Further Results on the Reverse-Order Law

Nobuo Shinozaki
Department of Mathematics
Keio University
832 Hiyoshi, Yokohama
Japan 223
and
Masaaki Sibuya
Tokyo Scientific Center
IBM Japan
3-2-12 Roppongi, Tokyo
Japan 106

Submitted by R. S. Varga

Abstract

An explicit expression is obtained for a pair of generalized inverses (B^{-}, A^{-}) such that $B^{-} A^{-}=(A B)_{M N}^{+}$, and a class of pairs (B^{-}, A^{-}) of this property is shown. A necessary and sufficient condition for $(A B)^{-}$to have the expression $B^{-} A^{-}$is also given.

1. INTRODUCTION

Let A and B be matrices of complex elements such that $A B$ can be defined. T. N. E. Greville [7, 3] has given a necessary and sufficient condition for the reverse-order law of the Moore-Penruse inverse of matrices, $(A B)^{+}=B^{+} A^{+}$, to hold. His theorem has been extended in several directions. See, for example, $[1,2,4,5,6,8,9]$. The authors [9] have shown, among other things, that there always exists a pair of generalized inverses (B^{-}, A^{-}) such that $B^{-} A^{-}=(A B)^{+}$, but the pair was characterized indirectly. In Theorem 1 of this note we give an explicit expression for a pair $\left(B^{-}, A^{-}\right)$such that $B^{-} A^{-}=(A B)_{M N}^{+}$, the minimum- N-norm M-least-squares generalized inverse. [The Moore-Penrose inverse is its special case: $(A B)^{+}$
$=(A B)_{I I}^{+}$.] The pair is not unique, and a class of pairs with this property is shown in Theorem 3, which is a generalization of a result by Barwick and Gilbert [1].

The inverse $(A B)_{M N}^{+}$can always be expressed as $B^{-} A^{-}$, but it is not always possible to express a given generalized inverse $(A B)^{-}$as $B^{-} A^{-}$. In Theorem 6 we give a necessary and sufficient condition on $(A B)^{-}$to have the expression $B^{-} A^{-}$. The existence of $G \in\left\{A^{-}\right\}$such that $B^{-} G \in$ $\left\{(A B)^{-}\right\}$for any B^{-}is also noticed.

We use the notation in Rao and Mitra's book [8]. $A^{-}\left(A_{r}^{-}\right)$belongs to $A\{1\}(A\{1,2\})$ respectively as defined in Ben-lsrael and Greville's book [3]. $A_{l(M)}^{-}$, where M is a square nonnegative definite matrix, is a generalized inverse of A such that $M A A_{l(M)}^{-}$is hermitian. $A_{m(N)}^{-}$, where N is a square positive definite matrix, is a generalized inverse of A such that $N A_{m(N)}^{-} A$ is hermitian. $A_{M N}^{+}$is the unique matrix which is $A_{r}^{-}, A_{l(M)}^{-}$and $A_{m(N) \cdot}^{-} \Re(A)$ and $\mathfrak{K}(A)$ denote the range space and the null space of A respectively.

2. FURTHER RESULTS ON THE REVERSE ORDER LAW

Let A, B be any matrices of complex elements with the product $A B$. Theorem 3.2 in [9] states that there exist $G_{2} \in\left\{B_{m(I) r}^{-}\right\}$and $G_{1} \in\left\{A_{l(I) r}^{-}\right\}$such that $G_{2} G_{1}=(A B)^{+}$, and they are constructed so that $G_{2} \in\left\{B_{l\left(A^{*} A\right)}^{-}\right\}$and $G_{1}^{*} \in\left\{\left(A^{*}\right)_{l\left(B B^{*}\right)}^{-}\right\}$. In the following theorem we give an explicit expression for a pair $\left(B^{-}, A^{-}\right)$such that $B^{-} A^{-}=(A B)_{M N}^{+}$. We assume that M and N are positive definite matrices.

Theorem 1.

(a) Put

$$
\begin{equation*}
G_{2}=B_{m(N) r}^{-}+(A B)_{M N}^{+} A-(A B)_{M N}^{+} A B B_{m(N) r}^{-} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
G_{1}=A_{l(M) r}^{-}+B(A B)_{M N}^{+}-B G_{2} A_{l(M) r}^{-} \tag{2}
\end{equation*}
$$

Then $G_{2} \in\left\{B_{l\left(A^{*} * A\right) m(N) r}^{-}\right\}, G_{1} \in\left\{A_{l(M) r}^{-}\right\}$and $G_{2} G_{1}=(A B)_{M N}^{+}$.
(b) Put

$$
\begin{equation*}
G_{1}=A_{l(M) r}^{-}+B(A B)_{M N}^{+}-A_{l(M) r}^{-} A B(A B)_{M N}^{+} \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
G_{2}=B_{m(N) r}^{-}+(A B)_{M N}^{+} A-B_{m(N) r}^{-} G_{1} A \tag{4}
\end{equation*}
$$

Then $G_{1} \in\left\{A_{l(M) r}^{-}\right\}, G_{1}^{*} \in\left\{\left(A^{*}\right)_{l\left(B N^{-1} B^{*}\right)}^{-}\right\}, G_{2} \in\left\{B_{m(N) r}^{-}\right\}$and $G_{2} G_{1}=(A B)_{M N}^{+}$.

Proof. (a): Check $G_{2} B N^{-1} B^{*}=N^{-1} B^{*}, G_{2} B G_{2}=G_{2}$ and $B^{*} A^{*} M A B G_{2}$ $=B^{*} A^{*} M A$ to show that G_{2} belongs to $\left\{B_{m(N) r}^{-}\right\}$and $\left\{B_{l\left(A^{*} M A\right)}^{-}\right\}$. Check $A^{*} M A G_{1}=A^{*} M$ and $G_{1} A G_{1}=G_{1}$ to show $G_{1} \in\left\{A_{l(M) r}^{-}\right\}$. Then $G_{2} G_{1}=$ $G_{2} B(A B)_{M N}^{+}=(A B)_{M N^{*}}^{+}(\mathrm{b})$ is a dual statement of (a).

After submission of this paper the authors learned of a paper by Wibker, Howe and Gilbert [11] from the editor of this journal. The expressions in our Theorem 1 are essentially the same as that in their Theorem 2 and have simpler forms.

In the expressions (1) and (2) $\left[(3)\right.$ and (4)] the choice $B_{m(N) r}^{-}$and $A_{l(M) r}^{-}$is arbitrary, though two $B_{m(N) r}^{-}$'s and two $A_{l(M) r}^{-}$'s must be the same. So the pair $\left(G_{2}, G_{1}\right)$ is not unique. Theorem 3 shows this fact more clearly. To prove the theorem, we note the following fact.

Lemma 2.

(a) Let B^{-}and $(A B)_{l(M)}^{-}$be arbitrarily given. There exists $G \in\left\{A^{-}\right\}$ such that $B^{-} G=B^{-} B(A B)_{l(M)}^{-}$, which belongs to $\left\{(A B)_{l(M)}^{-}\right\}$, iff (if and only if) $\Re\left(A^{*}\right) \cap \Re\left\{\left(B^{-}\right)^{*}\right\} \subset \Re\left(A^{*} M A B\right)$. When the condition is satisfied, G can be taken from $\left\{A_{l(M)}^{-}\right\}$.
(b) Let A^{-}and $(A B)_{m(N)}^{-}$be arbitrarily given. There exists $G \in\left\{B^{-}\right\}$ such that $G A^{-}=(A B)_{m(N)}^{-} A A^{-}$, which belongs to $\left\{(A B)_{m(N)}^{-}\right\}$, iff $\mathscr{R}(B) \cap$ $\Re\left(A^{-}\right) \subset \mathscr{R}\left(B N^{-1} B^{*} A^{*}\right)$. When the condition is satisfied, G can be taken from $\left\{B_{m(N)}^{-}\right\}$.

Proof. (a): The matrix G must satisfy the equations

$$
\begin{equation*}
A G A=A \quad \text { and } \quad B^{-} G=B^{-} B(A B)_{l(M)}^{-} \tag{5}
\end{equation*}
$$

which have particular solutions

$$
\begin{equation*}
G_{1}=A^{-}+B(A B)_{l(M)}^{-}-A^{-} A B(A B)_{\overline{l(M)}}^{-} \quad \text { and } \quad G_{2}=B(A B)_{\overline{l(M)}} \tag{6}
\end{equation*}
$$

respectively. Let C be any matrix such that $\Re\left(C^{*}\right)=\Re\left(A^{*}\right) \cap \Re\left\{\left(B^{-}\right)^{*}\right\}$. Then the equations (5) have a common solution iff (see Shinozaki and Sibuya [10])

$$
C\left[A^{-}+B(A B)_{l(M)}^{-}-A^{-} A B(A B)_{l(M)}^{-}-B(A B)_{l(M)}^{-}\right] A=0
$$

or equivalently

$$
\begin{equation*}
C=C A^{-} A B(A B)_{l(M)} A \Leftrightarrow \Re\left(C^{*}\right) \subset \Re\left(A^{*} M A B\right) . \tag{7}
\end{equation*}
$$

If $G \in\left\{A_{l(M)}^{-}\right\}$is wanted, replace the first equation of (5) by $A^{*} M A G=$ $A^{*} M$, and A^{-}in (6) by $A_{l(M)}^{-}$. Then the first condition of (7) becomes $C\left(A_{l(M)}^{-}-A_{l(M)}^{-} A B(A B)_{l(M)}^{-}\right)=0$, which is, however, equivalent to $\mathscr{R}\left(C^{*}\right) \subset$ $\Re\left(A^{*} M A B\right)$. (b) can be proved similarly.

Theorem 3.
(a) Let B_{r}^{-}be arbitrarily given. There exists $G \in\left\{A^{-}\right\}$such that $B_{r}^{-}{ }^{-}$ $=(A B)_{M N}^{+}$iff $\Re\left(B_{\tau}^{-}\right) \supset \Re\left(N^{-1} B^{*} A^{*}\right)$ and $\Re\left(A^{*}\right) \cap \Re\left\{\left(B_{r}^{-}\right)^{*}\right\} \subset$ $\Re\left(A^{*} M A B\right)$. If such a matrix G exists, it can be taken from $\left\{A_{l(M) r}^{-}\right\}$.
(b) Let A_{r}^{-}be arbitrarily given. There exists $G \in\left\{B^{-}\right\}$such that $G A_{r}^{-}=(A B)_{M N}^{+} \quad$ iff $\mathscr{R}\left\{\left(A_{r}^{-}\right)^{*}\right\} \supset \mathscr{R}(M A B)$ and $\mathcal{R}(B) \cap \Re\left(A_{r}^{-}\right) \subset$ $\Re\left(B N^{-1} B^{*} A^{*}\right)$. If such a G exists, it can be taken from $\left\{B_{m(N) r}^{-}\right\}$.

Proof. (a): Since $\Re\left\{(A B)_{M N}^{+}\right\}=\Re\left(N^{-1} B^{*} A^{*}\right)$, the condition $\Re\left(B_{r}^{-}\right) \supset$ ${ }^{\circ}\left(N^{-1} B^{*} A^{*}\right)$ is necessary. If the condition of the theorem is satisfied, $B_{r}^{-} B(A B)_{M N}^{+}=(A B)_{M N}^{+}$. If $G \notin\left\{A_{r}^{-}\right\}$, replace it by $G A G_{1}$, where $G_{1} \in$ $\left\{A_{l(M)}^{-}\right\}$. (b) can be proved similarly.

Remarks. (1) If $B_{r}^{-} \in\left\{B_{l\left(A^{*} M A\right) m(N) r}^{-}\right\}$, then $\Re\left(B_{r}^{-}\right)=\Re\left(N^{-1} B^{*}\right) \supset$ $\mathscr{R}\left(N^{-1} B^{*} A^{*}\right)$ and $\mathscr{R}\left(A^{*}\right) \cap \wp\left\{\left\{\left(B_{r}^{-}\right)^{*}\right\} \subset \mathscr{R}\left\{\left(B_{r}^{-}\right)^{*} B^{*} A^{*}\right\}=\right.$ $\Re\left\{\left(B_{r}^{-}\right)^{*} B^{*} A^{*} M A\right\}=\Omega\left(A^{*} M A B\right)$. Therefore the conditions of (a) are satisfied. If $A_{r}^{-} \in\left\{A_{l(M) r}^{-}\right\}$and $\left(A_{r}^{-}\right)^{*} \in\left\{\left(A^{*}\right)_{l\left(B N^{-1} B^{*}\right)}^{-}\right\}$, the conditions of (b) are satisfied.
(2) If $\operatorname{rank} A B=\operatorname{rank} A$, the condition $\mathscr{R}\left(A^{*}\right) \subset \mathscr{R}\left\{\left(B_{r}^{-}\right)^{*}\right\} \subset$ $\mathscr{R}\left(A^{*} M A B\right)$ is satisfied for any B_{r}^{-}, and the remaining condition $\Re\left(B_{r}^{-}\right) \supset$ $\Re\left(N^{-1} B^{*} A^{*}\right)$ is satisfied for any $B_{r}^{-} \in\left\{B_{m(N) r}^{-}\right\}$. A similar remark also holds for A_{r}^{-}.
(3) Barwick and Gilbert [1] have shown that $\Re\left(A^{*}\right) \cap \Re(B) \subset \Re\left(A^{*} A B\right)$ iff there exists $G \in\left\{A_{l(I) r}^{-}\right\}$such that $B^{+} G=(A B)^{+}$. This is a special case of Theorem 3(a).

Corollary 4. Let $(A B)_{r}^{-}$be arbitrarily given. There always exist $G_{2} \in\left\{B_{r}^{-}\right\}$and $G_{1} \in\left\{A_{r}^{-}\right\}$such that $G_{2} G_{1}=(A B)_{r}^{-}$.

Proof. This is clear because any reflexive generalized inverse X_{r}^{-}is $X_{M N}^{+}$ for the positive definite matrices $M=\left(X X_{r}^{-}\right)^{*} V_{1} X X_{r}^{-}+\left(I-X X_{r}^{-}\right)^{*} V_{2}(I-$ $X X_{r}^{-}$) and $N=\left(X_{r}^{-} X\right)^{*} V_{3} X_{r}^{-} X+\left(I-X_{r}^{-} X\right)^{*} V_{4}\left(I-X_{r}^{-} X\right)$, where the V_{i}^{\prime} s are any positive definite matrices.

Let, hereinafter, A and B be $l \times m$ and $m \times n$ matrices respectively, and $r_{A B}, r_{A}$ and r_{B} be the ranks of $A B, A$ and B respectively. When a generalized inverse $(A B)^{-}$is given, it cannot always be expressed as $B^{-} A^{-}$. For example, $\operatorname{rank}(A B)^{-}$should not be greater than $\min (l, m, n)$. The following two theorems state the conditions for the decomposition. We define further $\mathscr{J}=\mathscr{R}\left\{(A B)^{-}\right\} \cap \mathscr{T}(B), \operatorname{dim} \mathscr{T}=t, \mathscr{V}=\mathscr{R}\left[\left\{(A B)^{-}\right\}^{*}\right] \cap \mathscr{R}\left(A^{*}\right)$ and $\operatorname{dim} \mathscr{V}$ $=v$.

Theorem 5. Let $(A B)^{-}$be arbitrarily given. Then there exist $G_{2} \in$ $\left\{B_{r}{ }^{-}\right\}$and $G_{1} \in\left\{A_{r}^{-}\right\}$such that $(A B)^{-}=G_{2} G_{1}$ iff $\mathscr{V}=\{0\}$ and $\mathscr{T}=\{0\}$.

Proof. We notice that $\Re\left(B_{r}^{-}\right) \cap \Re(B)=\{0\}$ for any B_{r}^{-}. Therefore, $\mathscr{T}=\{0\}$ if $(A B)^{-}=G_{2} C_{1}$, where $C_{2} \in\left\{B_{r}^{-}\right\}$. Similarly we see that $ף=\{0\}$ if $(A B)^{-}=G_{2} G_{1}$, where $G_{1} \in\left\{A_{r}^{-}\right\}$. Conversely, if $\mathscr{T}=\{0\}$, there exists a matrix $C_{2} \in\left\{B_{r}^{-}\right\}$such that $\Re\left\{(A B)^{-}\right\} \subset \Re\left(C_{2}\right)$ or $C_{2} B(A B)^{-}=(A B)^{-}$. There also exists a $C_{1} \in\left\{A_{r}^{-}\right\}$such that $(A B)^{-} A C_{1}=(A B)^{-}$. Using these C_{2} and C_{1}, we put

$$
G_{2}=C_{2}+(A B)^{-} A-(A B)^{-} A B C_{2}
$$

and

$$
G_{1}=C_{1}+B(A B)^{-}-B G_{2} C_{1} .
$$

Then we can check that $G_{2} \in\left\{B_{r}^{-}\right\}, G_{1} \in\left\{A_{r}^{-}\right\}$and $G_{2} G_{1}=(A B)^{-}$.

Theorem 6. Let $(A B)^{-}$be arbitrarily given. Then there exist $G_{2} \in$ $\left\{B^{-}\right\}$and $G_{1} \in\left\{A^{-}\right\}$such that $G_{2} G_{1}=(A B)^{-}$iff

$$
r_{A}+r_{B}+t+v \leqslant m+\operatorname{rank}\left\{(A B)^{-}\right\}
$$

Proof. Necessity: Let $(A B)^{-}$be expressed as $G_{2} G_{1}$, where $G_{2} \in\left\{B^{-}\right\}$ and $G_{1} \in\left\{A^{-}\right\}$. Then

$$
\begin{aligned}
\operatorname{rank}\left\{(A B)^{-}\right\} & =\operatorname{rank}\left(G_{2} G_{1}\right) \\
& =\operatorname{rank} G_{1}-\operatorname{dim}\left\{\Re\left(G_{1}\right) \cap \mathscr{N}\left(G_{2}\right)\right\} .
\end{aligned}
$$

Since $\operatorname{dim}\left\{\Re\left(G_{1}\right) \cap \Re\left(G_{2}\right)\right\} \leqslant \operatorname{dim}\left\{\Re\left(G_{2}\right)\right\}=m-\operatorname{rank} G_{2}$,

$$
\begin{aligned}
\operatorname{rank}\left\{(A B)^{-}\right\} & \geqslant \operatorname{rank} G_{1}+\operatorname{rank} G_{2}-m \\
& \geqslant r_{A}+r_{B}+t+v-m
\end{aligned}
$$

Sufficiency: Step 1. Let \mathcal{S} be a subspace such that $\mathscr{R}\left\{(A B)^{-}\right\}=\delta \oplus \mathscr{T}$, and let \mathscr{Q} be a subspace such that $\mathscr{R}\left[\left\{(A B)^{-}\right\}^{*}\right]=\mathscr{Q} \oplus \mathscr{V}$. We note that $\mathfrak{S} \cap \mathscr{R}(B)=\{0\}$ and $थ \cap \mathscr{R}\left(A^{*}\right)=\{0\}$. Then there exist $C_{2} \in\left\{B_{r}^{-}\right\}$and $C_{1} \in\left\{A_{r}^{-}\right\}$such that $\Re\left(C_{2}\right) \supset \mathcal{S}$ and $\mathscr{R}\left(C_{1}^{*}\right) \supset \mathscr{Q}$. Using these C_{2} and C_{1}, we put

$$
F_{2}=C_{2}+C_{2} B(A B)^{-} A-C_{2} B(A B)^{-} A B C_{2}
$$

and

$$
F_{1}=C_{1}+B(A B)^{-} A C_{1}-B F_{2} C_{1}
$$

Then it can be verified that $F_{2} \in\left\{B_{r}^{-}\right\}, \Re\left(F_{2}\right)=\Re\left(C_{2}\right), F_{1} \in\left\{A_{\tau}^{-}\right\}, \mathscr{R}\left(F_{1}^{*}\right)$ $=\Re\left(C_{1}^{*}\right)$ and $F_{2} F_{1}=F_{2} B(A B)^{-} A F_{1}$. Further, if we put

$$
G=F_{1}+B(A B)^{-}\left(I-A F_{1}\right)
$$

then $G \in\left\{A^{-}\right\}$and $F_{2} G=F_{2} B(A B)^{-}$.
Step 2. Let $F_{1}=P Q$ be a full-rank factorization, where P and Q are $m \times r_{A}$ and $r_{A} \times l$ matrices. Let $B(A B)^{-}\left(I-A F_{1}\right)$ be decomposed as $U V$, where V is a $v \times l$ matrix such that $\Re\left(V^{*}\right)=\mathscr{V}$. Then

$$
G=\left[\begin{array}{lll}
P & \vdots & U
\end{array}\right]\left[\begin{array}{c}
Q \\
\cdots \\
V
\end{array}\right]
$$

and $\left[\begin{array}{c}Q \\ V\end{array}\right]$ is an $\left(r_{A}+v\right) \times l$ matrix which has full row rank. $[P: U]$ is an $m \times\left(r_{A}+v\right)$ matrix whose rank is $s+q$, where $s=\operatorname{dim} \mathscr{S}$ and $q=\operatorname{dim}\{\mathscr{R}(G)$
$\left.\cap \Re\left(F_{2}\right)\right\}$. Under the condition of the theorem there exists a matrix \tilde{U} such that $[P \vdots U+\tilde{U}]$ has full column rank and $\Re(\tilde{U}) \subset \mathscr{N}\left(F_{2}\right)$. Actually \tilde{U} can be constructed as follows: $P P^{+}$is the orthogonal projector onto $\Re(P)$; let $U-P P^{+} U=K H$ be a full-rank factorization, where K has $s+q-r_{A}$ column vectors. Noting that there exists an $\left(m-r_{B}-q\right)$-dimensional subspace $\mathscr{A} \subset$ $\mathcal{R}\left(F_{2}\right)$ which is virtually disjoint with $\Re(G)$, and that $m-r_{B}-q \geqslant r_{A}+v-s$ $-q$ (condition of the theorem), we see that there exists an $l \times\left(r_{A}+v-s-q\right)$ matrix L such that $\mathscr{R}(L) \subset \mathscr{Z}$ and the matrix $[K: L]$ has full column rank. Let R be a matrix such that $\left[\begin{array}{c}H \\ \ldots \\ R\end{array}\right]$ is nonsingular. Then we have the desired \tilde{U} as $\tilde{U}=L R$. If we put $G_{1}=G+\tilde{U} V$, then it can be verified that $G_{1} \in$ $\left\{A^{-}\right\}, F_{2} G_{1}=F_{2} B(A B)^{-}$and $\Re\left(G_{1}^{*}\right) \supset \Re\left[\left\{(A B)^{-}\right\}^{*}\right]$.
Step 3. Since $\mathscr{R}\left(G_{1}^{*}\right) \supset \Re\left[\left\{(A B)^{-}\right\}^{*}\right]$, there exists a matrix H which satisfies the equation $H G_{1}=\left(I-F_{2} B\right)(A B)^{-}$. Using this H, we put $G_{2}=F_{2}+(I-$ $\left.F_{2} B\right) H$. Then $G_{2} \in\left\{B^{-}\right\}$and $G_{2} G_{1}=F_{2} G_{1}+\left(I-F_{2} B\right) H G_{1}=F_{2} B(A B)^{-}+(I$ $\left.-F_{2} B\right)(A B)^{-}=(A B)^{-}$, and the proof is completed.

Corollary 7. Let ($A B)^{-}$be arbitrarily given, and let $r_{A B}=r_{A}\left(\right.$ or $\left.r_{B}\right)$. Then there exist $G_{2} \in\left\{B^{-}\right\}$and $G_{1} \in\left\{A^{-}\right\}$such that $G_{2} G_{1}=(A B)^{-}$iff

$$
r_{B}+t \leqslant m \quad\left(o r \quad r_{A}+v \leqslant m\right)
$$

Proof. This is clear, because $\operatorname{rank}\left\{(A B)^{-}\right\}=r_{A}+v\left(\right.$ or $\left.r_{B}+t\right)$ if $r_{A B}=r_{A}$ (or r_{B}).

So far we have assumed that $(A B)^{-}$is given. However, if we don't specify a generalized inverse $(A B)^{-}$, some interesting facts are found. For example, there exists $G \in\left\{A^{-}\right\}\left[G \in\left\{B^{-}\right\}\right]$such that $B^{-} G\left[G A^{-}\right] \in$ $\left\{(A B)^{-}\right\}$for any $B^{-}\left[A^{-}\right]$. In fact, put $G=A^{-}+B(A B)^{-}-A^{-} A B(A B)^{-}$ $\left[G=B^{-}+(A B)^{-} A-(A B)^{-} A B B^{-}\right]$. Similarly we can show that there exists $G \in\left\{A^{-}\right\}\left[G \in\left\{B^{-}\right\}\right]$such that $B_{m(N)}^{-} G \in\left\{(A B)_{m(N)}^{-}\right\}\left[G A_{l(M)}^{-} \in\left\{(A B)_{\mu_{M)}}^{-}\right\}\right]$ for any $B_{m(N)}^{-}\left[A_{l(M)}^{-}\right]$.

REFERENCES

1 D. T. Barwick and J. D. Gilbert, On generalizations of the reverse order law, SIAM J. Appl. Math. 27:326-330 (1974).
2 D. T. Barwick and J. D. Gilbert, Generalizations of the reverse order law with related results, Linear Algebra and Appl. 8:345-349 (1974).
3 A. Ben-Israel and T. N. E. Greville, Generalized Inverses: Theory and Applications, Wiley-Interscience, New York, 1974.

4 R. Bouldin, The pseudo-inverse of a product, SIAM J. Appl. Math. 24:489-495 (1973).

5 R. E. Cline and T. N. E. Greville, An extension of the generalized inverse of a matrix, SIAM J. Appl. Math. 19:682-688 (1972).
6 I. Erdelyi, On the "reverse order law" related to the generalized inverse of matrix products, J. Assoc. Comput. Mach. 13:439-443 (1966).
7 T. N. E. Greville, Note on the generalized inverse of a matrix product, SIAM Rev. 8:518-521 (1966).
8 C. R. Rao and S. K. Mitra, Generalized Inverse of Matrices and its Applications, Wiley, New York, 1971.
9 N. Shinozaki and M. Sibuya, The reverse order law $(A B)^{-}=B^{-} A^{-}$, Linear Algebra and Appl. 9:29-40 (1974).
10 N. Shinozaki and M. Sibuya, Consistency of a pair of matrix equations with an application, Keio Engrg. Rep. 27(10):141-146 (1974).
11 E. A. Wibker, R. B. Howe and J. D. Gilbert, Explicit solutions to the reverse order law $(A B)^{+}=B_{m r}^{-} A_{l r}^{-}$, Linear Algebra and Appl., 25:107-114(1979).

Received 27 September 1978; revised 8 November 1978

