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2. Methodology and Data 

Optical fibers are made of silica glass which is a centrosymmetric material, and therefore does not possess 
second-order susceptibility in the electric dipole approximation. The symmetry of the silica glass is broken and 
effective second-order nonlinearity can be present by applying an electric field to a silica sample. Thermal poling is 
a process to record an electric field in the glass, and thereby create a permanent change of the symmetry. 

Compared to other poling techniques, such as CO2 laser-assisted poling and ultraviolet poling, thermal poling 
offers a repeatable and reliable method to produce a large second-order nonlinearity and linear electro-optic 
coefficient in bulk silica and silica fibers [Xu et al. (2001)]. In the process of thermal poling, a fiber is usually heated 
to temperatures of 200 300°C, while a strong external electrical field 107 V/m is applied across the fiber. In this 
temperature range, alkali ions inside the fiber, such as K+, Li+ and especially Na+, become thermally activated and 
free to move. Under the influence of the external field, these ions migrate from the anode toward the cathode 
through the glass matrix [Alley et al. (1999), Quiquempois (2002)]. The ionic current in the glass due to the charge 
migration is on the order of magnitude of 10 μA upon the application of the external field. After tens of minutes, the 
current decreases and reaches a steady state value [Myers et al. (1991)]. At this time, the fiber is cooled down to 
room temperature with the external electric field still applied. Once the fiber reaches room temperature, the external 
field is removed. Because the mobilities of the alkali ions at room temperature are several orders of magnitude 
smaller than at elevated temperatures, the alkali ions tend to be “frozen” inside the glass, which results in an internal 
space electrical field. This internal electrical field, coupled with the intrinsic third-order nonlinear susceptibility of 
the glass, gives effective second-order nonlinearity. 

The electrical field created inside the glass after poling has a spatial profile determined by the internal charge 
distribution. As the second-order nonlinearity results from the electrical field, it also displays such a spatial profile. 
This second-order nonlinearity profile is mainly distributed within several micrometers beneath the anode [Myers et 
al. (1991), Kazansky et al. (1995)], and it is nonuniform throughout the glass. If the portion of the profile with the 
maximum values of second-order nonlinearity has a good overlap with the core region of the fiber, large effective 
second-order nonlinearity can be experienced by the optical wave propagating in the fiber. Under such a condition, 
the poling is efficient and the poled fiber can be used for efficient nonlinear process. 

The fibers must meet several requirements for efficient thermal poling. First, as a strong external electrical field 
is required to break the symmetry of the silica material, high external voltage (5 10 kV) is usually applied along the 
fiber length. This requires special design of the fiber geometry to let electrodes be incorporated into the fibers. 
Second, the insertion loss of the fiber might be increased, as the optical mode could be disturbed due to the presence 
of the electrodes. Thus the relative positions of the fiber core and the electrodes need to be carefully designed to 
mitigate loss. Third, the core of the fiber must be properly positioned relative to the two electrodes to achieve a good 
overlap with the induced second-order nonlinearity profile for large effective second-order nonlinearity [Zhang 
(1999)]. 

Twin-hole fibers meet these requirements. These fibers have two air holes parallel to the core along the fiber 
length. Each core can accommodate an electrode, to which, high external voltage can be applied. As twin-hole fibers 
can be easily spliced to single mode fiber, they only add small coupling losses (< 3 dB) to the fiber systems. 

Inserting electrodes into the holes of the twin-hole fiber is the first step of the poling experiment. In the literature, 
two methods have been reported for inserting electrodes: pumping conductive molten alloys into the holes [Myrén et 
al. (2004), Myrén, Margulis (2005), Fokine et al. (2002)] and inserting metal wires into the holes manually [Xu et al. 
(2001), Wong et al. (1999)]. 

Phase matching between the fundamental and the second harmonic is necessary to improve the efficiency of 
second harmonic generation, which is achieved through the creation of periodic electric-field-induced-second-
harmonic generation in optical fibers (creation of periodically poled silica fibers). Period of the structure and 
length of the periodically poled silica fiber determine the wavelength range of the pump for the condition of 
quasi-phase matching [Fejer et al. (1992)]. However, direct periodic poling is not readily available for twin-hole 
fibers. Alternatively, the quasi-phase matching is achieved by erasing the poled region periodically using 
ultraviolet light after uniform second-order nonlinearity is recorded in the fiber. 
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