Further Results on the Reverse-Order Law

Nobuo Shinozaki Department of Mathematics Keio University 832 Hiyoshi, Yokohama Japan 223

and

Masaaki Sibuya Tokyo Scientific Center IBM Japan 3-2-12 Roppongi, Tokyo Japan 106

Submitted by R. S. Varga

ABSTRACT

An explicit expression is obtained for a pair of generalized inverses (B^-, A^-) such that $B^-A^- = (AB)^+_{MN}$, and a class of pairs (B^-, A^-) of this property is shown. A necessary and sufficient condition for $(AB)^-$ to have the expression B^-A^- is also given.

1. INTRODUCTION

Let A and B be matrices of complex elements such that AB can be defined. T. N. E. Greville [7, 3] has given a necessary and sufficient condition for the reverse-order law of the Moore-Penrose inverse of matrices, $(AB)^+ = B^+A^+$, to hold. His theorem has been extended in several directions. See, for example, [1, 2, 4, 5, 6, 8, 9]. The authors [9] have shown, among other things, that there always exists a pair of generalized inverses (B^-, A^-) such that $B^-A^- = (AB)^+$, but the pair was characterized indirectly. In Theorem 1 of this note we give an explicit expression for a pair (B^-, A^-) such that $B^-A^- = (AB)_{MN}^+$, the minimum-N-norm M-least-squares generalized inverse. [The Moore-Penrose inverse is its special case: $(AB)^+$

LINEAR ALGEBRA AND ITS APPLICATIONS 27:9-16 (1979)

© Elsevier North Holland, Inc., 1979

0024 - 3795 / 79 / 050009 + 8 \$ 01.75

9

 $=(AB)_{II}^{+}$.] The pair is not unique, and a class of pairs with this property is shown in Theorem 3, which is a generalization of a result by Barwick and Gilbert [1].

The inverse $(AB)_{MN}^+$ can always be expressed as B^-A^- , but it is not always possible to express a given generalized inverse $(AB)^-$ as B^-A^- . In Theorem 6 we give a necessary and sufficient condition on $(AB)^-$ to have the expression B^-A^- . The existence of $G \in \{A^-\}$ such that $B^-G \in$ $\{(AB)^-\}$ for any B^- is also noticed.

We use the notation in Rao and Mitra's book [8]. $A^-(A_r^-)$ belongs to $A\{1\}$ $(A\{1,2\})$ respectively as defined in Ben-Israel and Greville's book [3]. $A_{l(M)}^-$, where M is a square nonnegative definite matrix, is a generalized inverse of A such that $MAA_{l(M)}^-$ is hermitian. $A_{m(N)}^-$, where N is a square positive definite matrix, is a generalized inverse of A such that $MAA_{l(M)}^-$ is hermitian. $A_{m(N)}^-$, where N is a square positive definite matrix, is a generalized inverse of A such that $NA_{m(N)}^-A$ is hermitian. A_{MN}^+ is the unique matrix which is A_r^- , $A_{l(M)}^-$ and $A_{m(N)}^-$. $\Re(A)$ and $\Re(A)$ denote the range space and the null space of A respectively.

2. FURTHER RESULTS ON THE REVERSE ORDER LAW

Let A, B be any matrices of complex elements with the product AB. Theorem 3.2 in [9] states that there exist $G_2 \in \{B_{m(I)r}^-\}$ and $G_1 \in \{A_{l(I)r}^-\}$ such that $G_2G_1 = (AB)^+$, and they are constructed so that $G_2 \in \{B_{l(A^*A)}^-\}$ and $G_1^* \in \{(A^*)_{l(BB^*)}^-\}$. In the following theorem we give an explicit expression for a pair (B^-, A^-) such that $B^-A^- = (AB)_{MN}^+$. We assume that M and N are positive definite matrices.

THEOREM 1.

(a) Put

$$G_2 = B_{m(N)r}^- + (AB)_{MN}^+ A - (AB)_{MN}^+ ABB_{m(N)r}^-$$
(1)

and

$$G_1 = A_{l(M)r}^- + B(AB)_{MN}^+ - BG_2 A_{l(M)r}^-.$$
(2)

Then $G_2 \in \{B_{l(A^*MA)m(N)r}^-\}, G_1 \in \{A_{l(M)r}^-\} \text{ and } G_2G_1 = (AB)_{MN}^+$. (b) Put

$$G_1 = A_{l(M)r}^- + B(AB)_{MN}^+ - A_{l(M)r}^- AB(AB)_{MN}^+$$
(3)

and

$$G_2 = B_{m(N)r}^- + (AB)_{MN}^+ A - B_{m(N)r}^- G_1 A.$$
(4)

Then $G_1 \in \{A_{l(M)r}^-\}$, $G_1^* \in \{(A^*)_{l(BN^{-1}B^*)}^-\}$, $G_2 \in \{B_{m(N)r}^-\}$ and $G_2G_1 = (AB)_{MN}^+$.

Proof. (a): Check $G_2BN^{-1}B^* = N^{-1}B^*$, $G_2BG_2 = G_2$ and $B^*A^*MABG_2 = B^*A^*MA$ to show that G_2 belongs to $\{B_{m(N)r}^-\}$ and $\{B_{l(A^*MA)}^-\}$. Check $A^*MAG_1 = A^*M$ and $G_1AG_1 = G_1$ to show $G_1 \in \{A_{l(M)r}^-\}$. Then $G_2G_1 = G_2B(AB)_{MN}^+ = (AB)_{MN}^+$. (b) is a dual statement of (a).

After submission of this paper the authors learned of a paper by Wibker, Howe and Gilbert [11] from the editor of this journal. The expressions in our Theorem 1 are essentially the same as that in their Theorem 2 and have simpler forms.

In the expressions (1) and (2) [(3) and (4)] the choice $B_{m(N)r}^{-}$ and $A_{l(M)r}^{-}$ is arbitrary, though two $B_{m(N)r}^{-}$'s and two $A_{l(M)r}^{-}$'s must be the same. So the pair (G_2, G_1) is not unique. Theorem 3 shows this fact more clearly. To prove the theorem, we note the following fact.

Lemma 2.

(a) Let B^- and $(AB)_{l(M)}^-$ be arbitrarily given. There exists $G \in \{A^-\}$ such that $B^-G = B^-B(AB)_{l(M)}^-$, which belongs to $\{(AB)_{l(M)}^-\}$, iff (if and only if) $\Re(A^*) \cap \Re\{(B^-)^*\} \subset \Re(A^*MAB)$. When the condition is satisfied, G can be taken from $\{A_{l(M)}^-\}$.

(b) Let A^- and $(AB)_{m(N)}^-$ be arbitrarily given. There exists $G \in \{B^-\}$ such that $GA^- = (AB)_{m(N)}^-AA^-$, which belongs to $\{(AB)_{m(N)}^-\}$, iff $\Re(B) \cap \Re(A^-) \subset \Re(BN^{-1}B^*A^*)$. When the condition is satisfied, G can be taken from $\{B_{m(N)}^-\}$.

Proof. (a): The matrix G must satisfy the equations

$$AGA = A \quad \text{and} \quad B^{-}G = B^{-}B(AB)^{-}_{l(M)}, \tag{5}$$

which have particular solutions

$$G_1 = A^- + B(AB)^-_{l(M)} - A^-AB(AB)^-_{l(M)}$$
 and $G_2 = B(AB)^-_{l(M)}$, (6)

respectively. Let C be any matrix such that $\Re(C^*) = \Re(A^*) \cap \Re\{(B^-)^*\}$. Then the equations (5) have a common solution iff (see Shinozaki and Sibuya [10])

$$C[A^{-} + B(AB)^{-}_{l(M)} - A^{-}AB(AB)^{-}_{l(M)} - B(AB)^{-}_{l(M)}]A = 0,$$

or equivalently

$$C = CA^{-}AB(AB)^{-}_{l(M)}A \quad \Leftrightarrow \quad \Re(C^{*}) \subset \Re(A^{*}MAB). \tag{7}$$

If $G \in \{A_{l(M)}^{-}\}$ is wanted, replace the first equation of (5) by $A^*MAG = A^*M$, and A^- in (6) by $A_{l(M)}^{-}$. Then the first condition of (7) becomes $C(A_{l(M)}^{-} - A_{l(M)}^{-}AB(AB)_{l(M)}^{-}) = 0$, which is, however, equivalent to $\Re(C^*) \subset \Re(A^*MAB)$. (b) can be proved similarly.

THEOREM 3.

(a) Let B_r^- be arbitrarily given. There exists $G \in \{A^-\}$ such that $B_r^-G = (AB)_{MN}^+$ iff $\Re(B_r^-) \supset \Re(N^{-1}B^*A^*)$ and $\Re(A^*) \cap \Re\{(B_r^-)^*\} \subset \Re(A^*MAB)$. If such a matrix G exists, it can be taken from $\{A_{i(M)r}^-\}$.

(b) Let A_r^- be arbitrarily given. There exists $G \in \{B^-\}$ such that $GA_r^- = (AB)_{MN}^+$ iff $\Re\{(A_r^-)^*\} \supset \Re(MAB)$ and $\Re(B) \cap \Re(A_r^-) \subset \Re(BN^{-1}B^*A^*)$. If such a G exists, it can be taken from $\{B_{m(N)r}^-\}$.

Proof. (a): Since $\Re \{(AB)_{MN}^+\} = \Re (N^{-1}B^*A^*)$, the condition $\Re (B_r^-) \supset \Re (N^{-1}B^*A^*)$ is necessary. If the condition of the theorem is satisfied, $B_r^-B(AB)_{MN}^+ = (AB)_{MN}^+$. If $G \notin \{A_r^-\}$, replace it by GAG_1 , where $G_1 \in \{A_{l(M)}^-\}$. (b) can be proved similarly.

REMARKS. (1) If $B_r^- \in \{B_{l(A^*MA)m(N)r}^-\}$, then $\Re(B_r^-) = \Re(N^{-1}B^*) \supset \Re(N^{-1}B^*A^*)$ and $\Re(A^*) \cap \Re\{(B_r^-)^*\} \subset \Re\{(B_r^-)^*B^*A^*\} = \Re\{(B_r^-)^*B^*A^*MA\} = \Re(A^*MAB)$. Therefore the conditions of (a) are satisfied. If $A_r^- \in \{A_{l(M)r}^-\}$ and $(A_r^-)^* \in \{(A^*)_{l(BN^{-1}B^*)}^-\}$, the conditions of (b) are satisfied.

(2) If rank AB = rank A, the condition $\Re(A^*) \subset \Re\{(B_r^-)^*\} \subset \Re(A^*MAB)$ is satisfied for any B_r^- , and the remaining condition $\Re(B_r^-) \supset \Re(N^{-1}B^*A^*)$ is satisfied for any $B_r^- \in \{B_{m(N)r}^-\}$. A similar remark also holds for A_r^- .

(3) Barwick and Gilbert [1] have shown that $\Re(A^*) \cap \Re(B) \subset \Re(A^*AB)$ iff there exists $G \in \{A_{l(I)r}^-\}$ such that $B^+G = (AB)^+$. This is a special case of Theorem 3(a).

COROLLARY 4. Let $(AB)_r^-$ be arbitrarily given. There always exist $G_2 \in \{B_r^-\}$ and $G_1 \in \{A_r^-\}$ such that $G_2G_1 = (AB)_r^-$.

Proof. This is clear because any reflexive generalized inverse X_r^- is X_{MN}^+ for the positive definite matrices $M = (XX_r^-)^* V_1 XX_r^- + (I - XX_r^-)^* V_2 (I - XX_r^-)$ and $N = (X_r^- X)^* V_3 X_r^- X + (I - X_r^- X)^* V_4 (I - X_r^- X)$, where the V_i 's are any positive definite matrices.

Let, hereinafter, A and B be $l \times m$ and $m \times n$ matrices respectively, and r_{AB} , r_A and r_B be the ranks of AB, A and B respectively. When a generalized inverse $(AB)^-$ is given, it cannot always be expressed as B^-A^- . For example, rank $(AB)^-$ should not be greater than $\min(l, m, n)$. The following two theorems state the conditions for the decomposition. We define further $\mathfrak{T} = \mathfrak{R} \{(AB)^-\} \cap \mathfrak{N}(B)$, dim $\mathfrak{T} = t$, $\mathfrak{V} = \mathfrak{R} [\{(AB)^-\}^*] \cap \mathfrak{N}(A^*)$ and dim $\mathfrak{V} = v$.

THEOREM 5. Let $(AB)^-$ be arbitrarily given. Then there exist $G_2 \in \{B_r^-\}$ and $G_1 \in \{A_r^-\}$ such that $(AB)^- = G_2G_1$ iff $\mathcal{V} = \{0\}$ and $\mathcal{T} = \{0\}$.

Proof. We notice that $\mathfrak{R}(B_r^-) \cap \mathfrak{N}(B) = \{0\}$ for any B_r^- . Therefore, $\mathfrak{T} = \{0\}$ if $(AB)^- = C_2 G_1$, where $G_2 \in \{B_r^-\}$. Similarly we see that $\mathfrak{V} = \{0\}$ if $(AB)^- = C_2 G_1$, where $G_1 \in \{A_r^-\}$. Conversely, if $\mathfrak{T} = \{0\}$, there exists a matrix $C_2 \in \{B_r^-\}$ such that $\mathfrak{R}\{(AB)^-\} \subset \mathfrak{R}(C_2)$ or $C_2 B(AB)^- = (AB)^-$. There also exists a $C_1 \in \{A_r^-\}$ such that $(AB)^-AC_1 = (AB)^-$. Using these C_2 and C_1 , we put

$$G_2 = C_2 + (AB)^{-}A - (AB)^{-}ABC_2$$

and

$$G_1 = C_1 + B(AB)^- - BG_2C_1.$$

Then we can check that $G_2 \in \{B_r^-\}$, $G_1 \in \{A_r^-\}$ and $G_2 G_1 = (AB)^-$.

THEOREM 6. Let $(AB)^-$ be arbitrarily given. Then there exist $G_2 \in \{B^-\}$ and $G_1 \in \{A^-\}$ such that $G_2G_1 = (AB)^-$ iff

$$r_A + r_B + t + v \leq m + \operatorname{rank}\{(AB)^-\}.$$

Proof. Necessity: Let $(AB)^-$ be expressed as G_2G_1 , where $G_2 \in \{B^-\}$ and $G_1 \in \{A^-\}$. Then

$$\operatorname{rank}\{(AB)^{-}\} = \operatorname{rank}(G_2G_1)$$
$$= \operatorname{rank}G_1 - \dim\{\mathfrak{R}(G_1) \cap \mathfrak{N}(G_2)\}.$$
Since dim{ $\mathfrak{R}(G_1) \cap \mathfrak{N}(G_2)$ } $\leq \dim\{\mathfrak{N}(G_2)\} = m - \operatorname{rank}G_2$,
$$\operatorname{rank}\{(AB)^{-}\} \ge \operatorname{rank}G_1 + \operatorname{rank}G_2 - m$$
$$\ge r_A + r_B + t + v - m.$$

Sufficiency: Step 1. Let S be a subspace such that $\Re\{(AB)^-\}=\mathbb{S}\oplus\mathbb{T}$, and let \mathfrak{A} be a subspace such that $\Re[\{(AB)^-\}^*]=\mathfrak{A}\oplus\mathbb{V}$. We note that $\mathbb{S}\cap\mathfrak{N}(B)=\{\mathbf{0}\}$ and $\mathfrak{A}\cap\mathfrak{N}(A^*)=\{\mathbf{0}\}$. Then there exist $C_2\in\{B_r^-\}$ and $C_1\in\{A_r^-\}$ such that $\Re(C_2)\supset\mathbb{S}$ and $\Re(C_1^*)\supset\mathfrak{A}$. Using these C_2 and C_1 , we put

$$F_2 = C_2 + C_2 B(AB)^{-} A - C_2 B(AB)^{-} ABC_2$$

and

$$F_1 = C_1 + B(AB)^- AC_1 - BF_2C_1.$$

Then it can be verified that $F_2 \in \{B_r^-\}$, $\Re(F_2) = \Re(C_2)$, $F_1 \in \{A_r^-\}$, $\Re(F_1^*) = \Re(C_1^*)$ and $F_2F_1 = F_2B(AB)^-AF_1$. Further, if we put

$$G = F_1 + B(AB)^- (I - AF_1),$$

then $G \in \{A^-\}$ and $F_2G = F_2B(AB)^-$.

Step 2. Let $F_1 = PQ$ be a full-rank factorization, where P and Q are $m \times r_A$ and $r_A \times l$ matrices. Let $B(AB)^-(I - AF_1)$ be decomposed as UV, where V is a $v \times l$ matrix such that $\Re(V^*) = \Im$. Then

$$G = \begin{bmatrix} P & \vdots & U \end{bmatrix} \begin{bmatrix} Q \\ \cdots \\ V \end{bmatrix}$$

and $\begin{bmatrix} Q \\ V \end{bmatrix}$ is an $(r_A + v) \times l$ matrix which has full row rank. $\begin{bmatrix} P \\ \vdots \end{bmatrix} U$ is an $m \times (r_A + v)$ matrix whose rank is s + q, where $s = \dim S$ and $q = \dim \{\Re(G)\}$

 $\cap \mathfrak{N}(F_2) \}. \text{ Under the condition of the theorem there exists a matrix } \tilde{U} \text{ such that } \begin{bmatrix} P \\ \vdots \\ U + \tilde{U} \end{bmatrix} \text{ has full column rank and } \mathfrak{R}(\tilde{U}) \subset \mathfrak{N}(F_2). \text{ Actually } \tilde{U} \text{ can be constructed as follows: } PP^+ \text{ is the orthogonal projector onto } \mathfrak{R}(P); \text{ let } U - PP^+U = KH \text{ be a full-rank factorization, where } K \text{ has } s + q - r_A \text{ column vectors. Noting that there exists an } (m - r_B - q) \text{-dimensional subspace } \mathcal{Z} \subset \mathfrak{N}(F_2) \text{ which is virtually disjoint with } \mathfrak{R}(G), \text{ and that } m - r_B - q \ge r_A + v - s - q \text{ (condition of the theorem), we see that there exists an } l \times (r_A + v - s - q) \text{ matrix } L \text{ such that } \mathfrak{R}(L) \subset \mathfrak{Z} \text{ and the matrix } \begin{bmatrix} K \\ \vdots \\ L \end{bmatrix} \text{ has full column rank.} \text{ Let } R \text{ be a matrix such that } \begin{bmatrix} H \\ \dots \\ R \end{bmatrix} \text{ is nonsingular. Then we have the desired } \tilde{U} \text{ as } \tilde{U} = LR. \text{ If we put } G_1 = G + \tilde{U} \text{ , then it can be verified that } G_1 \in \{A^-\}, F_2G_1 = F_2B(AB)^- \text{ and } \mathfrak{R}(G_1^*) \supset \mathfrak{R}[\{(AB)^-\}^*]. \text{ Step 3. Since } \mathfrak{R}(G_1^*) \supset \mathfrak{R}[\{(AB)^-\}^*], \text{ there exists a matrix } H \text{ which satisfies the equation } HG_1 = (I - F_2B)(AB)^-. \text{ Using this } H, \text{ we put } G_2 = F_2 + (I - E)(AB)^- \text{ and } H \text{ and }$

the equation $HG_1 = (I - F_2B)(AB)^-$. Using this H, we put $G_2 = F_2 + (I - F_2B)H$. Then $G_2 \in \{B^-\}$ and $G_2G_1 = F_2G_1 + (I - F_2B)HG_1 = F_2B(AB)^- + (I - F_2B)(AB)^- = (AB)^-$, and the proof is completed.

COROLLARY 7. Let $(AB)^-$ be arbitrarily given, and let $r_{AB} = r_A$ (or r_B). Then there exist $G_2 \in \{B^-\}$ and $G_1 \in \{A^-\}$ such that $G_2G_1 = (AB)^-$ iff

$$r_B + t \leq m$$
 (or $r_A + v \leq m$).

Proof. This is clear, because rank{ $(AB)^{-}$ } = $r_A + v$ (or $r_B + t$) if $r_{AB} = r_A$ (or r_B).

So far we have assumed that $(AB)^-$ is given. However, if we don't specify a generalized inverse $(AB)^-$, some interesting facts are found. For example, there exists $G \in \{A^-\}$ $[G \in \{B^-\}]$ such that $B^-G[GA^-] \in \{(AB)^-\}$ for any $B^-[A^-]$. In fact, put $G = A^- + B(AB)^- - A^-AB(AB)^ [G = B^- + (AB)^-A - (AB)^-ABB^-]$. Similarly we can show that there exists $G \in \{A^-\}$ $[G \in \{B^-\}]$ such that $B^-_{m(N)}G \in \{(AB)^-_{m(N)}\}$ $[GA^-_{l(M)} \in \{(AB)^-_{l(M)}\}]$ for any $B^-_{m(N)}[A^-_{l(M)}]$.

REFERENCES

- 1 D. T. Barwick and J. D. Gilbert, On generalizations of the reverse order law, SIAM J. Appl. Math. 27:326-330 (1974).
- 2 D. T. Barwick and J. D. Gilbert, Generalizations of the reverse order law with related results, *Linear Algebra and Appl.* 8:345-349 (1974).
- 3 A. Ben-Israel and T. N. E. Greville, *Generalized Inverses: Theory and Applica*tions, Wiley-Interscience, New York, 1974.

- 4 R. Bouldin, The pseudo-inverse of a product, SIAM J. Appl. Math. 24:489-495 (1973).
- 5 R. E. Cline and T. N. E. Greville, An extension of the generalized inverse of a matrix, SIAM J. Appl. Math. 19:682-688 (1972).
- 6 I. Erdelyi, On the "reverse order law" related to the generalized inverse of matrix products, J. Assoc. Comput. Mach. 13:439-443 (1966).
- 7 T. N. E. Greville, Note on the generalized inverse of a matrix product, SIAM Rev. 8:518-521 (1966).
- 8 C. R. Rao and S. K. Mitra, Generalized Inverse of Matrices and its Applications, Wiley, New York, 1971.
- 9 N. Shinozaki and M. Sibuya, The reverse order law $(AB)^- = B^-A^-$, Linear Algebra and Appl. 9:29-40 (1974).
- 10 N. Shinozaki and M. Sibuya, Consistency of a pair of matrix equations with an application, *Keio Engrg. Rep.* 27(10):141-146 (1974).
- 11 E. A. Wibker, R. B. Howe and J. D. Gilbert, Explicit solutions to the reverse order law $(AB)^+ = B_{mr}^- A_{lr}^-$, Linear Algebra and Appl., 25:107-114(1979).

Received 27 September 1978; revised 8 November 1978