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Abstract

This paper presents efficient algorithms for solving the problem of aligning a protein structure template to a query amino-acid
sequence, known as protein threading problem. We consider the problem as a special case of graph matching problem. We give
formal graph and integer programming models of the problem. After studying the properties of these models, we propose two
kinds of Lagrangian relaxation for solving them. We present experimental results on real-life instances showing the efficiency of
our approaches.
c© 2007 Elsevier Ltd. All rights reserved.
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1. Preliminaries

Matching is an important class of combinatorial optimization problem with many real-life applications. Matching
problems involve choosing a subset of edges of a graph subject to degree constraints on the vertices. Many alignment
problems arising in computational biology are special cases of matching in bipartite graphs. In these problems the
vertices of the graph can be nucleotides of a DNA sequence, amino acids of a protein sequence or secondary structure
elements of a protein structure. Unlike classical matching problems, alignment problems have intrinsic order on the
graph vertices and this implies extra constraints on the edges. As an example, Fig. 1 shows an alignment of two
sequences as a matching in bipartite graph. We can see that the feasible alignments are 1-matchings without crossing
edges.

In this paper we deal with the problem of aligning a protein structure template to a query protein sequence of
length N , known as protein threading problem (PTP). A template is an ordered set of m secondary structure elements
(or blocks) of lengths li , i = 1, . . . , m. An alignment (or threading) is a covering of contiguous sequence areas by the
blocks. A threading is called feasible if the blocks preserve their order and do not overlap. A threading is completely
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Fig. 1. Matching interpretation of sequence alignment problem.

Fig. 2. (a) Example of alignment of query sequence of length 20 and template containing 3 segments of lengths 3, 5 and 4. (b) Correspondence
between absolute and relative block positions. (c) A matching corresponding to the alignment of (a).

determined by the starting positions of all blocks. For the sake of simplicity we will use relative positions. If block i
starts at the j th query character, its relative position is ri = j −

∑i−1
k=1 lk . In this way the possible (relative) positions

of each segment are between 1 and n = N + 1−
∑m

i=1 li (see Fig. 2(b)). The set of feasible threadings is

T = {(r1, . . . , rm) | 1 ≤ r1 ≤ · · · ≤ rm ≤ n}.

Protein threading problem is a matching problem in a bipartite graph (U ∪V, U ×V ), where U = {u1, . . . , um} is the
ordered set of blocks and V = {v1, . . . , vn} is the ordered set of relative positions. The threading feasibility conditions
can be restated in terms of matching in the following way. A matching M ⊆ U × V is feasible if:

(i) d(u) = 1, u ∈ U (where d(x) is the degree of x). This means that each block is assigned to exactly one position.
By the way this implies that the cardinality of each feasible matching is m.

(ii) There are no crossing edges, or more precisely, if (ui , v j ) ∈ M , (uk, vl) ∈ M and i < k, then j ≤ l. This means
that the blocks preserve their order and do not overlap. The last inequality is not strict because of using relative
positions.

Note that while (i) is a classical matching constraint, (ii) is specific for the alignment problems and makes them more
difficult. Fig. 2(c) shows a matching corresponding to a feasible threading.

Proposition 1. The number of feasible threadings is |T | =
(

m+n−1
m

)
.

Proof. We can define the relative positions as ri = j −
∑i−1

k=1 lk + i − 1. In this case the relative positions of the
feasible threadings are related by

1 ≤ r1 < · · · < rm ≤ m + n − 1

and a threading is determined by choosing m out of m + n − 1 positions. �



1056 N. Yanev et al. / Computers and Mathematics with Applications 55 (2008) 1054–1067

Fig. 3. Example of alignment graph. The path in thick lines corresponds to the threading in which the positions of the blocks are 1, 2, 2, 3, 4, 4.

One of the possible ways to deal with alignment problems is to try to adapt the existing matching techniques to
the new edge constraints of type (ii). Instead of doing this we propose a new graph model and we develop efficient
matching algorithms based on this model.

We introduce an alignment graph G = (U × V, E). Each vertex of this graph corresponds to an edge of the
matching graph. For simplicity we will denote the vertices by vi j , i = 1, . . . , m, j = 1, . . . , n and draw them as an
n × m grid (see Fig. 3). The vertices vi j , j = 1, . . . , n will be called i th layer. A layer corresponds to a block and
each vertex in a layer corresponds to positioning of this block in the query sequence.

One can connect by edges the pairs of vertices of G which correspond to pairs of non-crossing edges in the matching
graph. In this case a feasible threading is an m-clique in G. A similar approach is used in [1,2]. We introduce only
a subset of the above edges, namely the ones that connect vertices from adjacent columns and have the following
regular pattern: E = {(vi j , vi+1,l) | i = 1, . . . , m − 1, 1 ≤ j ≤ l ≤ n}. We add two more vertices S and T and edges
connecting S to all vertices from the first column and T to all vertices from the last column. Now it is easy to see the
one-to-one correspondence between the set of feasible threadings (or matchings) and the set of S–T paths in G. Fig. 3
illustrates this correspondence.

Till now we gave several alternative ways to describe the feasible alignments. Alignment problems in computational
biology involve choosing the best of them based on some score function. The simplest score functions associate
weights to the edges of the matching graph. For example, this is the case of sequence alignment problems. By
introducing alignment graphs similar to the above, classical sequence alignment algorithms, such as Smith–Waterman
or Needleman–Wunch, can be viewed as finding shortest S–T paths. When the score functions use structural
information, the problems are more difficult and the shortest path model cannot incorporate this information.

The score functions in PTP evaluate the degree of compatibility between the sequence amino acids and their
positions in the template blocks. The interactions (or links) between the template blocks are described by the so-
called generalized contact map graph, whose vertices are the blocks and whose edges connect pairs of interacting
blocks. Let L be the set of these edges:

L = {(i, k) | i < k and blocks i and k interact}.

Sometimes we need to distinguish the links between adjacent blocks and the other links. Let R = {(i, k) | (i, k) ∈ L ,

k − i > 1} be the set of remote (or non-local) links. The links from L \ R are called local links. Without loss of
generality we can suppose that all pairs of adjacent blocks interact.

The links between the blocks generate scores which depend on the block positions. In this way a score function of
PTP can be presented by the following sets of coefficients

• ci j , i = 1, . . . , m, j = 1, . . . , n, the score of putting block i on position j
• di jkl , (i, k) ∈ L , 1 ≤ j ≤ l ≤ n, the score generated by the interaction between blocks i and k when block i is on

position j and block k is on position l.

The coefficients ci j are some function (usually sum) of the preferences of each query amino acid placed in block
i for occupying its assigned position, as well as the scores of pairwise interactions between amino acids belonging to
block i . The coefficients di jkl include the scores of interactions between pairs of amino acids belonging to blocks i
and j . Loops (sequences between adjacent blocks) may also have sequence specific scores, included in the coefficients
di, j,i+1,l .
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Fig. 4. Example of augmented path. The generalized contact map graph is given in the bottom. The x arcs of the S–T path are in solid lines. The
activated z-arcs are in dashed lines. The length of the augmented path is equal to the score of the threading (1, 2, 2, 3, 4, 4).

The score of a threading is the sum of the corresponding score coefficients and PTP is the optimization problem
of finding the threading of minimum score. If there are no remote links (if R = ∅) we can put the score coefficients
on the vertices and the edges of the alignment graph and PTP is equivalent to the problem of finding the shortest S–T
path. In order to take the remote links into account, we add to the alignment graph the edges

{(vi j , vkl) | (i, k) ∈ R, 1 ≤ j ≤ l ≤ n}

which we will refer as z-edges.
An S–T path is said to activate the z-edges that have both ends on this path. Each S–T path activates exactly |R| z-

edges, one for each link in R. The subgraph induced by the edges of an S–T path and the activated z-edges is called
augmented path. Thus PTP is equivalent to finding the shortest augmented path in the alignment graph (see Fig. 4).

As we will see later, the main advantage of this graph is that some simple alignment problems reduce to finding
the shortest S–T path in it with some prices associated with the edges and/or vertices. The last problem can be easily
solved by a trivial dynamic programming algorithm of complexity O(mn2). In order to address the general case we
need to represent this graph optimization problem as an integer programming problem.

2. Integer programming formulation

Let yi j be binary variables associated with the vertices of G. yi j is one if block i is on position j and zero otherwise.
Let Y be the polytope defined by the following constraints:

n∑
j=1

yi j = 1 i = 1, . . . , m (1)

j∑
l=1

yil −

j∑
l=1

yi+1,l ≥ 0 i = 1, . . . , m − 1, j = 1, . . . , n − 1 (2)

yi j ≥ 0 i = 1, . . . , m, j = 1, . . . , n. (3)

Constraints (1) ensure the feasibility condition (i) and (2) are responsible for (ii). That is why Y ∩ Bmn is exactly the
set of feasible threadings.

In order to take into account the interaction costs, we introduce a second set of binary variables zi jkl , (i, k) ∈ L ,
1 ≤ j ≤ l ≤ n. To avoid added notation we will use vector notation for the variables yi = (yi1, . . . yin) ∈ Bn

with assigned costs ci = (ci1, . . . cin) ∈ Rn and zik = (zi1k1, . . . , zi1kn, zi2k2, . . . , zi2kn, . . . , zinkn) ∈ B
n(n+1)

2 for

(i, k) ∈ L with assigned costs dik = (di1k1, . . . , di1kn, di2k2, . . . , di2kn, . . . , dinkn) ∈ R
n(n+1)

2 .
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Consider the 2n × n(n+1)
2 node–edge incidence matrix of the subgraph spanned by two interacting layers i and k.

The submatrix A′ containing the first n rows (resp. A′′ containing the last n rows) corresponds to the layer i (resp.
layer k).

Now the protein threading problem can be defined as

zL
I P = v(PTP(L)) = min

{
m∑

i=1

ci yi +
∑

(i,k)∈L

dik zik

}
(4)

subject to: y = (y1, . . . , ym) ∈ Y, (5)

yi = A′zik (i, k) ∈ L , (6)

yk = A′′zik (i, k) ∈ L , (7)

zik ∈ B
n(n+1)

2 (i, k) ∈ L . (8)

The shortcut notation v(.) will be used for the optimal objective function value of a subproblem obtained from PTP(L)

with some z variables fixed.

3. Complexity results

In this section we study the structure of the polytope defined by (5)–(7) and zik ∈ R
n(n+1)

2
+ , as well as the impact of

the set L on the complexity of the algorithms for solving the PTP problem. Throughout this section, vertex costs ci
are assumed to be zero. This assumption is not restrictive because the costs ci j can be added to di, j,i+1,l , l = j, . . . , n.
We will consider the costs dik as n×n matrices containing the coefficients di jkl above the main diagonal and arbitrary
large numbers below the main diagonal. In order to simplify the descriptions of the algorithms given in this section
we introduce the following matrix operations.

Definition 1. Let A and B be two matrices of compatible size. A · B is the matrix product of A and B where the
addition operation is replaced by “min” and the multiplication operation is replaced by “+”.

Definition 2. Let A and B be two matrices of size n × n. M = A ⊗ B is defined by M(i, j) = mini≤r≤ j A(i, r)

+ B(i, j)

PTP is known to be NP-complete in the general case [3]. Below we present four kinds of contact graphs that make
PTP polynomially solvable.

3.1. Contact graph contains only local edges

As mentioned above, in this case PTP reduces to finding the shortest S–T path in the alignment graph which can
be done by O(mn2) dynamic programming algorithm. An important property of an alignment graph containing only
local edges is that it has a tight LP description.

Theorem 1. The polytope Y is integral, i.e. it has only integer-valued vertices.

Proof. Let A be the matrix of the coefficients in (1) and (2) with columns numbered by the indices of the
variables. One can prove that A is totally unimodular (TU) by performing the following sequence of TU preserving
transformations.

for i = 1, . . . , n
delete column (i, n) (these are unit columns)

for i = 1, . . . , m
for j = n − 1, . . . , 1
pivot on ai j (A is TU iff the matrix obtained by a pivot operation on A is TU
delete column (i, j) (now this is unit column)
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The final matrix is an unit column that is TU. Since all the transformations are TU preserving, A is TU and Y is
integral.

One could prove the same assertion by showing that an arbitrary feasible solution to (1)–(3) is a convex combination
of some integer-valued vertices of Y . The best such vertex (in the sense of an objective function) might be a good
approximate solution to a problem whose feasible set is an intersection of Y with additional constraints.

Let y is an arbitrary non-integer solution to (1)–(3). Because of (1) and (2) an unit flow1 f = ( fs j , f(i,k)(i+1, j))

i = 1, m − 1 j = 1, n in G exist s.t.∑
k≤ j

f(i,k)(i+1, j) = yi j i = 1, m − 1 fs j = y1 j j = 1, n.

By the well-known properties of the network flow polytope, the flow f can be expressed as a convex combination
of integer-valued unit flows (paths in G). But each such flow corresponds to an integer-valued y, i.e. yi j = f(i−1,k)(i j)
= 1. Thus, the convex combination of the paths that gives f is equivalent to a convex combination of the respective
vertices of Y that gives y.

The details for efficiently finding the set of vertices participating in the convex combination could be easily stressed
by this sketch of the proof. �

3.2. Contact graph contains no crossing edges

Two links (i1, k1) and (i2, k2) such that i1 < i2 are said to be crossing when k1 is in the open interval (i2, k2). The
case when the contact graph L contains no crossing edges has been mentioned to be polynomially solvable for the
first time in [4]. Here we present a different sketch for O(mn3) complexity of PTP in this case.

If L contains no crossing edges, then PTP(L) can be recursively divided into independent subproblems. Each of
them consists in computing all shortest paths between the vertices of two layers i and k, discarding links that are not
included in (i, k). The result of this computation is a distance matrix Dik such that Dik( j, l) is the optimal length
between vertices (i, j) and (k, l). Note that for j > l, as there is no path in the graph, Dik( j, l) is an arbitrarily large
coefficient. Finally, the solution of PTP(L) is the smallest entry of D1m .

We say that a link (i, k), i < k is included in the interval [a, b] when [i, k] ⊆ [a, b]. Let us denote by L(ik) the set
of links of L included in [i, k]. Then, an algorithm to compute Dik can be sketched as follows:

1. If L(ik) = {(i, k)} then the distance matrix is given by

Dik =

{
dik if (i, k) ∈ L
0̃ otherwise,

(9)

where 0̃ is an upper triangular matrix in the previously defined sense (arbitrary large coefficients below the main
diagonal) and having only zeros in its upper part.

2. Otherwise, as L(ik) has no crossing edges, there exists some s ∈ [i, k] such that any edge of L(ik) except (i, k) is
included either in [i, s] or in [s, k]. Then

Dik =

{
Dis · Dsk + dik if (i, k) ∈ L
Dis · Dsk otherwise.

(10)

If the contact graph has m vertices, and contains no crossing edges, then the problem is decomposed into O(m)

subproblems. For each of them, the computation of the corresponding distance matrix is an O(n3) procedure (matrix
multiplication with (min,+) operations). Overall complexity is thus O(mn3). Typically, n is one or two orders of
magnitude greater than m, and in practice, this special case is already expensive to solve.

1 The 4 indices i, k, p, j used for arcs labeling follows the convention: tail at vertex (i, k) head at vertex (p, j). Sometimes the brackets will be
dropped.
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3.3. Contact graph is a single star

A set of edges L(i) = {(i, k1), . . . , (i, kr )}, k1 < k2 < · · · kr is called a star.2

Theorem 2. Let L(i) = {(i, k1), . . . , (i, kr )} be a star. Then Dikr = (. . . (dik1 ⊗ dik2)⊗ · · ·)⊗ dikr .

Proof. The proof follows the basic dynamic programming recursion for this particular case: for the star L = {(i, k1),

. . . , (i, kr )} = L ′
⋃
{(i, kr )}, we have v(L : zi jkr l = 1) = di jkr l +min j≤s≤l v(L ′ : zi jkr−1s = 1). �

In order to compute A ⊗ B, we use the following recursion: let M ′ be the matrix defined by M ′(i, j) = mini≤r≤ j
A(i, r), then

M ′(i, j) = min{M ′(i, j − 1), A(i, j)}, for all j ≥ i.

Finally A ⊗ B = M ′ + B. From this it is clear that ⊗ multiplication for n × n matrices is of complexity O(n2) and
hence the complexity of PTP in this case is O(rn2).

3.4. Contact graph is decomposable

Given a contact graph L = {(i1, k1), . . . , (ir , kr )}, PTP(L) can be decomposed into two independent subproblems
when there exists an integer e ∈ (1, m) such that any edge of L is included either in [1, e] or in [e, m]. Let
I = {i1, . . . , is} be an ordered set of indices, such that any element of I allows for a decomposition of PTP(L)

into two independent subproblems. Suppose additionally that for all t ≤ s − 1, one is able to compute Dit it+1 . Then
we have the following theorem:

Theorem 3. Let p = (p1, p2, . . . , pn) = Di1i2 · Di2i3 · · · · · Dis−1is · p, where p = (0, 0, . . . , 0). Then for all i ,
pi = v(PTP(L : y1i = 1)), and v(PTP(L)) = min1≤i≤n{pi }.

Proof. Each multiplication by Dik ik+1 in the definition of p is an algebraic restatement of the main step of the
algorithm for solving the shortest path problem in a graph without circuits. �

With the notations introduced above, the complexity of PTP(L) for a sequence of such subproblems is O(sn2) plus
the cost of computing matrices Dit it+1 .

From the last two special cases, it can be seen that if the contact graph can be decomposed into independent
subsets, and if these subsets are single edges or stars, then there is an O(srn2) algorithm, where s is the cardinality of
the decomposition, and r the maximal cardinality of each subset, that solves the corresponding PTP.

Remark 1. As a corollary from Theorem 1 we can easily derive that when L is cross-free and does not contain stars,

the polytope defined by (6) and (7) and zik ∈ R
n(n+1)

2
+ is integer.

3.5. The threading polytope

Let Pyz be the polytope defined by (5)–(7) and zik ∈ R
n(n+1)

2
+ and let P I

yz be the convex hull of the feasible points
of (5)–(8). We will call P I

yz a threading polytope.
All of the preceding polynomiality results were derived without any reference to the LP relaxation of (4)–(8). The

reason is that even for a rather simple version of the graph L the polytope Pyz is non-integral. We have already seen
(indirectly) that if L contains only local links then Pyz = P I

yz . Recall the one-to-one correspondence between the
threadings, defined as points in Y and the paths in graph G. If L = {(i, i + 1), i = 1, m − 1} then Pyz is a linear
description of a unit flow in G that is an integral polytope. Unfortunately, this happens to be a necessary condition also.

Theorem 4. Let n ≥ 3 and L contains all local links. Then P I
yz = Pyz if and only if R = ∅.

2 This definition corresponds to the case when all edges have their left end tied to a common vertex. Star can be symmetrically defined: i.e. all
edges have their right end tied to a common vertex. All proofs require minor modification to fit this case.
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Proof. (⇒) Without loss of generality we can take R = (1, 3), m = 3 and n = 3. Then the point A = (y11 = y12
= y21 = y22 = 0.5, y32 = 0.75, y33 = 0.25, z1121 = z2132 = z1222 = z1232 = 0.5, z2232 = z2233 = z1132 = z1133
= 0.25) ∈ Pyz and the only eligible (whose convex hull could possibly contain A) integer-valued vertices of Pyz are
B = (y11 = y21 = y32 = z1132 = 1) and C = (y12 = y22 = y32 = z1232 = 1) but A is not in the segment [B, C].
The generalization of this proof for arbitrary m, n ≥ 3 and R is almost straightforward.

(⇐) Follows directly from Theorem 1. �

This is a kind of negative result setting a limit to relying on LP solution.

4. Lagrangian approaches

Consider an integer program

z I P = min{cx : x ∈ S}, where S = {x ∈ Zn
+ : Ax ≤ b}. (11)

Relaxation and duality are the two main ways of determining z I P and upper bounds for z I P . The linear programming
relaxation is obtained by changing the constraint x ∈ Zn

+ in the definition of S by x ≥ 0. The Lagrangian relaxation
is very convenient for problems where the constraints can be partitioned into a set of “simple” ones and a set of
“complicated” ones. Let us assume for example that the complicated constraints are given by A1x ≤ b1, where A1 is
m × n matrix, while the nice constraints are given by A2x ≤ b2. Then for any λ ∈ Rm

+ the problem

zL R(λ) = min
x∈Q
{cx + λ(b1

− A1x)},

where Q = {x ∈ Zn
+ : A2x ≤ b2

} is Lagrangian relaxation of (11), i.e. zL R(λ) ≤ z I P for each λ ≥ 0. The
best bound can be obtained by solving the Lagrangian dual zL D = maxλ≥0 zL R(λ). It is well-known that relations
z I P ≥ zL D ≥ zL P hold.

An even better relaxation, called cost splitting, can be obtained by applying Lagrangian duality to the reformulation
of (11) given by

z I P = min cx1 (12)

subject to: A1x1
≤ b1, A2x2

≤ b2, (13)

x1
− x2

= 0 (14)

x1
∈ Zn
+, x2

∈ Zn
+. (15)

Taking x1
− x2

= 0 as the complicated constraint, we obtain the Lagrangian dual of (12)–(15)

zC S = max
u
{min c1x1

+min c2x2
} (16)

subject to: A1x1
≤ b1, A2x2

≤ b2, (17)

x1
∈ Zn
+, x2

∈ Zn
+, (18)

where u = c2, c1
= c − u.

The following well-known polyhedral characterization of the cost-splitting dual will be used later:

Theorem 5 (See [5]).

zC S = max
{

cx : conv{x ∈ Zn
+: A1x ≤ b1

} ∩ conv{x ∈ Zn
+: A2x ≤ b2

}

}
,

where conv{A} denotes the convex hull of A.

In both relaxations in order to find zL D or zC S one has to look for the maximum of a concave piecewise linear
function. This appeals for using the so-called subgradient optimization technique. For the function zL R(λ), the vector
st
= b1

− A1x t , where x t is an optimal solution to minQ{cx + λt (b1
− A1x)}, is a subgradient at λt . The following

subgradient algorithm is an analog of the steepest ascent method of maximizing a function:
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• (Initialization): Choose a starting point λ0, Θ0 and ρ. Set t = 0 and find a subgradient st .
• While st

6= 0 and t < tmax do {λt+1
= λt
+Θt st ; t ← t + 1; find st

}.

This algorithm stops either when st
= 0, (in which case λt is an optimal solution) or after a fixed number of

iterations. We experimented two schemes for selecting {Θt }:

Θt = Θ0ρ
t (19)

Θt = Θ0
κt (Ut − L t )ρ

t

‖st‖1
, (20)

where

0 < ρ < 1

{κt } is a random sequence whose terms are uniformly chosen in [1, 1.4]

L t is the best value of zL R(λ) up to iteration t

Ut is the best value of any feasible solution found up to iteration t

‖st
‖1 is the 1-norm of the subgradient.

5. Lagrangian relaxation

Relying on complexity results from Section 3, we show now how to apply Lagrangian relaxation taking as
complicating constraints (7). Recall that these constraints ensure that the y-variables and the z-variables select the
same position of block k. Associating Lagrangian multipliers λik to the relaxed constraints we obtain

zL R(λ) = min
y,z

{
m∑

i=1

ci (λ)yi +
∑

(i,k)∈L

dik(λ)zik

}
,

where

ci (λ) = ci +
∑

(k,i)∈L

λki , dik(λ) =
∑

(i,k)∈L

(dik − λik A′′).

Consider this relaxation for a fixed λ. Suppose that a block i is on position j in the optimal solution. Then the
optimal values of the variables zi jkl can be found using the method described in Section 3.3. In this way the relaxed
problem decomposes to a set of independent subproblems. Each subproblem has a star as a contact graph. After
solving all the subproblems, we can update the costs ci (λ) with the contribution of the star with root i and find the
shortest S–T path in the alignment graph.

Note that for each λ the solution defined by the y-variables is feasible to the original problem. In this way at each
iteration of the subgradient optimization we have an heuristic solution. At the end of the optimization we have both
lower and upper bounds on the optimal objective value.

Symmetrically, we can relax the left end of each link or even relax the left end of one part of the links and the right
end of the rest. The last is the approach used in [6]. The same paper describes a branch-and-bound algorithm using
this Lagrangian relaxation instead of the LP relaxation.

6. Cost splitting

In order to apply the results from the previous sections, we need to find a suitable partition of L into
L1⋃ L2

· · ·
⋃

L t where each Ls induces an easily solvable PTP(Ls), and to use the cost-splitting variant of the
Lagrangian duality. Now we can restate (4)–(8) equivalently as:

zL
I P = min

{
t∑

s=1

(
m∑

i=1

cs
i ys

i +
∑

(i,k)∈Ls

dik zik

)}
(21)

subject to: y1
i = ys

i , s = 2, t (22)
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ys
= (ys

1, . . . ys
m) ∈ Y, s = 1, . . . , t (23)

ys
i = Ai zik, ys

k = Ak zik s = 1, . . . , t (i, k) ∈ Ls (24)

zik ∈ B
n(n+1)

2 s = 1, . . . , t (i, k) ∈ Ls . (25)

Taking (22) as the complicating constraints, we obtain the Lagrangian dual of PTP(L):

zC S = max
λ

min
y

t∑
s=1

(
m∑

i=1

cs
i (λ)ys

i +
∑

(i,k)∈Ls

dik zik

)
= max

λ

t∑
s=1

zLs

I P (λ) (26)

subject to (23)–(25).
The Lagrangian multipliers λs are associated with the Eq. (22) and c1

i (λ) = c1
i +

∑t
s=2 λs , cs

i (λ) = cs
i −λs, s = 2,

. . . , t . The coefficients cs
i are arbitrary (but fixed) decomposition (cost-split) of the coefficients ci , i.e. given by

cs
i = psci with

∑
ps = 1.

From the Lagrangian duality theory it follows that zL P ≤ zC S ≤ z I P . However choosing the decomposition
remains a delicate issue. A trade-off has to be found between tightness of the bound and complexity of the dual. At
one extreme, when decomposing the interaction graph into cross-free sets, the dual problem is of O(mn3) complexity.
This makes this approach hopeless for practical situations. At the other extreme, each set in the decomposition could
contain a single edge. This is a very favorable situation for complexity matters, but it turns out that in this case, the
cost-splitting dual boils down to LP bound:

Theorem 6. If t = |L| then zC S = zL P

Proof. From Theorem 5, we have

zC S = max

{
cy + dz:

⋂
(i,k)∈L

conv{y, z ∈ Zn
+ : yi = Ak

i zik ∧ yk = Ai
k zik}

}
.

However, as underlined in Remark 1, the set

{y, z ∈ Rn
+ : yi = Ak

i zik ∧ yk = Ai
k zik}

only has integer extremal points, which amounts to saying that

{y, z ∈ Rn
+ : yi = Ak

i zik} = conv{y, z ∈ Zn
+ : yi = Ak

i zik ∧ yk = Ai
k zik}.

The result follows:

zC S = max

{
cy + dz:

⋂
(i,k)∈L

{y, z ∈ Rn
+ : yi = Ak

i zik ∧ yk = Ai
k zik}

}
= zL P . �

By applying the subgradient optimization technique [5] in order to obtain zC S , one need to solve t problems vLs

I P (λ)

for each λ generated during the subgradient iterations. As usual, the most time consuming step is PTP(Ls) solving,
but we have demonstrated its O(n2) complexity in the case when Ls is a union of independent stars.

7. Experimental results

In this section we present three kinds of experiments. First, in Section 7.1, we show that the branch-and-bound
algorithm based on the Lagrangian relaxation from Section 5 (BB LR) can be successfully used for solving exactly
huge PTP instances. In Section 7.2, we study the impact of the approximated solutions given by different PTP solvers
on the quality of the prediction. Lastly, in Section 7.3 we experimentally compare the two relaxations proposed in this
paper and show that they have similar performances.

In order to evaluate the performance of our algorithm and to test it on real problems, we integrated it in the structure
prediction tool FROST [7,8]. FROST (Fold Recognition-Oriented Search Tool) is intended to assess the reliability of
fold assignments to a given protein sequence. In our experiments we used its structure database, containing about
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Fig. 5. Running times of 9136 threading instances as a function of the search space size. The experiment is made on 1.8 GHz Pentium PC with
512 MB RAM.

1200 structure templates, as well as its score function. FROST uses a specific procedure to normalize the alignment
score and to evaluate its significance. As the scores are highly dependent on sequence lengths, for each template
of the database this procedure selects 5 groups of non-homologous sequences corresponding to −30%, −15%, 0%,
+15% and+30% of the template length. Each group contains about 200 sequences of equal length. Each of the about
1000 sequences is aligned to the template. This procedure involves about 1,200,000 alignments and is extremely
computationally expensive [9,13]. The values of the score distribution function F in the points 0.25 and 0.75 are
approximated by this empirical data. When a “real” query is threaded to this template, the raw alignment score S is
replaced by the normalized distance NS = F(.75)−S

F(.75)−F(.25)
. Only the value NS is used to evaluate the relevance of the

computed raw score to the considered distribution.

7.1. Solving PTP exactly

To test the efficiency of our algorithm we used the data from 9136 threadings made in order to compute the
distributions of 10 templates. Fig. 5 presents the running times for these alignments. The optimal threading was found
in less than one minute for all but 34 instances. For 32 of them the optimum was found in less than 4 min and only
for two instances the optimum was not found in one hour. However, for these two instances the algorithm produced in
one minute a suboptimal solution with a proved objective gap less than 0.1%.

It is interesting to note that for 79% of the instances the optimal solution was found in the root of the branch-and-
bound tree. This means that the Lagrangian relaxation produces a solution which is feasible for the original problem.
The same phenomenon was observed in [10,11] where integer programming models are solved by linear relaxation.
However, the dedicated algorithm based on the Lagrangian relaxation from Section 5 is much faster than a general
purpose solver using the linear relaxation. For comparison, solving instances of size of order 1038 by CPLEX of
ILOG solver reported in [11] takes more than one hour on a computer faster than ours, while instances of that size
were solved by LR algorithm in about 15 s.

The use of BB LR made possible to compute the exact score distributions of all templates from the FROST
database for the first time [9]. An experiment on about 200 query proteins of known structure shows that using the new
algorithm improves not only the running time of the method, but also its quality. When using the exact distributions,
the sensitivity of FROST (measured as the percentage of correctly classified queries) is increased by 7%. Moreover,
the quality of the alignments produced by our algorithm (measured as the difference with the VAST alignments) is
also about 5% better compared to the quality of the alignments produced by the heuristic algorithm.

7.2. Impact of the approximated solution on the quality of the prediction

We compared BB LR to two other algorithms used by FROST—a steepest-descent heuristic (H) and an
implementation of the branch-and-bound algorithm from [12] (B). The comparison was made over 952 instances
(the sequences threaded to the template 1ASYA when computing its score distribution). Each of the three algorithms
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Table 1
Comparison between three algorithms: branch-and-bound using Lagrangian relaxation (L), heuristic steepest-descent algorithm H, and branch-and-
bound of Lathrop and Smith (B)

Query m n |T | Average time (s) opt (%)
length L H B L H B

342 26 4 3.65e03 0.0 0.1 0.0 100 99 100
416 26 78 1.69e24 0.6 43.6 60.0 100 63 0
490 26 152 1.01e31 2.6 53.8 60.0 100 45 0
564 26 226 1.60e35 6.4 56.6 60.0 100 40 0
638 26 300 1.81e38 12.7 59.0 60.0 99 31 0

The results in each row are the average of about 200 instances.

Table 2
Distributions produced by the three algorithms

Query Distribution (L) Distribution (H) Distribution (B)
length F(.25) F(.50) F(.75) F(.25) F(.50) F(.75) F(.25) F(.50) F(.75)

342 790.5 832.5 877.6 790.5 832.6 877.6 790.5 832.5 877.6
416 296.4 343.3 389.5 299.2 345.4 391.7 355.2 405.5 457.7
490 180.6 215.2 260.4 184.5 219.7 263.4 237.5 290.4 333.0
564 122.6 150.5 181.5 126.3 157.5 187.9 183.3 239.3 283.4
638 77.1 109.1 142.7 87.6 118.5 150.0 154.5 197.0 244.6

was executed with a timeout of 1 min per instance. We compare the best solutions produced during this period.
The results of this comparison are summarized in Table 1. For the smallest instances (the first line of the table) the
performance of the three algorithms is similar, but for instances of greater size our algorithm clearly outperforms
the other two. It was timed out only for two instances, while B was timed out for all instances. L finds the optimal
solution for all but 2 instances, while B finds it for no instance. The algorithm B cannot find the optimal solution for
any instance from the fourth and fifth lines of the table even when the timeout is set to 2 h. The percentage of the optima
found by H degenerates when the size of the problem increases. Note however that H is a heuristic algorithm which
produces solutions without proof of optimality. Table 2 shows the distributions computed by the three algorithms. The
distributions produced by H and especially by B are shifted to the right with respect to the real distribution computed
by L. This means that for example a query of length 638AA and score 110 will be considered as significantly similar
to the template according to the results provided by B, while in fact this score is in the middle of the score distribution.

We conducted the following experiment. For the purpose of this section we chose a set of 12 non-trivial templates.
60 distributions are associated with them. We first computed these distributions using an exact algorithm for solving
the underlying PTP problem. The same distributions have been afterwards computed using the approximated solutions
obtained by any of the three algorithms here considered. By approximated solution we mean respectively the
following: (i) for a MIP model this is the solution given by the LP relaxation; (ii) for the Lagrangian Relaxation
(LR) algorithm this is the solution obtained for 500 iterations (the upper bound used in [6]). Any exit with less than
500 iterations is a sign that the exact value has been found; (iii) for the cost-splitting algorithm (CS) this is the solution
obtained either for 300 iterations or when the relative error between upper and lower bound is less than 0.001.

We use the MYZ integer programming model introduced in [11]. It has been proved faster than the MIP
model used in the package RAPTOR [10] which was well-ranked among all non-meta servers in CAFASP3 (Third
Critical Assessment of Fully Automated Structure Prediction) and in CASP6 (Sixth Critical Assessment of Structure
Prediction). Because of time limit we present here the results from 10 distributions only.3 Concerning the 1st quartile
the relative error between the exact and approximated solution is 3 × 10−3 in two cases over all 2000 instances and
less than 10−6 for all other cases. Concerning the 3rd quartile, the relative error is 10−3 in two cases and less than
10−6 for all other cases.

All 12,125 alignments for the set of 60 templates have been computed by the other two algorithms. Concerning the
1st quartile, the exact and approximated solution are equal for all cases for both (LR and CS) algorithms. Concerning

3 More data will be solved and provided for the final version.
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Fig. 6. Cost-splitting relaxation versus LP relaxation. Plot of time in seconds with CS algorithm on the x-axis and the LP algorithm from [11] on
the y-axis. Both algorithms compute approximated solutions for 962 threading instances associated with the template 1ASYA0 from the FROST
database. The linear curve in the plot is the line y = x . What is observed is a significant performance gap between the algorithms. For example in
a point (x, y) = (0.5, 3) CS is 102.5 times faster than LP relaxation. These results were obtained on an Intel(R) Xeon(TM) CPU 2.4 GHz, 2 GB
RAM, RedHat 9 Linux. The MIP models were solved using CPLEX 7.1 solver.

Fig. 7. Plot of time in seconds with CS (cost-splitting Relaxation) algorithm on the x-axis versus LR (Lagrangian Relaxation) algorithm [6] on
the y-axis concerning score distributions of two templates. Both the x-axis and y-axis are in logarithmic scales. The linear curve in the plot is the
line y = x . Left: The template 1ASYA (the one referenced in [6]) has been threaded with 962 sequences. Right: 1ALO 0 is one of the templates
yielding the biggest problem instances when aligned with the 704 sequences associated with it in the database. We observe that although CS is
often faster than LR, in general the performance of both algorithms is very close.

the 3rd quartile and in case of LR algorithm the exact solution equals the approximated one in all but two cases in
which the relative error is respectively 10−3 and 10−5. In the same quartile and in case of CS algorithm the exact
solution equals the approximated one in 12,119 instances and the relative error is 7× 10−4 in only 6 cases.

Obviously, this loss of precision (due to computing the distribution by not always taking the optimal solution) is
negligible and does not degrade the quality of the prediction. We therefore conclude that the approximated solutions
given by any of the above mentioned algorithms can be successfully used in the score distribution phase.

7.3. Cost splitting versus linear programming and Lagrangian relaxations

Our third numerical experiment concerns running time comparisons for computing approximated solutions by LP,
LR and CS algorithms. The obtained results are summarized in Figs. 6–8. Fig. 6 clearly shows that CS algorithm
significantly outperforms the LP relaxation. Figs. 7 and 8 compare CS with LR algorithm and illustrate that they give
close running times (CS being slightly faster than LR). Time sensitivity with respect to the size of the problem is given
in Fig. 8.

8. Conclusion

The results presented in this paper confirm once more that integer programming approach is well-suited to solve the
protein threading problem. Even if the possibilities of general purpose solvers using linear programming relaxation
are limited to instances of relatively small size, one can use the specific properties of the problem and develop efficient
special purpose solvers. After studying these properties we propose two Lagrangian approaches, Lagrangian relaxation
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Fig. 8. CS versus LR: Recapitulation plot concerning 12,125 alignments. Plot of time in seconds with CS algorithm on the x-axis and the LR
algorithm on the y-axis. Each point corresponds to the total time needed to compute one distribution determined by approximately 200 alignments
of the same size. 61 distributions have been computed which needed solving totally 12,125 alignments. Both the x-axis and y-axis are in logarithmic
scales. The linear curve in the plot is the line y = x . CS is consistently faster than the LR algorithm.

and cost splitting. These approaches are more powerful than the general integer programming and allow to solve huge
instances,4 with solution space of size up to 1077, within a few minutes.

The results lead us to think that even better performance could be obtained by relaxing additional constraints,
relying on the quality of LP bounds. In this manner, the relaxed problem will be easier to solve. This is the subject of
our current work.

This paper deals with the problem of global alignment of protein sequence and structure template. But the methods
presented here can be adapted to other classes of matching problems arising in computational biology. Examples of
such classes are semi-global alignment, where the structure is aligned to a part of the sequence (the case of multi-
domain proteins), or local alignment, where a part of the structure is aligned to a part of the sequence. Problems of
structure–structure comparison, for example contact map overlap, are also matching problems that can be treated with
similar techniques. Solving these problems by Lagrangian approaches is work in progress.
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