca-Ca distance between consecu-

tive residues.

Once the Hamiltonian is defined, the diagonalization of the mass-

weighted Hessian (Hm, see Equation 4) yields the eigenvectors (the

essential deformation modes) and the associated eigenvalues (l) or

vibrational frequencies. If the mass matrix is taken as the unit, the

eigenvalues appear in energy units.

Hm = M�1=2HM�1=2; (4)

where H is the Hessian matrix, and M is the diagonal mass matrix.
Structure 15, 5
Essential Dynamics, ED

This approach starts from the anharmonic representation of the

macromolecular system provided by the force field (Equations 5 and

6). After equilibration, MD will provide a Boltzmann’s ensemble of

the macromolecular conformational space (i.e., the trajectory).

E = Ebonded + Enonbonded ; (5)

Ebonded =
X

bonds

Ksðl � l0Þ2 +
X

angles

Ksðq� q0Þ2

+
X

torsions

X3

i = 1

Vi

2
ð1 + cosðif� xÞÞ; ð6Þ

Enon�bonded =
X
a;b

QaQb

rab

+
X
a;b

�
Cab

rab

�12

�
�

Dab

rab

�6

; (7)
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where l and q stand for bond lengths and angles, respectively; the sub-

script 0 represents equilibrium values; Ks and Kb are the associated

force constants; F is a torsion angle; Vi is the potential associated

with the Fourier terms used to represent torsions; x is the phase angle;

Q is an atomic charge; C and D denote the van der Waals parameters;

and rab stands for interatomic distance.

Diagonalization of the (Cartesian or mass-weighted) covariance ma-

trix yields a set of eigenvalues and the corresponding eigenvectors,

which represent the essential deformation of the molecule. Note that

the eigenvalues obtained by diagonalization of the Cartesian covari-

ance matrix appear in distance units, but can be easily transformed

into energy units by using:

kl =
kbT

ll

; (8)

where ll stands for the lth eigenvalue, kb is the Boltzmann’s factor, and

T is the absolute temperature (note that kl is associated with a mode

that affects the entire protein, thus differing from the force constants

that modulate Ca-Ca interactions; Equations 1–3).

It is worth noting that even though the meaning of the essential de-

formation modes obtained by NMA and ED is similar, the way in which

they are obtained is different. In NMA, we assume that (i) the reference

structure corresponds to a free energy minimum, (ii) no other minima

are significantly populated, and (iii) all of the thermal macromolecular

motions around the reference structure are Gaussian in nature (i.e.,

harmonic in energy). None of these assumptions exist in explicit-sol-

vent ED simulations based on physical potentials.

Statistical Comparison between NMA and ED

The deformability of proteins predicted by NMA and ED can be exam-

ined by analyzing the respective sets of eigenvalues and eigenvectors.

Several complementary aspects have been addressed to quantify the

degree of similarity between the deformation patterns.

The Relative Amplitude of the Deformation Space

The size and complexity of the accessible deformation space were

characterized by different measures, such as (i) the variance, (ii) the

strength of the softer deformation modes (harmonic force constants;

see Equation 8), and (iii) the number of modes needed to explain

90% of the structural variance.

Deformational Space Overlap

The simplest way to analyze overlap between two essential deforma-

tion spaces is to compare their corresponding eigenvectors (y) by us-

ing Hess’s metrics, as shown in Equation 9 (Hess, 2000; Noy et al.,

2006; Orozco et al., 2003):

gXY =
1

m

Xm

i = 1

Xm

j = 1

�
nX

i � nY
j Þ

2
; (9)

where X and Y stand here for two methods (NMA and ED), the indices

i and j stand for the orders of the eigenvectors (ranked according to

Table 3. Average Values for Lindemann’s Indices for
Buried and Exposed Residues

Location
Distance
Cutoff

Inverse
Exponential ED MD

Buried 0.20 0.21 0.20 0.22

Exposed 0.35 0.35 0.35 0.37

The averages are given for all proteins. The values were com-
puted from the Cartesian samplings in the important space

defined by the first 50 eigenvectors of ED and the 2 versions

of NMA used in this study. The real MD values are shown as

reference.
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their contribution to the structural variance), and m stands for the num-

ber of eigenvectors in the ‘‘important space,’’ which is defined as the

minimum number of eigenvectors needed to explain a certain variance

threshold.

Note that the similarity index depends on the size of the important

space (for m = 3N � 6 [N = number of Ca], the similarity index will be

always be equal to 1), which means that similarity indices need to be

referred to a background model to derive Z score indices like that

shown in Equation 10:

Zscore =
ðgXY ðobservedÞÞ � ðgXY ðrandomÞÞ

stdðgXY ðrandomÞÞ ; (10)

where the random models were obtained by diagonalization of

a pseudo covariance matrix obtained by random permutation of the

Cas for each snapshot. The standard deviation in Equation 10 was ob-

tained by considering 500 different random models.

It is worth noting that a good similarity index (Equation 9) might be

due to three different situations: (i) the ideal case of a perfect one-to-

one correspondence between eigenvectors of the two important

spaces, (ii) a good correspondence between permuted eigenvectors

(example: the first eigenvector of space X fits perfectly with the tenth

eigenvector of space Y), or (iii) a perfect spread of a given eigenvector

from X into many others from the space defined by Y. To study these

possibilities, we computed the dot products between eigenvector X/Y

pairs, determining the difference in rank between the eigenvectors

showing the largest overlap and also the eigenvector ‘‘spread func-

tion’’ (see [Hinsen, 1998] and Equation 11):

si =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm

j = 1

j2h2
ij �

 Xm

j = 1

jh2
ij

!2
vuut ; (11)

where hij = yX
i � yY

j and m = 3N � 6 (N = number of Ca; if not all the

modes Y are available, the overlaps must be scaled to ensure thatP
j

h2
ij = 1). Note that for two identical sets of modes, h2

ij is a value other

than zero for only i = j, and the spread becomes 0.

Relative Distribution of Deformational Pattern

Additional measures were performed to capture similarities in the

atomic distribution of the deformation map that are not evident in ei-

genvector metrics based on the dot product. A first index designed

to capture these similarities was developed by Gerstein and coworkers

(Oi
XY ; see Equation 12 and Krebs et al. [2002]) and is based on the di-

rect comparison of the components of eigenvectors i and j on a given

residue (the kth residue of a total of N):

Oi�j
XY =

1

N

XN

k = 1

��vi;X
k � vj;Y

k

��: (12)

A complementary estimate of the similarity at the atomic level of the

deformation space can be obtained by generating Cartesian pseudo

trajectories by activating normal mode deformations by using a Me-

tropolis Monte Carlo algorithm with a Hamiltonian defined as shown

in Equation 13. The displacements obtained can then be projected

to the Cartesian space to generate pseudo –trajectories.

EX =
Xm0
i = 1

kX
i DDX

i ; (13)

where the sum can be extended from 1 (m0 = 1; useful when we want

to compare pairs of eigenvectors) to the entire important space

(m0 = m), and DDX
i stands for a displacement along a given mode (i)

in space X.

The (pseudo)trajectories obtained by the Metropolis procedure can

then be compared with simple metrics, such as the direct or normal-

ized cross-rmsd (Equations 14 and 1 5), which determines the degree

of similarity between the structures that are reasonably sampled in two
hts reserved
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different (pseudo)trajectories (A and B). Furthermore, they can be used

to obtain atomic measures of mobility (at a given temperature), such as

B factors, or estimates of the macroscopic flexibility properties of pro-

teins, like Lindemann’s index (Equation 16) (Rueda et al., 2007; Zhou

et al., 1999).

aAB =
1

MAMB

XMA

k = 1

XMB

k = 1

 
1

N

X3N

l = 1

ðxAl � xBlÞ2
!1=2

; (14)

where N is the number of atoms, and M is the number of frames.

UAB =
aAA + aBB

2aAB

; (15)

DL =

�P
i

�
Dr2

i

�	
N

�1=2

a0
; (16)

where a0 is the most probable nonbonded near-neighbor distance, N is

the number of atoms, and hDr2i stands for the mean square displace-

ments of the atoms from their equilibrium position.

Technical Details

In all cases included in the benchmark, at least 10 ns trajectories were

obtained by using the isothermal-isobaric periodic boundary simula-

tions in explicit water and ions and the Particle Mesh Ewald (Darden

et al., 1993) technique to account for long-rang electrostatic interac-

tions. The quality of MD simulations is dependent on the quality of

the force field used. Thus, for each protein (see Table S1), simulations

were repeated by using three different force fields (AMBER parm-99

[Cornell et al., 1995; Wang and Cieplak, 2000], CHARMM22 [MacKerell

et al., 1995, 1998], and OPLS/AA [Damm et al., 1997; Jorgensen et al.,

1996; Kaminski et al., 1994, 2001]). Due to the strong similarity among

the trajectories obtained with these force fields (Rueda et al., 2007), the

three trajectories for each protein were combined to obtain a ‘‘meta-

trajectory’’ of 30 ns, which was then used for ED calculations. In all

cases, individual MD trajectories correlate very well with the meta-

trajectory (data available upon request). Previous studies (Rueda

et al., 2007) show that, for the selected proteins, reasonable sampling

of equilibrium conformation is obtained within the 10 ns simulation

time, but selected cases were studied by using longer trajectories

(see below). We find that, for our purposes, the same results are

obtained if 10 or 100 ns samplings are considered (see Table S2).

For computational reasons multidomain proteins were studied only

with the parm-99 force field (these large systems were studied for

100 ns).

MD calculations were performed by using both AMBER8.0 (Case

et al., 2004) and NAMD2.6 (Kale et al., 1999). All calculations were

carried out on the MareNostrum supercomputer at the Barcelona

Supercomputer Center within the MODEL project (http://mmb.pcb.

ub.es/MODEL), as well as in workstations in our laboratory.

NMA calculations were performed by using Elnémo (Suhre and

Sanejouand, 2004) and DFprot (Garzón et al., 2007). Normal mode

analysis was performed by using MD-averaged conformations as refer-

ence structures in combination with the two formalisms noted above

with the following default parameters: (i) force constant (C in Equation 2)

equal to 10 kcal/mol Å2 with a distance cutoff of 8 (small and medium) or

9 Å (large and multidomain), and (ii) inverse exponential formalism

(Equation 3) with a = 0, C = 40 kcal/mol Å2, and d0
ij = 3.8 Å. As noted,

we also explored the behavior of NMA when either the force constant

or the cutoff was changed.

Supplemental Data

Supplemental Data include figures and tables and are available at

http://www.structure.org/cgi/content/full/15/5/565/DC1/.
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