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� PCA applied to distillation curves enables the detection of gasoline adulterations.
� The most important fractions for the discrimination were the 4–40%(v/v) interval.
� This interval was related to the increase of paraffin and isoparaffin content.
� PLS-DA enables the detection and quantification of the solvent used in adulterations.
� The method produced highly accurate results and is suitable for routine analysis.
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a b s t r a c t

This study has shown that the use of distillation curves combined with PCA (Principal Component Anal-
ysis) and PLS-DA (Partial Least Squares Discriminant Analysis) provides a model with enough sensitivity
to discriminate adulterated and unadulterated gasoline samples, as well as, the determination of the sol-
vent used in adulteration with minimum percentage of 97% accuracy. PLS-DA provided the prediction of
adulterants with low RMSEC (Root Mean Square Error of Calibration) and low RMSEP (Root Mean Square
Error of Prediction) when compared to other methods. The great advantage is the possibility to apply the
results of the distillation curves to routine analysis (ASTM D86), therefore not requiring various assays,
speeding up the analytical process. In addition to its feasibility this method can be quite useful in fuel
quality monitoring and inspection procedures whilst having low cost and good reliability.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

The end of government monopoly brought serious changes to
retail and distribution of fuels in Brazil. One of the effects is the
planned adulteration of fuel with the addition of controlled sol-
vents, which have the objective of maintaining the product within
the current specification [1]. This practice has occurred quite fre-
quently despite the measures of Brazilian authorities through the
ANP (Agência Nacional do Petróleo, Gás Natural e Biocombustí-
veis), which establishes technical specification through specific
legislation regarding the minimum quality of fuels mainly guaran-
teeing the standardization of retail production [2].

The addition of solvents is one of the most common practices of
adulteration of fuel due to the enormous difference in taxation
between gasoline and solvents. The addition of illegal compounds
to fuels can cause damaging and unpleasant issues to society such
as environmental risk due to the emission of vapours and toxic
gases, i.e. CO and NOX, less durability to the vehicles’ engine, as
well as, unfair market competition of fuel prices causing a great
loss to the State in tax revenues [3,4]. The most commonly used
solvents include: ethanol in excessive amounts, diesel, kerosene,
refined petrochemicals, toluene, xylene, hexane, among others [5].

Several physicochemical properties are monitored to ensure the
quality of Brazilian gasoline through the ANP [2], and these tests
include specific mass measurements, distillation analysis, octane
analysis, among others. However, the current specifications were
chosen largely based on the good functioning of the engine, rather
than identifying an illicit addition of solvents. Even though they are
capable of indirectly identifying a fraud of any type of solvent in
any proportion of addition, which can lead to adulterated gasoline
to be in conformity with the physicochemical assays [5].

In recent years the ANP, after numerous cases reported by the
media, created means to protect the consumer against the harmful
consequences caused by adulteration. The Agency invested in a
Marking Solvents Program, where mandatorily every solvent com-
mercialised throughout the country had the addition of a chemical
marker, which was designed to have no impact on the applicability
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of the solvents when used individually. The presence of the marker
in gasoline indicates that it has been adulterated with some kind of
solvent, although it is a rather laborious process that requires lab-
oratorial analysis, a tight logistic for the markers, and the monitor-
ing process which becomes highly expensive [5]. It is very common
to find gasoline in the Brazilian market with all the physical and
chemical properties in accordance with the specifications of the
ANP, but with the presence of traces of solvents [6].

A study carried out by LEC-UFMG (Laboratório de Ensaios de
Combustíveis of UFMG) showed that in 2012 approximately 40%
of the gasoline samples analysed were considered atypical [7].
Atypical samples are the ones that have a different profile than
the majority of samples, though they are in accordance with the
parameters established by the ANP. This can be attributed to care-
ful and meticulous adulteration of fuel with the addition of sol-
vents so that the final product stays in accordance with legal
standards or a different origin from the one stated [8]. Therefore,
new analytical methods must be developed to detect these adul-
terations. The methods are simple, fast and efficient in ensuring
the quality and authenticity of commercial fuels and therefore
highly recommended for routine analysis.

Currently the scientific literature has reported alternative
methodologies in the detection of adulteration in gasoline. These
methodologies use the employment of chemometric tools com-
bined with several conventional techniques of gasoline analysis
[1,3,5,9–17]. The large majority refer to studies using chromato-
graphic [1,3,9] and spectroscopic [11–17] methods.

Wiedemann et al. [3] carried out a study to detect adulteration
in gasoline samples using the results obtained through physico-
chemical properties and chromatographic data in the gas phase
of samples combined with hierarchical clustering analysis (HCA).

Balabin et al. [13–16] used near infrared, different chemometric
tools and artificial neural networks to predict different gasoline
properties [13,14] and classify gasoline and gasoline fractions by
source (refinery or process) and type [15,16]. The models have
low errors and could be useful to detect anomalous gasoline
samples.

In another study Monteiro et al. [17] used hydrogen nuclear
magnetic resonance (1H RMN) of retail gasoline and added solvents
combined with principal component analysis (PCA) and hierarchi-
cal clustering analysis (HCA) to distinguish samples in conformity
and not in conformity. The results indicated a tendency of non-
complying samples clustering with the increase of the content of
solvent added.

Recent studies have shown the great potential of distillation
curves, or a few specific points, for the analysis of different param-
eters of petroleum products [8,5,18–39], as refinery origin
[24,25,27] enthalpy of combustion [21], specific gravity [26,31],
kinematic viscosity [31], octane numbers [30], cetane index [32],
flash point [32], ethanol content [26] and biodiesel [39]. The addi-
tion of solvents changes the properties related to the gasoline vol-
atility and also distillation temperatures can change significantly
for them to be detected by this assay [5,8,18,23,28,37,38].

The assay is carried out according to the ASTM D86 [40], which
describes the distillation at atmospheric pressure of various petro-
leum products. The aim of this assay is to determine volatility char-
acteristics verifying if the light and heavy properties of the fuel
being produced are adequate and also to detect the contamination
of other products. The ANP establishes that Brazilian fuel must
have maximum temperature values of 10%, 50% and 90% of the
recovered volume, as is for the final boiling point and residual vol-
ume [40]. The great advantage of this tool is the possibility to use
the results from routine analysis reducing the number of assays, as
well as, eliminating the demand for sample pre treatment. There-
fore, distillation curves have become quite a useful tool for quality
control of automotive fuel.
Gasoline is the second most consumed fuel in Brazil while die-
sel is the most consumed [2], approximately 39.7 billion litres in
2012. Hence, there is a great demand from society for high quality
gasoline, which requires the development of methods for the
detection of possible contaminants in fuel to support monitoring
and surveillance programs.

In this work, distillation curves, a routine procedure in fuel
analysis, combined with chemometric techniques of classification
PCA and PLS-DA were employed to identify the adulteration of gas-
oline with solvents sold at fuel stations. Furthermore, multivariate
calibration models were built using PLS in the prediction of the sol-
vents added to automotive gasoline.
2. Experimental

2.1. Material

This study used 150 samples from common gasoline C collected
at fuelling stations located in the eastern region of the State of Min-
as Gerais, Brazil, through the Fuel Quality Monitoring Program
(PMQC-ANP). The origin of the samples was determined from the
data provided in the invoices from the fuel stations at the moment
of collecting the samples, since they come from different refineries
from other states. The samples were stored in polyethylene flasks,
sealed, and kept at 8 to 15 �C temperature range.

Four groups of doped gasoline samples were prepared using
gasoline A (mixture of hydrocarbons without ethanol from the
Gabriel Passos Refinery – REGAP – Petrobras) and 5 to 40% (v/v)
of each one of the solvents, in 1% (v/v) steps, more the 45 and
50% (v/v) ones. The solvents used were kerosene, turpentine, thin-
ner and rubber solvent (a mixture of aliphatic and aromatic hydro-
carbons from C6 to C8). The ethanol concentration was kept at 25%
(v/v) in all samples maintaining the same content of gasoline sold
at fuel stations. Petrobras provided all solvents as well as the gas-
oline, except thinner, which was acquired through retail (Dissolm-
inas 3500). These samples were used to identify the types of
solvents used in automotive gasoline adulteration through statisti-
cal tools i.e. PCA and PLS-DA and also the PLS models built for
quantification.

All samples were previously analysed through several physico-
chemical parameters established by the ANP [2] such as distillation
temperatures equivalent to 10%, 50% and 90% of the recovered vol-
ume, final boiling point, residue volume (ASTM D86) [40], specific
gravity (ASTM D4052) [41], octane numbers (MON and IAD) (cor-
related with ASTM D2699 and D2700) [42,43], contents of benzene
(%v/v) (ASTM D6277) [44], anhydrous ethanol (NBR 13992) [45]
and hydrocarbons (saturated, olefins and aromatics, correlated
with ASTM D1319) [46]. An automatic distiller was used for the
analysis (Herzog HDMA 627), a densimeter (Anton Paar 4500)
and an automatic gasoline analyser (Petrospec GS1000) based in
infrared spectrometry and multivariate analysis. From these re-
sults the samples were classified as in-conformity (in agreement
with the specification) and nonconformity (not in agreement to
at least one of the specifications).

Besides the aforementioned assays the analysis of the markers
of solvents was also carried out. The detection of the solvents’
markers carried out by the ANP was done by submitting the sam-
ples to chromatographic analysis. The marker is a product devel-
oped exclusively for the detection of adulterations and due to
legal issues it is not possible to publish information on the marker
neither standards required for the analysis nor the methodology
used. However, it is possible to state that the analysis takes
20 min, besides having a high cost it can only be carried out by
ANP authorized labs.
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After obtaining the results of analysis using the markers men-
tioned above, the samples were classified into adulterated (having
a positive result in the presence of the solvent marker) and unadul-
terated (having a negative result in the presence of the solvent
marker).
2.2. Distillation

For the distillation test, 100 mL of previously cooled gasoline
was transferred to a specific distillation flask coupled with a sensor
and heated in order to maintain the distillation rate between 4 and
5 mL min�1, according to ASTM D86 [40]. The distilled vapour was
condensed and collected in a cooled beaker and the distillation
curves (distillation temperature depending on recuperated vol-
ume), at 1% (v/v) intervals, were obtained after correcting atmo-
spheric pressure temperature readings to 760 mmHg and
considering volume loss, according to ASTM D86 [40].
Fig. 1. Score graph for the first two principal components obtained in the
discrimination of gasoline C samples from PMQC-ANP. (h) adulterated samples;
(d) unadulterated samples.
2.3. Chemometric analysis

The distillation curves of 302 samples – 150 samples of retail
gasoline, 75 adulterated and 75 non-adulterated, and 152 samples
of tampered gasoline with four different solvents – were arranged
into data matrixes where each line of the matrix constitutes a sam-
ple and the rows the variables.

The first model was built with 150 retail samples, from different
origins, employing PCA and PLS-DA to distinguish the adulterated
samples from the unadulterated samples. Later two PCA and PLS-
DA models were built using 40 adulterated samples and 40 unadul-
terated samples (from the first model and only from REGAP refin-
ery) and 152 samples tampered with solvents. The origin of the
fuel was an important factor in this stage of the process since sam-
ples from different refineries present distinct compositions. There-
fore, a doped sample from REGAP could present similarities to
another sample from a different origin, which would lead to an
erroneous classification.

After the PCA analysis, which had the aim to extract maximum
data from all the set visually, models were built using the multivar-
iate method for the PLS-DA classification in order to carry out a sta-
tistical data analysis.

In the first PLS-DA model 100 samples were used for the valida-
tion set. The second model used 138 samples in the calibration set
and 54 in the validation set. Both sub sets (calibration and valida-
tion) were selected using the Kennard-Stone algorithm [47]. To
validate the PLS-DA model the ‘‘leave-one-out’’ cross validation
was used and also the external validation. The criterion used to se-
lect the number of latent variables was based on the lowest
RMSECV (Root Mean Square Error Cross Validation) value. The sen-
sitivity and specificity parameters were determined for each one of
the classes, for both calibration and validation in the evaluation of
the models’ quality.

PLS was employed in the prediction of content of solvents
added to samples doped with solvents in concentrations of 5 to
50% (v/v). In this work in order to determine the content of sol-
vents of the gasoline samples, four PLS multivariate calibration
models, and one for each solvent was built using the same samples
as the aforementioned PCA model. In each case, 1/3 of the samples
of the validation set were used and the selection of these samples
was carried out also using the Kennard-Stone algorithm. The num-
ber of latent variables used to build each model was determined
through cross-validation.

Auto scaling was the preprocessing method used for all models.
The models were evaluated by accessing the RMSEC (Root mean
square error of calibration) value, the correlation between the real
and predicted values for the concentrations (R), RMSEP (Root Mean
Square Error of Prediction), LV (Latent Variable) and EV% (explained
variance percentage).

The calculations were performed using the Minitab Release 14
Windows version) and Matlab (version 7.9) softwares.
3. Results and discussion

3.1. Segregation of adulterated and unadulterated samples

The distillation curves of adulterated and unadulterated sam-
ples can present similarities so that a simple visual comparison
would not be able to distinguish them, hence the use of chemomet-
ric methods are necessary. In this study the interval of the distilla-
tion curve ranged from 4 to 93% (v/v), due to low reproducibility
outside this range.

The distillation curves of 150 samples from PMQC-ANP (75
adulterated and 75 unadulterated) were obtained and put into an
X matrix data with the samples displayed in lines and the equiva-
lent temperatures of the recuperated percentages in columns. The
distillation curves of these samples were used for the PCA chemo-
metric treatment and the preprocessing used for the treatment of
data was auto scaling.

The results obtained with PCA showed that the three first prin-
cipal components explained 86.3% of the original information.
Fig. 1 shows the scores graph obtained for the first two principal
components (PC1 e PC2), which displays the formation of two
groups, one formed by a more dense group of unadulterated sam-
ples and the other by a more disperse group of samples of various
behaviours classified as adulterated by the solvent marker assay.
PC1 described 63.6% o the total variance, PC2 15.7% and PC3 7.0%.

Fig. 2 shows the loadings graph of the variables (percentage of
recuperated volume) associated with the first principal compo-
nent. In PC1 the most important fractions for the separation of both
sets of adulterated samples and unadulterated samples correspond
to 4 to 40% (v/v). This is related to the increase of paraffin and iso-
paraffin content in adulterated gasoline that forms azeotropes with
ethanol, causing alterations in the initial range of the distillation
curves (Fig. 6).

Ethanol when mixed with gasoline forms minimum azeotropes
with hydrocarbons, which have lower boiling point than both com-
ponents separately [48]. These mixtures exhibit high deviations
from ideal mixtures defined by Raoult’s Law. During distillation a
mixture of gasoline (hydrocarbons) and ethanol, boils and distills
constantly until it reaches its azeotropic temperature, which



Fig. 2. Loading graph for PC1 obtained in the discrimination of adulterated and
unadulterated gasoline C samples from PMQC-ANP. Fig. 3. PLS-DA classification of gasoline C samples from PMQC-ANP. (j) adulterated

samples; (d) unadulterated samples; (s) respective validation samples.
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depends on the mixtures’ chemical composition. At this stage the
temperature remains constant until all the azeotropic mixture is
distilled so then the rest of the hydrocarbon mixture is free from
ethanol, and ‘‘boils’’ at its respective individual boiling points con-
tinuously. This phenomenon creates a region of transition between
the azeotropic mixture and the lasting hydrocarbon mixture easily
identified by a sudden rise of temperature during distillation [49].

According to Pasquini and Scafi [50], until the 40% (v/v) fraction
of gasoline C distillation, there is an increase in content of paraffins
and isoparaffins, the fraction of 60% (v/v) at its maximum. The
addition of aliphatic solvents, the most used type in adulterations
in Brazil [6], produce the dilution of olefins and aromatics due to
the increase of paraffins and isoparaffins contents in the mixtures
[51]. Taking this into consideration the paraffins and isoparaffins
are the main hydrocarbons responsible for the segregation studied.
The increase of these hydrocarbons in adulterated samples to the
fraction of 40% (v/v), produces a rapid formation of azeotropes
among the hydrocarbons and ethanol causing the latter to produce
azeotropes in smaller fractions compared to unadulterated gaso-
line, therefore changing the profile of the distillation (Fig. 6).

The results obtained from the physic-chemical parameters as-
says according to the ANP [2] for adulterated samples and unadul-
terated samples confirm this tendency. According to Table 1 it is
possible to observe that adulterated samples present a greater dis-
persion of RON values, final boiling point and temperatures equiv-
alent to 10% and 90% of the recovered volume. In addition, it is
Table 1
Mean values and respective standard deviations of physicochemical parame

Method Parameter Specificati

ASTM D4052 Specific gravity No specifi
ASTM D6277 Benzene (% v/v) 1.0 (max.)
NBR 13992 Ethanol (% v/v) 25 ± 1

ASTM D86 10% recovered (�C) 65.0 (max
50% recovered (�C) 80.0 (max
90% recovered (�C) 190.0 (ma
Final boiling point (�C) 220.0 (ma
Residue (mL) 2.0 (max.)

Automatic MON 82.0 (min.
RON No specifi

Gasoline AKI 87.0 (min.
Analyser Aromatics (% v/v) 38.0 (max

Olefins (% v/v) 45.0 (max
Saturated hydrocarbons (% v/v) No specifi
possible to observe that adulterated samples present a tendency
to raise the values of the temperature equivalent to 10% and the
content of saturated hydrocarbons, in relation to unadulterated
samples, followed by smaller olefin content. In the Brazilian South-
east region the content of olefins in gasoline is high once the pro-
duction process uses catalytic cracking to convert complex
molecules into simpler compounds (light hydrocarbons) producing
large quantities of these components. Therefore, the addition of
solvents causes modifications in the original volatility characteris-
tics of gasoline C [52].

The PCA analysis had the objective of exploring important vari-
ables in the segregations once in PLS-DA the results obtained using
loadings provided graphs with distinct behaviours. This is because
in PLS-DA the simultaneous regression amongst matrixes X and Y
occurs and in PCA only the X matrix is decomposed. After perform-
ing PCA, PLS-DA was employed in the same sample set because it
provides a statistical data analysis.

To carry out the PLS-DA model three latent variables were used
and auto scaling as pre processing which yielded an accumulated
variance of 85.0% in X a 76.6% in Y. Furthermore, the model did
not present anomalous samples and the results obtained for both
their classes (adulterated samples and unadulterated samples from
PMQC) are shown in Fig. 3.

The dashed line in Fig. 3 indicates the threshold value between
the predicted values. Values above this limit indicate that the
ters and their specifications according to ANP.

on Adulterated samples Unadulterated samples

cation 0.7560 ± 0.0040 0.7549 ± 0.0035
0.5 ± 0.2 0.7 ± 0.1

24.6 ± 1.6 24.0 ± 2.3

.) 59.3 ± 3.9 53.6 ± 1.5

.) 72.8 ± 0.8 72.3 ± 0.6
x.) 170.0 ± 10.2 166.8 ± 4.8
x.) 211.3 ± 8.6 209.3 ± 5.9

1.1 ± 0.2 1.1 ± 0.2

) 81.6 ± 1.1 82.5 ± 1.2
cation 95.2 ± 2.6 97.2 ± 1.0
) 88.4 ± 1.5 89.8 ± 0.7
.) 15.5 ± 4.9 17.6 ± 4.4
.) 13.8 ± 5.9 22.9 ± 4.8
cation 40.2 ± 9.9 30.2 ± 8.6



Table 2
Sensitivity and specificity for the PLS-DA model (3VL).

Parameter Class 1 Class 2
Adulterated
samples

Unadulterated
samples

Sensitivity (calibration) 1.000 1.000
Specificity (calibration) 1.000 1.000

Sensitivity (prediction) 1.000 1.000
Specificity (prediction) 1.000 1.000

Classification error
(calibration)

0 0

Classification error
(prediction)

0 0

Fig. 5. Loading graphs for the first (–) and second (- - -) principal components
obtained in the discrimination of gasoline C samples doped with different solvents.

ig. 4. Score plot for PC1 and PC2 obtained in the discrimination of gasoline C
amples doped with different solvents. (h) kerosene; (N) turpentine; (s) thinner;

) rubber solvent; and also (⁄) adulterated samples and ( ) unadulterated
amples from PMQC-ANP.
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sample belongs to the modeled class and predicted values, below
this threshold indicate that the sample does not belong to the
modeled class. This line is calculated by the algorithm and is esti-
mated from the calibration samples and the prediction values by
PLS-DA. If a sample belonging to a certain class is present at the
bottom line, it has been classified incorrectly.

In Fig. 3 the graphs indicate both classes classified by the PLS-
DA for both calibration and validation sets. Table 2 shows the sen-
sitivity and specificity parameters by the PLS-DA model. The re-
sults indicate 100% accuracy in the prediction of adulterated and
unadulterated samples from PMQC-ANP.

These results confirmed that the use of distillation curves asso-
ciated with the PLS-DA were able to discriminate adulterated and
unadulterated samples of the monitoring program with 100% clas-
sification both for calibration and validation.

3.2. Models using adulterated and unadulterated samples and doped
with solvents

This model used 40 adulterated and 40 unadulterated samples
collected by PMQC-ANP, and more 152 samples doped with differ-
ent solvents. Initially the set of data from the distillation curves of
the unadulterated gasoline samples and adulterated samples with
the four solvents in concentrations of 5 to 50% (v/v) were submit-
ted to principal component analysis.

The results obtained by the PCA analysis showed the formation
of four groups of adulterated samples, with kerosene, turpentine,
thinner and rubber solvent, as well as, another two sets of adulter-
ated and unadulterated samples (Fig. 4). A few samples from the
PMQC-ANP grouped toward one or more sets due to the possible
mixture of the solvents used. Turpentine and kerosene presented
in their composition heavy aliphatic hydrocarbons (C13 to C15)
and (C9 to C16), respectively, showing certain similarities com-
pared to the other groups (thinner and rubber solvent), given that
turpentine is one of the kerosene fractions. In rubber solvent there
is the presence of light aliphatic hydrocarbons (C6 to C8) with sat-
urated content in quantities larger than the aforementioned sol-
vents and also the presence of olefins. And in thinner there is a
high content of aromatic hydrocarbons as well as other compo-
nents such as acetates and alcohols [6].

The first four principal components explained 95.4% of the ori-
ginal information. PC1 described 75.7%, PC3 13.9, PC2 3.5% and PC1
2.2%. Fig. 4 shows PC1 separated doped samples with thinner and
rubber solvent from unadulterated samples. Another separation in
PC1 occurred between samples doped with rubber solvent and
unadulterated samples. While PC2 distinguished samples doped
with kerosene from samples doped with turpentine. The loadings
graph (Fig. 5) indicates that the essential region of the distillation
curve for the separation of samples ranges from the intervals of 4
to 35% (v/v), the aforementioned model likewise, 50 to 65% (v/v).
For PC2 the intervals of 4 to 35% (v/v) and 70 to 90% (v/v) were
the most important.
F
s
(d
s

The importance of these variances is related to the boiling tem-
perature alterations caused by the addition of different solvents to
gasoline previously discussed. Fig. 6 shows the variations produced
by the additions in a gasoline C sample doped with different sol-
vent in concentrations of 0, 10, 20, 30, 40 and 50% (v/v), separately.



Fig. 6. Distillation curves obtained for different solvent contents in gasoline C samples. ( ) 0% (v/v); (s) 10% (v/v); (j) 20% (v/v); (4) 30% (v/v); (.) 40% (v/v); (}) 50% (v/v).
(a) turpentine; (b) kerosene; (c) rubber solvent and (d) thinner.
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It was possible to observe that solvents such as turpentine and
kerosene, when compared to others, lower the distillation temper-
ature of gasoline C. The increase of the solvent content causes a
sudden increase of temperatures in smaller fractions. The addition
of turpentine produces severe variation in the distillation curve in
fraction ranging from 4 to 40% (v/v) starting from this point on-
wards the increase of temperature for solvents with higher concen-
trations. Between 45 and 60% (v/v) abrupt increases in temperature
occur in these solvents that take place in distinct intervals with
rubber solvent and thinner, explaining the importance of the vari-
ables of the loadings graph (Fig. 5).

In the distinction between gasoline C and rubber solvent the
fraction ranging from 4 to 40% (v/v) are responsible for the segre-
gation, while the turpentine and kerosene solvents the distinction
was made by PC2 in the fraction ranging from 65 to 90% (v/v). The
distillation curves in Fig. 6 show that the boiling temperatures of
kerosene are higher in the final fractions, possibly due to the pres-
ence of hydrocarbons C13 to C16.

Thinner and rubber solvents ranging from 4 to 40% (v/v) present
higher importance in the distinction among them. In this interval
thinner addition cause the boiling temperature to lower, contrarily,
the rubber solvent presents in its composition considerable con-
centration of ethanol, which form minimum azeotropes in this par-
ticular interval [25].

The results indicated that the adulterated samples with thinner
and rubber solvent presented a tendency of grouping with unadul-
terated samples in lower concentrations of solvent. Fig. 4 shows
that the adulteration with thinner (aromatic solvent) and with rub-
ber solvent (light aliphatic solvent) seems more difficult to detect,
than the addition of kerosene and turpentine (heavy aliphatic sol-
vents) using distillation curves for the detection.

As previously carried out the PLS-DA was also employed to
same samples used in PCA except the adulterated samples from
PMQC-ANP. Six latent variables were used to build the PLS-DA
model as for the preprocessing auto scaling was employed. This
yielded an accumulated variance of 98% in X and 75% in Y, not dis-
playing any anomalous samples. The graphs of Fig. 7 indicate the
samples fitting to each class they were classified into by PLS-DA.

Table 3 shows the sensitivity and sensibility parameters ob-
tained by the PLS-DA model. The results reveal 97% accuracy in
the prediction of doped samples with turpentine and rubber sol-
vent, and for the rest of the doped samples and the unadulterated
samples the percentage of accuracy was of 100%. The classification
and validation errors for all the set of samples were quite small,
lower than 0.06%. These results were better than the ones obtained
by Pereira et al. [6] using LDA and infrared spectra with the effi-
ciency of 93% in the identification of the type of solvent added to
gasoline.

The individual models for each class with different concentra-
tions and types of solvents were developed yielding good results
before the results of PCA and PLS-DA were obtained, providing
the classification of adulterated and unadulterated samples and
the types of solvents used.

3.3. Quantification of solvents in gasoline samples

The X matrix (distillation curve) and the y vector (content of
solvents) were used to build the multivariate calibration model,



Fig. 7. PLS-DA classification of gasoline C samples doped with different solvents. (a) (s) kerosene; (b) (j) rubber solvent; (c) (+) thinner; (d) (.) turpentine and (e) (})
unadulterated samples.
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with the number of latent variables accordingly defined by the
lowest value of PRESS (Predictive Residual Error Sum of Squares)
[53]. Table 4 shows the number of latent variables used in each
model and the explained variance in y.

The autoscaling process was employed to build the chemomet-
ric models, it provided lower values of RMSEC (Root Mean Square
Error of Calibration) and RMSEP (Root Mean Square Error Valida-
tion), when compared to the ones obtained using original data
and other tested pre processing methods. This is because in this
pretreatment equal weight is given to the variables.

The working range of the curves varied from 5 to 50% (v/v) and
the minimum concentrations that the methodology can quantify



Table 3
Sensitivity and specificity for the PLS-DA model (6VL).

Parameter Class 1 Class 2 Class 3 Class 4 Class 5
T K RS TH UN

Sensitivity (calibration) 0.966 1.000 0.968 1.000 1.000
Specificity (calibration) 0.972 1.000 0.991 1.000 0.966

Sensitivity (prediction) 0.966 1.000 0.968 0.955 0.963
Specificity (prediction) 0.963 1.000 0.991 0.991 0.964

Classification error
(calibration)

0.031 0 0.020 0 0.018

Classification error
(prediction)

0.061 0 0 0.041 0.011

K – kerosene, T – turpentine, RS – rubber solvent, TH – thinner, UN – unadulterated
samples.

Table 4
Parameters of models PLS for quantification of solvents in gasoline C.

Solvent RMSEC (% v/v) RMSEP (% v/v) NVL R2 VE (%)

Turpentine 0.53 1.1 3 0.99 99.8
Kerosene 0.66 0.66 3 0.99 99.9
Rubber solvent 0.85 1.4 3 0.99 99.0
Thinner 1.1 1.7 3 0.99 99.8
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was 6% (v/v) – for thinner, turpentine and kerosene – and 7% (v/v)
for rubber solvent.

The accuracy evaluation of the proposed method was carried
out by calculating the RMSEP. Table 4 shows that the RMSEP values
were lower than those reported in the literature [10] using infra-
red. From these results it can be stated that the combination of dis-
tillation curves and multivariate calibration provided excellent
results in predicting the levels of solvent added to gasoline, since
low values of RMSEP were observed compared with models ob-
tained from spectrometric techniques.

To assess the adjustment of the data, the concentration of each
solvent provided by the proposed method were compared with ref-
erence values. The four models showed a high correlation between
real and predicted values, i.e., we obtained a large set of real and
predicted values for model calibration (R greater than 0.99), the
largest one obtained in predicting the levels of kerosene.
4. Conclusions

This study showed that the use of distillation curves associated
with PCA and PLS-DA yielded the discrimination of adulterated and
unadulterated samples from the PMQC-ANP, as well as, the distinc-
tion of samples doped with unadulterated thinner, rubber solvent,
turpentine and kerosene. The lowest percentage of accuracy ob-
tained by the PLS-DA method was 97% for all the models built.

The use of PLS provided the prediction of content of contami-
nants in the range 5 to 50% (v/v) with low RMSEC and RMSEP values
when compared to other methods. The great advantage of this
work in relation to others in the literature using other analytical
techniques is that it is possible to apply the results of the distilla-
tion curves in routine analysis, with no need for further testing.

One can also conclude that the proposed methodology can be
implemented to improve the analytical process, as it is possible
to predict which samples show adulteration, and the marker test
can be used only to reassure the results. This study will provide
great benefits in assisting in the process of supervision and moni-
toring the quality of automotive gasoline combined with its low
cost.
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