$1\left(A T_{1}\right)$ receptor. The purpose of this study was to test whather pressure overload induced IEG expression is also mediated by AT_{1} receptor stimulation in adult (3 month old) rat hearts in vivo. In one group of rats ($n=7$), pressure overioad was created by ascending aortic constriction to increase left ventricular pressure by $\approx 70 \mathrm{mmHg}$ for 90 mins . In a secind group ($\mathrm{n}=5$), the same degree of pressure overload was induced 1 hour atter administration of the AT T_{1} receptor antagonist GR138950X ($4 \mathrm{mg} / \mathrm{kg}$), at twice the dose which abolished hemodynamic responses to a $0.4 \mu \mathrm{~g}$ bolus of All. Firally, a third group was comprised oí sham operated animals ($n=5$). RNA was isolated from the left ventricles and t -fos expression was analyzed by Northern blot; band intensities were nomalized to those of GAPDH or β-actin.

c-fos expression increased after 90 minutes of pressure overtoad (3.1 times greater than sham). In AT 1 -antagonist pretreated animals, c-fos expression increased to a similar degrese as in the non-treated, aottic constricted animals (2.7 times greater than sham). There was no statistical difference between c-fos expression in these two groups.
Thus, in contrast to neonatal myocytes in vitro, All stimutation of AT_{1} receptor does not appear to be involved in pressure overload induced cfos expression in adult rat hearts in vivo. Accordingly, the mediator of IEG expression during pressure overtoad in vivo remains to be elucidated.

MYOCARDIAL AND PERICARDIAL FUNCTION AND DISEASE-BASIC

901-95 Time-Dependent Interactions Between Epicardial and Endocardial Fibers Determine Left Ventricular Tarsion

Sheng-ding Dong, Sam A. Buffer, Jr, Paul S. Heees, Kennath Fent, James L. Weiss, Etward P. Shapiro. Johns Hopkins University, Baltimore, MD

Torsion begins in a clockwise direction in early systole, reverses during ejection, then recoils rapidily in early diastole. We hypothesized that this pattern results from time-dependant interactions betwean counterclockwise epicardial (epi) and clockwise endocardial (endo) fibers. We used cool pericardial lavage to selectively delay the onset and reduce the rate of epi fiber contraction and relaxation, and measured the effect on the monophasic action potential (MAP), endo early systolic clockwise torsion (ESCT), and recoil rate. Nine open chest dogs underwent continuous pericardial lavage at baseline (BL) and during cooling (CL) of lavage fluid, ($36.7 \pm 0.9^{\circ} \mathrm{C}$ vs. 30.5 ± 1.0^{8} $C, p<0.0001$), while blood and endo temperatures were held moristant ($35.4 \pm 1.2^{\circ} \mathrm{C}$ vs. $35.6 \pm 1.3^{\circ} \mathrm{C}$). Tagged MRI was perfarmed at BL and CL. From basal and apical short-axis images, torsion was measured as the apex to base difference in rotation about the cavity ceniroid. Recoil rate was expressed as the slope of linear regression of torsion versus time during first 65 ms after peak systolic torsion. Epi activation time (AT), and 90% repolarization time ($\mathbf{~} 0 \% \%$ RT) were measurec using a MAP catheler.

	AT (ms)	$\begin{aligned} & 90 \% \mathrm{RT} \\ & (\mathrm{~ms}) \end{aligned}$	$\begin{aligned} & E S C T_{\text {api }} \\ & \text { (9) } \end{aligned}$	$\begin{aligned} & \text { ESCT }_{\text {endo }} \\ & \text { (9) } \end{aligned}$	Recoliept ($9 / \mathrm{ms}$)	$\begin{aligned} & \text { Rasaillendo } \\ & (1 / \mathrm{mss}) \end{aligned}$
BL	33 ± 5	214 ± 16	0.5 ± 0.5	0.9 ± 1.3	0.17	0.07
CL	39 ± 4	$\underline{31}+13^{*}$	1.7土 ${ }^{\text {. }}{ }^{\text {a }}$	$2.8 \pm 23^{*}$	0.07*	0.01*

${ }^{4} \mathrm{p}<0.05$, as compared to EL.
Conclusions: Selective delay in epi contraction and relaxation results in: (1) an increase in ESCT, indicating that this motion is due to unopposed contraction of clockwise endo fibers, and (2) a marked decrease in endo recoil rate, indicating that this transmural deformation is dominated by epi relaxation.

901-96 Simultaneous Determination of Regional Left Ventricular Wall Stresses in Intact Canine Hearts

Abe DeAnda Jr., Marc R. Moon, Masashi Komeda, Srdjan D. Nikolic, George T. Daughters, Neil B. Ingels, D. Craig Miller. Stanford University School of Medicine, Stanford, CA

LV wall stress plays an important role in determining myocardial O_{2} consumption, modulating LV hypetrophy, and regulating LV mechanics. To determine
the instantaneous, simultaneous average LV isotropic wall stress at diflerent locations, myocardial markers were implanted into the LV walls of 14 dogs to calculate 3-D volurne and wall thicknasses (using computer-assisted analysis of biplane videofluorographic imagas). A total of 26 markers were placed; 18 of these markers were positioned on the subepi- and subendocardial surfaces to measure wall thickness at nine locations: 3 each on the anterior (ANT), lateral (LAT), and posterior (FOS) walls. One to two weaks following marker placement the dogs were studied both before and atter inotropic stimulation with Ca^{++}($10 \mathrm{mg} / \mathrm{kg}$ IV bolus). End systolic wall stresses ($\boldsymbol{\sigma}$, kdynes/ $/ \mathrm{cm}^{2}$) were then calculated from the instantaneous LV pressure. regional wall thicknesses, and local geometry.

Wall		Apieal	Equatorial	Easal
ANT	σ	174 451	255 ± 175	274土44*
	$\sigma, \mathrm{Ca}++$	194*52	269 ± 161	$315 \pm 81 *$
LAT	σ	116 4.44	201 $\pm 74{ }^{\text {* }}$	266 2115°
	$0, \mathrm{Ca}^{++}$	133 564	224 ± 98	\$04 $\pm 15{ }^{*}$
POS	σ	147*62	191 ± 98	$206 \pm 113^{*}$
	${ }^{6, \mathrm{Co}}{ }^{++}$	167 578	212 ± 126	$229 \pm 125^{\circ}$

mean ± 1 SD; * $0<0.05$ vs. Apical level, ANOVA
Multivariate ANOVA demonstrated signilicant regional heterogeneity (level of marker insertion, $p<0.001$; regional LV wall, $p=0.002$) in end-systolic σ inotropic state had less of an influence ($p=0.056$). Univariate ANOVA revealed a gradient of wall stress increasing from apex to base and decreasing from the anterior to posterior wall as well as sigrificant increanes in σ with Ca^{++}(with the excestion of the equatorial sites). Thus, end systolic wall stress is heterogeneous, and may be influenced by myocardial fiber orientation as well as the insertion of the intact papillary muscles and chordas tendineag.

MYOCARDIAL AND PERICARDIAL FUNCTION AND DISEASE-CLINICAL

901-97 Midwall Left Ventricular Performance in Normotensive Normal-Weight Children and Adults

Giovanni de Simone ${ }^{2}$, Richard B. Devereux ${ }^{1}$, Stephen Daniels ${ }^{3}$, Gian F. Mureddu ${ }^{2}$, Rosanna Greco ${ }^{2}$, Thomas R. Kimball ${ }^{3}$, Sandra Witt ${ }^{3}$. ${ }^{1}$ Comell Medical Center, New York, NY; ${ }^{2}$ Federico II University, Naples (Italy); ${ }^{3}$ University of Cincinnati, OH
Purpose: To study the relation of LV midwall shortening (ms) to LV geometry in a large normal population across a wide spectrum of age.

Methoo: mS and circumferential end-systolic stress (CESS) were assessed in 159 normal aduits (AD, 79 women and 80 men, 18 to 71 years) and 438 infants to adolescents (CH, 198 temales, 240 males, 1 day to 17 years) by echocardiegraphy and cuff blood pressure (BP).

Results: mS was negatively related to cESS in a number of regression models (linear, inverse, allometric, various exponential models; all $\mathrm{p}<0.001$). The inverse model maximized the R-square and minimized the error (SEE), in AD ($\mathrm{mS}=15 \pm 400 / \mathrm{cESS}, \mathrm{r}=-0.33, \mathrm{p}<0.0001$) and in $\mathrm{CH}(\mathrm{mS}=18 \pm$ 184/cESS, $r=-0.13, p<0.008$), as well as in the whole population ($\mathrm{mS}=$ $17+261 / \mathrm{cESS}, \mathrm{r}=-0.18, \mathrm{SEE} \approx 2.6 \%, \mathrm{p}<0.0001$) $\mathrm{mS} \mathrm{as} \mathrm{a} \%$ of predicted from cESS by the group-specific equations ($\%$ PmS) was compared in 4 agagroups ($I=$ binth to 10 years; $I I=10$ to 17 years, puberty and adolascence; III $=17$ to 50 years; IV \approx over 50 yaars).

Age	$\%$ PImS $(\%)$	Relat. Wall Thickn.	
<10 yeads	$106 \pm 14^{*}$	$0.26 \pm 0.05 *$	$3.22 \pm 0.24^{*}$
$10-17$ years	97 ± 17	0.31 ± 0.06	2.83 ± 0.24
$17-50$ years	99 ± 12	0.32 ± 0.06	2.80 ± 22
>50 years	100 ± 10	0.34 ± 0.05	2.87 ± 0.28

" $p<0.001$ by Schaffe's test vs the other groups
Conclusions: Thus, mS is related to cESS by inverse regression equations in a wide range of age. Midwall LV pertommance and LV size/height are enhanced duting infancy and childhaod and stabilize alter age 10 even as LV geormetry becames moie concentric.

901-98 Climical Protile of Constrictive Pericarditis in the Modern Era: A Survey of 135 Cases

Lieng H. Ling, Jae K. Oh, James B. Seward, Gordon K. Danielson, A. Jamil Tajik. Mayo Clinic, Rochester, MN
Although the clinical features of constrictive pericardilis (CP) are wall known, there is limited knowledge of its profile in the current era. Between January 1985 to June 1995, 135 pts (76% males, mean age $56 \pm 16 \mathrm{yrs}$) had a diagnasis of CP establisthed at the Mayo Clinic (133 by surgery, 2 by

