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Abstract 
Supermodeling is an interesting and non-standard concept used recently for simulation of complex and 
non-linear systems such as climate and weather dynamics. It consists in coupling of a few imperfect  
sub-models to create the superior  supermodel. We discuss here the supermodeling strategy in the 
context of tumor growth simulation. To check its adaptive flexibility we have developed a basic, but 
still computationally complex, 3-D modeling framework of melanoma growth. The supermodel of 
melanoma consists of a few coupled sub-models, which differ in values of a parameter responsible for 
tumor cells and extracellular matrix interactions. We demonstrate that due to synchronization of sub-
models, the supermodel is able to simulate qualitatively different scenarios of cancer growth than 
those observed for sub-models when run separately. These scenarios correspond to the basic types of 
melanoma cancer. This property makes the supermodel very flexible to follow and to predict real cases 
of melanoma development through learning the coupling coefficients between sub-models from real 
data. On the basis of preliminary simulation results, we discuss the prospects of supermodeling 
strategy as a promising coupling factor between formal and data-based models of tumor. 
 
Keywords: supermodeling, melanoma growth, computer simulation 

Introduction 

Mathematical and computer modeling of cancer is one of the greatest challenge in computational 
biology and the principal goal of computational oncology. There are numerous overview papers and 
books about modeling of tumor dynamics, which contain the knowledge and experience collected 
during almost 40 years of history of cancer simulation (see, e.g., Bellomo, et al., 2008; Vittorio and 
Lowengrub, 2010; Deisboeck and Stamatakos 2010; Deisboeck, et al., 2011; Barillot, et al., 2012; 
Wolkenhauer, et al., 2014, Wodarz and Komarova, 2014). Though the progress in deeper conceptual 
understanding of interactions between multiple multiscale processes taking part in the cancerogenesis 
cannot be underestimated, the habitual application of cancer progression monitoring in clinical 
medicine by employing computer simulations is still in an infant stage. Countless of interrelated 
microscopic and macroscopic factors underlying tumor development from the moment of its birth to 
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its irresistible proliferation throughout the whole organism, highly complicated growth medium, very 
individual properties of invaded organism and its surrounding environment, and sensibility on current 
physical conditions, make the whole system computationally irreducible. Therefore, making longer 
and reliable prognosis about tumor dynamics just on the basis of mathematical models (even well 
parametrized) and assumed initial conditions (even well defined) is a nonsense like that of weather 
forecast for a week by using only existing numerical models and current measurements of 
temperature, pressure, humidity and wind fields. The intuitive approach to make computer simulation 
useful for predicting dynamics of such the complex systems is prediction/correction scheme, where 
numerical simulations are continually verified by incoming data and are reinforced by data models. In 
our opinion, data-based models will be in the future the key modeling components in predicting 
behavior of biological systems. The formal mathematical models could play the role of an additional 
knowledge, which defines more precisely the feature space topology for machine learning tools. In this 
context, the following question can be posed: How complex and detailed such the models should be? 

In machine learning, very complicated data models involving many parameters are difficult to 
teach (adapt to data) and are prone to overfitting. Hence, their usefulness in generalization and 
knowledge extraction can be questionable. Exactly the same deficiency concern intricate mathematical 
models, which   taking into account their nonlinearity  may become completely out of control, 
producing numerical and methodological artifacts. The state of the art in machine learning shows that 
ensemble learning, where data models are made of coupled simple sub-models, results in the best 
classifiers. It can be observed following the successes of boosting algorithms, neural networks 
(Alpaydin, 2014) and recently the Hinton's deep belief  networks (Hinton et al., 2006). Such the 
ensemble models are adapted to data through learning both the parameters of sub-models and their 
coupling strength.  

Very similar concept can be applied when imperfect or approximate formal models of a complex 
process are available. In this case, the supermodel is created as a combination of coupled sub-models 
(van den Berge, et al., 2011). However, unlike in ensemble learning, only the coupling coefficients 
between sub-models can be learned from data. The imprecise fit of their internal parameters can be 
compensated assuming that they values are different in every sub-model. The role of coupling 
coefficients is to correct sub-models imperfections and fit them to real data via synchronization. 
Synchronization is the fundamental phenomenon, which allows for coordinating the dynamics of 
multiple mutually coupled systems. In (Duane, et al., 2006; Yang, et al., 2006) the synchronization 
mechanism was proposed as a method for data assimilation in climate science. Moreover, it was 
shown in (Duane, 2009) that by coupling various imprecise models and by developing a supermodel, 
one can increase substantially modeling quality and efficiency. The research teams from SUMO FET 
European Project (http://projects.knmi.nl/sumo/) greatly extended the theory and practice of 
supermodeling. They employ synchronization mechanism to construct ensembles of coupled models 
consisting of perturbed variants of a single model, heterogeneous models and ensembles of 
heterogeneous models (e.g. atmosphere and ocean models). It was shown that by assuming sufficient 
coupling strength, the sub-models in the supermodel can synchronize and come into a consensus state. 
Furthermore, when coupling coefficients are learned from data, the dynamics of the synchronized state 
may provide a better representation of realistic behavior than the sub-models would do.   

In this paper we propose to apply the supermodeling strategy for simulating cancer proliferation.  
To this end we have developed a computational model of melanoma skin cancer. It is based on a 
single phase continuum mathematical description and includes only the most important tumor growth 
factors such as angiogenesis, vascular system remodeling, and basic interactions of tumor cells with 
extracellular matrix. The mathematical model of cancer and its parameters were taken from the 
previously published papers (Chaplain, et al., 2006; Welter and Rieger, 2010). We have embedded it 
in the layout mimicking realistic skin structure. To simulate tumors of one centimeter in size or larger, 
in a reasonable computational time, we have implemented our model in CUDA GPU environment. 
Moreover, in contrast to the previous models (Chaplain, et al., 2006; Welter and Rieger, 2010), we 
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have added additional terms responsible for interaction between cancer cells and extracellular matrix 
(Ramis-Conde, et al., 2008). Tumor growth speed is monotonically dependent on a constant, which 
parametrizes this term. The supermodel of melanoma consists of coupled imperfect  models differing 
in the values of this parameter.  

In the case of weather dynamics, the trajectories are located on a strange attractor of a finite 
volume in the phase space. Meanwhile, the type of initial conditions of tumor growth is very different, 
what may considerably influence sub-models synchronization. Therefore, we address here the question 
if the competitive growth simulated by tumor sub-models will not hamper the synchronization 
between them. In the following sections we present the main principles of supermodeling, the 
computational model of melanoma, and simulation results of melanoma supermodeling. Finally, we 
discuss the conclusions and the main directions of future work. 

Supermodeling principles 

Here we describe briefly the supermodeling basics with original notation from (van den Berge, et 
al., 2011). Let us assume that the supermodel consists of a few =1,...,M imperfect sub-models, which 
are described by a set of differential equations (ODE or PDE) of the form: 

 
(1)

where the state vector x =(x 1,..., x m) consists of m dynamical system variables. We introduce 
coupling terms between sub-models  and v such as:  

  
(2)

where coupling tensor . The supermodel evolution xsumo with time t is described by the 
ensemble average, i.e.: 

. 
(3)

A measure of the quality of synchronization between  and v is the average of squared distance 
between corresponding points. The synchronization error is defined as follows: 

  
(4)

where: N is the number of computational grid nodes, lp is the number of  pairs, r is the grid 
vector. The tensor of coupling coefficients C={Ci } is learned from the ground truth  (data) vector 
xgt by minimizing the weighed squared error E(C) in K following timesteps, i.e.: 

 
(5)

where t  is a discount factor, with 0< < 1 (van den Berge, et al., 2011). The error function E(C) 
measures a supermodel error and internal error (numerical error, imperfection of initial conditions etc.) 
growth. The second term surpasses the first one at later times in the short-term integration (see (van 
den Berge, et al., 2011)). The discount factor is included to decrease the contribution of internal error 
increase. 

There are many questions which have to be answered prior the supermodel development: How to 
combine the individual models? By coupling of all or only some of the most important dynamical 
variables? Or maybe by exchanging some fields or fluxes as it is in climate modeling (Hiemstra, et al., 
2012; Mirchev, et al., 2012)?. Can the supermodel follow changes in the real system, which are 
unknown for sub-models but are present in training data? In this context the remarkable result was 
published in (van den Berge, et al., 2011). It was shown that the supermodel made of imperfect Lorenz 
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systems was able to accurately follow the modifications of the Lorenz attractor. Another problem with 
supermodeling is that there are many local minimums of E(C). As shown in (Hiemstra, et al., 2012), 
with different starting conditions completely different values of C can be found. It appeared, however, 
that the supermodels with these various minimums all produce very similar attractors close to the 
ground truth  with about the same performance quality.  

As shown in (van den Berge, et al., 2011; Hiemstra, et al., 2012), not all dynamical system 
variables have to be coupled. Particularly, in case of some complexity constrains. Similarly, when the 
sub-models are incomplete and are focused on different aspects of reality, some dynamical variables 
cannot be shared by all of them. This is the reason to consider partially coupled sub-model ensemble 
as well. 

The supermodeling is a very interesting idea, which is used for climate and weather simulation. 
However, unlike climate and weather, many complex biological phenomena  such as tumor 
proliferation  represent growth dynamics. In this case, subsequent patterns produced by the system in 
time are substantially different from those obtained in the past and in the future. Additionally, they 
strongly depend on a growth setup and initial simulation conditions. Therefore, the question can be 
addressed here if the supermodeling can also be used for modeling the systems representing growth 
dynamics? 

Melanoma supermodel 
Melanoma belongs to the most aggressive and malignant tumors. This neoplasm has the highest 

resistance to anticancer therapy in its advanced stage (seer.cancer.gov/statfacts/html/melan.html). Up 
to now, to the best of our knowledge, there are no computer models of melanoma dynamics in an 
environment simulating skin. To this end, we have developed a general model of melanoma on the 
basis of models published in (Chaplain, et al., 2006; Ramis-Conde, et al., 2008; Welter and Rieger, 
2010; Manning, 2013) and we have created a setup that mimics layers and vasculature of real skin (see 
Fig.1).  

  
 
Figure 1: The modeling layout with growing melanoma at the center. The skin tissue layers are depicted from 
the top to the bottom as follows: stratum corneum, stratum spinosum, basement membrane, dermis and 
hypodermis. The vasculature is shown in red and the tumor from black (the necrotic center) through blue (the 
lowest concentration of cancer cells) to red (the highest concentration of cancer cells). 
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Of course, the skin vasculature is greatly simplified comparing to the real one. It is modeled by two 
regular meshes of blood capillaries placed horizontally on the top of dermis and hypodermis, 
respectively. Their nodes are connected by vertical blood vessels. The Dirichlet boundary conditions 
are defined at the computational box boundaries. The tumor starts to growth at the center of the 
epidermis just above the basement membrane. Our mathematical model of melanoma is of a single 
phase continuous type (Vittorio and Lowengrub, 2010). It is described by means of mainly diffusion-
reaction partial differential equations. Their numerical integration simulate spatio-temporal evolution 
of density fields of tumor angiogenic factors (TAF), oxygen, cancer cells and the process of vascular 
remodeling. Below we enumerate the main equations describing the tumor model, which come mainly 
from (Chaplain, et al., 2006; Welter and Rieger, 2010). The parameters description and their values, 
adopted from (Ramis-Conde, et al., 2008; Chaplain, et al., 2006; Welter and Rieger, 2010; Barillot, et 
al., 2012; Manning, 2013), are collected in Table 1. 
a) The equation below describes endothelial cell dynamics, i.e., the vascular network evolution. We 
denote by n the endothelial cell density per unit area, which spatio-temporal evolution is as follows: 

 
(6) 

b) The chemotactic migration is characterized by the X(c) function, which reflects the decrease in 
chemotactic sensitivity with increased TAF concentration and: 

  
(7) 

c) Tumor angiogenic factors (TAF) concentration c decays close to blood vessels according to: 

  
(8) 

where ni=1 in the vicinity of endothelial cells and 0 elsewhere. 
d) The following equation describes the spatio-temporal changes in fibronectin concentration, i.e., 

 
(9) 

e) The equation below represents the evolution of density field of Matrix Degrading Enzymes (MDE). 
Proliferating endothelial cells secrete MDE to penetrate the extracellular matrix (ECM). 

 
(10) 

f) The oxygen concentration is described by the Poisson equation, where o(B) is the blood O2 level: 

  
(11) 

g) Hypoxic tumor cells (which means that locally o<oTC) produce TAF. Its concentration c in the 
tissue -like method (Welter and Rieger, 2010) and 

. 
(12) 

h) The following equation describes the evolution of density field of cancer cells:  
  

(13) 

i) where J is the tumor cell flux and b+ and b- are source (cell birth) and sink (cell death) terms, 
respectively. The flux depends on the gradient of tumor pressure P: 
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(14) 

In the model we have introduced an additional flux component equal to rb A (Ramis-Conde, et al., 
2008), which is responsible for interaction between degraded extracellular matrix and cancer cells. 
Hence: 

. (15) 

For each of skin layer we have assumed a proper diffusion coefficient Db of tumor cells by employing 
experimental data from (Manning, 2013). The diffusion coefficients reflect various proliferation 
speeds of tumor cells in corresponding skin layers. 
j) The sources and sinks are computed from the following expressions: 

, 
(16) 

 
(17) 

k) The next equation represents time evolution of ECM density in tissue: 

. 
(18) 

l) The evolution of density A of degraded ECM in the tissue is described by: 

. 
(19) 

Hence, vector x=(b,n,c,f,m,M,A) is the state vector of all dynamical system variables representing 
concentration fields in 3-D space. To implement the model in the most efficient way on multiple GPU 
boards in CUDA environment, we have introduced some simplifications.  

First of all, we approximated the formula described by Eq.12, by the Poisson equation, where c(B) 
means the density of necrotic cells, hence: 

 . (20) 

Similarly, the equation responsible for oxygen distribution was also simplified and reads now: 

  
(21) 

where c and o are the constants (see Table 1). It is not necessary to solve this equations in every 
timestep. We periodically match the concentration density of oxygen to follow the diffusion limits 
reported in (Manning, 2013). Having in mind that dynamics of vasculature is a key process influencing 
tumor dynamics, we included to our model the most of processes described in (Welter and Rieger, 
2010) such as vessel sprout initiation, sprout migration, vessel wall degradation and their collapse.  

In this paper, we consider partially coupled supermodel, i.e., the system of sub-models is linked by 
a single variable, namely, density of tumor cells x1=b (see Eq.13). Because we are focused on the 
growth type dynamics, we decided to construct the supermodel by using three melanoma sub-models 
differing in values of rb (see Eq.15) i.e., rb=0.0001, 0.0003, 0.0005, respectively. Just rb is directly 
responsible for the speed of tumor growth. We simulate the spatio-temporal dynamics of uncoupled 
model consisting of three independent sub-models (i.e., C={0} and the supermodel is represented as 
the average of sub-models (Eq.3)) and three  supermodels connected by weak  Cw

1 , strong   Cs
1 and 

very strong  Cvs
1 coupling coefficients: 
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Cw

1 =  Cs
1 = 

 
Cvs

1 = 

We have checked that increasing the number of sub-models l does not change substantially the 
supermodel behavior. The coupling term between sub-models is turned on after 2500 timesteps to 
avoid the amplification of large errors produced at the beginning of simulations and caused by 
different tumor growth speeds for various rb. The quality of models synchronization is measured by 
summing the synchronization error from Eq.4 over all sub-models pairs ( ,v) ( ,v =0,1,2).  
 

Table. 1 Description of the melanoma model parameters and their values. 
Symbol Description  Value 

(dimless) 
n Haptotactic cell migration (Chaplain, et al. 2006) 0.28 

Dn Diffusion of endothelial cells (Chaplain, et al. 2006) 0.0003 
n Chemotactic cell migration (Chaplain, et al. 2006) 0.38 

n Chemotactic constant (Chaplain, et al. 2006) 0.6 

c TAF consumption rate (Chaplain, et al. 2006) 0.025 

f Production rate of fibronectin (Chaplain, et al. 2006) 0.0125 

f Degradation rate of fibronectin (Chaplain, et al. 2006) 0.1 

m Production rate of MDE (Chaplain, et al. 2006) 0.0000015 

m Diffusion coefficient of MDE (Chaplain, et al. 2006) 0.0025 

m Degradation rate of MDE (Chaplain, et al. 2006) 0.75 
Db  Diffusion coefficients of tumor cells in the air and various 

skin layers ( StratumCorneum,  StratumSpinosum,  BM,  Dermis, 
Hypodermis) (Manning, 2013) 

20; 83.0;  
8.3; 41.5; 
20;0.0166 

rb Tumor cells chemoattractant sensitivity (Manning, 2013) 1-3-5x10-4 
c
b
norm, 

cb
max 

Normal and maximum density of tumor cells (Welter and 
Rieger, 2010) 

1;2 

TTC Tumor cells proliferation time (Welter and Rieger, 2010) 10 

b Instantaneous reaction rate (Ramis-Conde et al., 2008) 0.5 
oTC Tumor cells proliferation O2 threshold (Welter and Rieger, 

2010) 
0.1 

Pb Maximum stimulated mitosis rate (Ramis-Conde et al., 2008) 0.001 
TTC

death Hypoxic tumor cells survival time (Welter and Rieger, 2010) 100 
oTC

death Tumor cells hypoxia O2 threshold (Welter and Rieger, 2010) 0.01 
 Production rate of attractants (Ramis-Conde et al., 2008) 0.5 
 Decay rate of the digested ECM (Ramis-Conde et al., 2008) 0.01 
 Diffusion coefficient of the digested (Ramis-Conde et al., 

2008) 
0.01 

c Diffusion rate of TAF(Manning, 2013) 1 

o Diffusion rate of O2  (Manning, 2013) 1 
t Timestep (min.) 6 
r| Mesh size (  20 

Nt Number of timesteps in simulations. 2x104 
 
The supermodel equations are discretized on a cubic grid of size 250x250x150, filling the layout from 
Fig.1. We ran the simulations on a single node of GPGPU server, equipped with one CPU Intel Xeon 
X5660, 2.8 GHz (6 cores) and 4 Nvidia boards EVGA GeForce GTX 580. As shown in Fig.2a, the 
computational box is decomposed among 4 GPU boards. In Fig.2b, we present the execution time and 
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speedups related to 1 CPU and 1 GPU. Unfortunately, in our code the computations spending on 
vessels remodeling should be executed on CPU. This considerably slows down the computations 
performed on multiple GPU boards, that is why, the speedup equal to 1.4 on 4 GPUs is not 
impressing. However, GPU implementation of the code, ensures adequate computational power for 
our simulations giving in total speedup close to 60 comparing to a single core of  Intel Xeon CPU. 

  

System 
configuration 

Execution 
time 

[seconds] 

Speed-up 
to 1 CPU 

Speed-up to  
1 GPU 

Xeon X5660 12720 1 - 

1 GTX580 307 41 1 

2 GTX580 255 50 1,2 

3 GTX580 224 56,7 1,37 

4 GTX580 218 58,3 1,41 
 

Figure 2. a) Domain decomposition of the computational box and b) Execution time and speedups obtained for 
1000 timesteps. 

Results of modeling 
As shown in Fig.3a, the sub-models do not synchronize for uncoupled and weakly coupled models. 
What is rather surprising, the weakly coupled supermodel synchronizes even worse than the uncoupled 
model. Furthermore, these two models are deficient, producing nonphysical shifts in tumor cell 
density (see Fig.3b). Conversely, the supermodels with strong and very strong couplings synchronizes 
very well. The slow growth of synchronization error (see Eq.4) for the strongly coupled supermodel 
after 8000 timesteps is caused by the fact that the tumor is expanding very fast and reaches the 
boundaries of the computational box very quickly what introduces additional numerical errors. This 
effect is negligible small for the very strongly coupled supermodel. As shown in Fig.4, due to small 
synchronization error, also the standard deviation calculated in every node of computational grid for 
all sub-models is the smallest for the strongly and very strongly coupled supermodels.  
 

  
 
Figure 3: a) The synchronization error (Eq.4) for uncoupled model and weakly, strongly and very strongly coupled 
supermodels. The red arrow shows the moment of turn on the sub-models coupling (Nt=2500 timestep). b) Tumor cell density 
produces nonphysical shifts (see white arrows) for the first two cases.  
 

a b 
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Figure 4: The standard deviations calculated per each computational grid node for the supermodel with a) the strongest coupling 
strength,  b) the supermodel with strong and c) weak couplings. In d) we display the case with the lack of coupling between sub-
models. The supermodels (a) and (b) demonstrate very good synchronization between the sub-models. The largest error is 
colored in rad while the lowest one in blue. 
 

  
 
Figure 5: Snapshots from melanoma simulation obtained by: (a,b,c) independent melanoma models for rb=0.0001, 0.0003, 
0.0005 after Nt=1.6-1.4-1.2x104 timesteps, respectively; d) the strongly coupled supermodel after Nt=104 timesteps; f) the very 
strongly coupled supermodel after Nt=0.8x104 timesteps. The sizes of all tumors are approximately the same. Density of tumor 
cells is displayed in colors from red (the highest) to blue (the lowest). The necrotic center is invisible. e) The micrograph image 
of acral lentiginous melanoma is included for comparison (www.mmmp.org/MMMP). 
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In Fig.5(a,b,c) we display the structures of simulated tumor for three melanoma models which differ in 
value of rb,. Greater value of rb means faster tumor proliferation. The models producing snapshots 
from Fig.5a,b,c are uncoupled and were run independently. One can recognize growth structures 
typical for nodular melanoma in which tumor spreads out both radially and vertically from its center, 
and develops the cone-like shaped nodules.  
 In Fig.1 and Fig.5d,f we present the snapshots from simulation of melanoma progression produced 
by very strongly and strongly coupled supermodels, respectively. In Fig.1 one can see the tumor 
location in skin and its shape after approximately ten weeks of growth. The tumor penetrates dermis 
and proceeds towards hypodermis. The real process of melanoma growth is preceded by a long lasting 
silent phase of tumor cells development, which is neglected in our simulations. However, its growth 
considerably accelerates in the later phases, so the estimated evolution time is quite realistic. 
 As shown in Fig.5d, the supermodel demonstrates qualitatively different behavior, which is similar 
to the acral lentiginous melanoma (Fig.5e) with stronger bias to superfacial radial growth. This 
qualitative difference can also be seen in Fig.6. One can see that for both the strong and very strong 
supermodel cases, melanoma grows distinctly faster (see the scale of Y axes in Fig.6). Consequently, 
for the single model with rb=0.0003 the necrotic center is developed much later than for the 
supermodel. In Fig.5a,b,c the necrotic centers have not developed after Nt=1.4x104. Meanwhile, it is 
quite large for the strongly and very strongly coupled supermodels after Nt=104 timesteps. By further 
increase of the coupling strength one can obtain the situation from Fig.1, where superficial growth 
dominate over vertical tumor expansion. This way the various types of simulated melanoma can be 
potentially obtained by setting different values of coupling factors in the supermodel. It shows the 
supermodel high flexibility to follow (by minimization of the cost function from Eq.5) the real 
scenario of melanoma growth, which can be hidden in data.  
 

  
 
Figure 6: The plots showing tumor growth dynamics  the number of tumor cells with iteration number Nt (time)  for the 
supermodel from Fig.4d and the single model with rb=0.0003 (Fig.4b). 

Conclusions 

It is widely expected (e.g. (Bellomo, et al., 2008; Deisboeck, et al., 2011; Wolkenhauer, et al., 2014)) 
that planning cancer treatment in oncology of the future will be based on mathematical tumor models. 
We postulate here that these models could simulate only the key processes influencing tumor 
dynamics, and should be as simple as possible. The simplified tumor models can be combined to 
create the supermodel  a flexible coarse-grained modeling framework. All the fine-grained tumor 

Supermodeling in simulation of melanoma progression W. Dzwinel, A. Klusek and O. Vasilyev

1008



 

 

features and other unpredictable events, accompanying its proliferation and not included in the sub-
models, are hidden in data. Just the supermodel coupling coefficients, learned from data according to 
the prediction/correction scheme  similar to that used in weather forecast and climate modeling  will 
represent these latent tumor features. In this paper we demonstrate the results, which testify only the 
first part of this postulate. To this end we have developed the numerical 3-D model of melanoma by 
assuming the computational layout, which mimics the real structure of skin. Then we have created its 
supermodel by coupling three sub-models differing in values of a single parameter responsible for 
tumor growth. We observe that for the uncoupled and weakly coupled sub-models both radial and 
vertical growth rates are approximately the same. Meanwhile, the strongly and very strongly coupled 
sub-models synchronize each other and produce qualitatively different scenarios of melanoma growth. 
For relatively high coupling strength the radial growth of tumor begin to dominate. Depending on the 
values of the coupling coefficients we have obtained simulation results mimicking recognized 
melanoma types: nodular (Fig.5a), lentigo maligna (Fig.5f), and acral lentiginous melanoma (Fig.5d). 
The fourth type, i.e., superficial spreading melanoma, we have obtained for even stronger coupling. 
All of these observations show that the supermodel can be fit to the various scenarios of tumor growth. 

The second part of our postulate will be verified in the nearest future in a similar way as it was 
demonstrated in deliverables of SUMO EU project. First, we plan to check in what extent the PDE 
based supermodel can predict the behavior of the ground truth , represented by more advanced model 
of tumor or a model which exploits completely different computational paradigm (e.g., the PAM 

performed for sub-models of various complexity to find the most parsimonious supermodel, which 
could be a part of a future system for planning cancer treatment. Second, we will try to couple our 
model with real data coming, e.g., from tumor tomography images.  

However, to use our supermodeling scheme for making diagnosis of realistic cancer dynamics it 
should be enforced by diagnostic methods, e.g., based on in vivo nanosensors and new MRI imaging 
techniques (such as in (Chen, et al., 2015)), which will be developed and widely available in the 
future. They should allow to measure simultaneously the concentrations of tumor cells and oxygen in 
many locations distributed in the tumor mass. These measurements could be used directly in the 
prediction/correction learning scheme of the supermodel coupling coefficients.  
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