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SUMMARY

Sharply delineated domains of cell types arise in
developing tissues under instruction of inductive
signal (morphogen) gradients, which specify distinct
cell fates at different signal levels. The translation of
a morphogen gradient into discrete spatial domains
relies on precise signal responses at stable cell
positions. However, cells in developing tissues un-
dergoing morphogenesis and proliferation often
experience complex movements, which may affect
their morphogen exposure, specification, and posi-
tioning. How is a clear pattern achieved with cells
moving around? Using in toto imaging of the zebra-
fish neural tube, we analyzed specification patterns
and movement trajectories of neural progenitors.
We found that specified progenitors of different fates
are spatially mixed following heterogeneous Sonic
Hedgehog signaling responses. Cell sorting then re-
arranges them into sharply bordered domains.
Ectopically induced motor neuron progenitors also
robustly sort to correct locations. Our results reveal
that cell sorting acts to correct imprecision of spatial
patterning by noisy inductive signals.

INTRODUCTION

Two central questions in developmental biology are how cell-

type diversity is generated and how these types are organized

into patterns of structural and functional significance. The classic

‘‘French flag’’ model (Wolpert, 1969) put forward the idea of

morphogen patterning that mechanistically couples specifica-

tion and spatial arrangement. In this view, a gradient of a diffus-

ible signal across a field of naive cells defines spatial domains of

cell types between concentration thresholds. Recent studies

have challenged and extended this model in several aspects.

First, a signaling gradient may not be sufficient to generate pre-

cise cell-type boundaries, given the noise inherent in molecular
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processes and the limited information content of gradients in vivo

(Paulsson, 2004; Lander et al., 2009). Second, the timing of

exposure to the signal, in addition to concentration, contributes

to cell fate choices (Ahn and Joyner, 2004; Harfe et al., 2004;

Dessaud et al., 2007). Third, the position of a cell relative to a

morphogen source may change in time through cell migration

and division (Kay and Thompson, 2009). Fourth, lateral cell-cell

interactions such as cell sorting may also be involved in bound-

ary formation (Lawrence et al., 1999; Nicol et al., 1999; Xu et al.,

1999).

A prominent example of morphogen patterning is the verte-

brate ventral neural tube. In this system, sharply bordered pro-

genitor domains form along the ventral-dorsal axis (Jessell,

2000; Figure S1A available online). This spatial arrangement is

important for the localization, migration, and wiring of neurons

born from these domains (Lewis and Eisen, 2003; Sürmeli

et al., 2011). Significant molecular insights have been generated

toward the understanding of how this pattern forms. First, the

secreted signaling protein Sonic Hedgehog (Shh) is produced

in the notochord underlying the neural tube and later in the floor

plate (Krauss et al., 1993; Echelard et al., 1993) and likely forms a

ventral-to-dorsal gradient in the neural tube (Yamada et al.,

1993; Chamberlain et al., 2008). Second, gene expression

induced by different Shh signaling levels as a function of concen-

tration and duration of exposure in vitro parallels the spatial

ordering of the expression domains of the same genes in vivo

(Ericson et al., 1997; Dessaud et al., 2007). Third, intracellular

gene regulatory network (GRN) interactions between Shh-regu-

lated transcription factors establish stable and discrete fates

that no longer depend on Shh (Lek et al., 2010; Balaskas et al.,

2012). Together, these studies provide the molecular scenario

of morphogen patterning in the neural tube: each cell measures

its Shh exposure and enters a corresponding state of gene

expression; the states dynamically evolve under the GRN to

become self-sustaining, mutually exclusive, and cell-type spe-

cific; the Shh gradient is thus translated into discrete progenitor

domains. In this model, the shape of the morphogen gradient in

time and space is directly predictive of the final pattern. There-

fore, for the sharply bordered spatial domains in the neural

tube to form, Shh exposure levels as a function of position and
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time must be precise, especially at the putative domain bound-

aries. In addition, cells should maintain stable positions relative

to the source of Shh to receive a correct signal input over time.

It is unclear whether these requirements for low signaling and po-

sitional noise are found in vivo or whether additional mechanisms

are required to ensure the precision of patterning.

The dynamics of cell movements might provide an answer to

these questions. The transition of the neural plate to the neural

tube involves extensive cell migration, intercalation, and prolifer-

ation (Schoenwolf, 1991; Kimmel et al., 1994; Ciruna et al., 2006)

that take place concurrently with Shh gradient formation and

interpretation (Martı́ et al., 1995; Takamiya and Campos-Ortega,

2006). Studies using clonal labeling show cell mixing during

morphogenesis and after divisions to variable degrees in the

neural tubes of different vertebrates (Leber and Sanes, 1995;

Erskine et al., 1998; Inoue et al., 2000; Park et al., 2004), depend-

ing on the developmental stage and the anterior-posterior (AP)

level. These cellular positional dynamics may affect patterning

in several ways. First, movement of Shh-producing and

-responding cells may alter the spatial distribution of Shh ligands

among the progenitors, affecting the morphogen gradient. Sec-

ond, movement of an unspecified progenitor in the gradient may

cause its Shh exposure level to change over time, potentially

affecting its fate decision (Dessaud et al., 2007). Third, move-

ment of specified progenitors may either disrupt or sharpen

domain boundaries. To evaluate these possibilities, it is essential

to understand how individual progenitors behave throughout

patterning, proliferation, and morphogenesis.

Here, we use in toto imaging to fully capture ventral neural tube

formation with single-cell resolution in living zebrafish embryos

and report systematic cell-tracking analysis of the movies. Our

results reveal that intensive cell movements accompany

patterning. Shh-responding cells show spatial heterogeneity of

signaling and become specified to different ventral fates in inter-

mingled distributions. Surprisingly, they then sort out into sharply

bordered domains in a robust and Shh-independent manner to

make the final pattern. Cadherin-mediated cell adhesion is

required for the sorting process. These data support a revised

French flag model where pattern formation in the neural tube is

achieved by sorting of specified cells following noisy

morphogen-based specification.

RESULTS

In Toto Imaging Reveals Cell Dynamics during Neural
Tube Patterning in Zebrafish
The lack of understanding of neural progenitor movements is

mainly due to the unavailability of live-cell tracking data. Direct

imaging of the neural plate is challenging because it undergoes

drastic morphogenetic movements, including transition of a hor-

izontal lateral-medial (LM) axis to the vertical dorsal-ventral (DV)

axis, morphological and polarity changes of cells, and frequent

cell divisions (Clarke, 2009). We designed an in toto imaging

(Megason and Fraser, 2003) system in zebrafish embryos,

whose fast development, small size, and transparency make

full-coverage live imaging feasible. Using an immersed dorsal

mount, we allow unrestricted morphogenesis while the embryo

sits stably in the field of view (Figures 1A and S1B). This enables
uninterrupted imaging sessions on single embryos from early

neural plate to neural tube stages using confocal/two-photonmi-

croscopy. We acquired high-resolution image stacks every

2–3min of healthy embryos labeledwith nuclear/membrane fluo-

rescent proteins and transgenic reporters (Figures 1B, S1B,

S1C, and S1E; data not shown). These data provide trackable

movies of ventral neural tube formation (Movie S1). They thor-

oughly cover the period of Shh expression, progenitor

responses, and the establishment of stable pattern (Figure 1D,

i; Krauss et al., 1993; Huang et al., 2012), allowing us to directly

watch patterning (Figure 1E; Movie S2). We manually tracked

cells using the GoFigure 2 software that we have developed (Fig-

ures 1C and S1D; Extended Experimental Procedures). These

tracks provide systematic and quantitative data on transgenic

reporter expression (Figure 1D, ii), lineage relationships (Fig-

ure 1D, iii), and, importantly, positional dynamics (Figure 1D, iv)

of the neural progenitors, allowing us to study the role of cell

movements in pattern formation.

To assess the extent of cell movement, we calculated progen-

itor speeds at different times (Figures 1F and S1F). Cells show

extensive movements that slow down gradually on the popula-

tion level as the neural tube forms between 10 and 16 hr postfer-

tilization (hpf). For individual cells, mobility is reduced when they

become epithelialized (Movie S3; data not shown). These data

indicate that patterning occurs at a time when cells are moving,

on average at a fast rate of one cell diameter every 10–20 min,

not when the field of cells is static. It is intriguing that sharp

spatial domains arise correctly in such a dynamic environment.

Shh-Expressing and -Responding Cells Show Dynamic
Movements and Heterogeneous Levels
To characterize how patterns of Shh signaling may change dur-

ing the cell movements, we first imaged Shh reporter tg(shh:gfp)

(Shkumatava et al., 2004) embryos to follow Shh-producing cells

(Figure 2A). Shh expression begins early during epiboly, before

there is a notochord or neural tube (Krauss et al., 1993). At this

stage, prenotochord axial mesoderm cells form a wide shh:gfp+

plate underneath the neural ectoderm, rendering more than ten

future neural plate cells in cross-section as direct neighbors to

Shh-producing cells. This arrangement changes drastically as

the notochord condenses andmedial floor plate (MFP) cells start

to express Shh, until finally only two GFP� neural tube cells

directly border Shh-producing cells (MFPs).

These dynamic movements of source cells may generate a

spatially and temporally changing Shh signaling profile. For

example, cells might receive less Shh after moving away from

Shh-producing cells that are initially their neighbors. To explore

this idea, we imaged tgBAC(ptch2:kaede) (Huang et al., 2012)

embryos that report the level of Shh signaling in responding cells

(Figures 2B and S1A). Interestingly, at 10 hpf, neighbor cells at

the same location often have very different Kaede levels, and

some Kaede+ cells can be found at large distances from the

notochord resulting in a highly heterogeneous spatial response

distribution (Figure 2B, i and ii). The heterogeneity persists as

the neural keel forms (12 hpf; Movie S4), and lasts until 14.5

hpf, at which time a clear and sharp gradient can be seen corre-

sponding to different stereotypic cell-type locations (Figure 2B,

iii and iv, and Movie S4). To compare Shh spatial responses
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Figure 1. In Toto Imaging Captures Dynamics of Neural Progenitors during Neural Tube Formation in Zebrafish Embryos

(A) Schematic illustration of imaging setup. See also the Extended Experimental Procedures.

(B) Sample time points of raw data rendered in 3D projection dorsal view. Red indicates mem-citrine, blue designates h2b-cherry, and green shows mnx1:gfp.

Arrow points to the frontier of epiboly movement. Arrowheads indicate differentiating MNs. All time annotations are hours (and minutes) postfertilization (hpf).

Scale bars, 10 mm. See also Movie S1.

(C) Processed data by GoFigure 2 and ACME (Mosaliganti et al., 2012) software from images in (B). Top halves: membrane segmentations (random colors to

distinguish neighbors); bottom halves: nuclei segmentations for cell tracking (red indicates MFPs, orange indicates LFPs, green shows pMNs, and yellow

indicates unidentified cells).

(D) Schematic illustration of cell-tracking analysis. Drawings are based on cross-section images; colors are assigned based on marker expression (red: Shh;

yellow: nkx2.2a; green: mnx1; blue: gata2). Part of the notochord (NC, Shh+) is included. (i) Morphogenesis during the patterning process; single cells can be

tracked throughout (e.g., highlighted cell with red membrane). Tracks carry information of reporter expression (ii), lineage relationships (iii), and movement

trajectories (iv). See also Figure S1A.

(E) Cross-sectional view (dorsal side up) of sample data set. Red indicates nuclei. A GFP+ stripe domain emerges (bracket, bottom-left image). Arrow points to

differentiating MNs exiting the GFP domain. Scale bar, 10 mm. See also Movie S2.

(F) Relative speed of cell movement during neural tube formation. Each purple mark represents the speed of a single cell; 41 tracked ventral cells are plotted.

Relative speed is calculated by dividing a cell’s positional change (mm) between two time points over the time difference (11.5 min). Position is measured relative

to the average position of all tracked cells to eliminate global movements introduced by embryo rotation/shifting. Orange marks show average speed. See also

Figure S1F.
across different neural plate/tube morphologies, we measured

cell positions and reporter intensities by GoFigure 2 (Figures

S2A–S2E). The quantification (Figures 2C and 2C0) confirms

direct observations from images and further indicates that at

10 hpf, the Shh response gradient is heterogeneous, broad,

and almost flat over a 60 mm range. It gradually becomes steeper

and less heterogeneous over time as Kaede levels increase in the

30 mm range and drop beyond. These data show that each

position has a different temporal Shh response profile that is

further varied due to local heterogeneity, likely modulated by

the movement of both source and responding cells. Together,
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our observations pose a challenge to the positional specification

model where conceptually, a static progenitor field and a smooth

morphogen gradient are required for precise pattern formation.

How do neural progenitors get patterned correctly into ‘‘stripes’’

(Figures 1E and S1A) when neither a static field nor a smooth

gradient exists?

Progenitors Make Early Fate Decisions in Wide
and Overlapping Ranges
To characterize the spatial distribution and timing of specifica-

tion of the progenitors, we tracked the motor neuron progenitors



Figure 2. Shape Changes of Shh Gradient and Heterogeneity in Spatial Distribution of Responses

(A) Time course of notochord formation by shh:gfp+ cells in cross-section. Red shows mem-mCherry (same below). Arrowhead points to GFP+ cells in neural

ectoderm/plate. Arrow indicates MFP cell expressing GFP. Scale bar, 10 mm.

(B) Cross-section (i and iii) and longitudinal section (ii and iv) of ptch2:kaede expression pattern. Arrowheads point to neighbor cells with different Kaede levels.

Asterisks indicate stereotypic cell fates at the indicated locations. Scale bar, 10 mm. See also Figure S1A.

(C and C0) Kaede level spatial distribution through time. Each mark represents a segmented cell with measured position and fluorescence intensity. (C0) is a

spatially averaged (±SD) representation of (C). Kaede intensities in the notochord cells were subtracted as background.
(pMNs) and the lateral floor plate cells (LFPs), using mnx1:gfp,

olig2:gfp, and nkx2.2a:mgfp expression to distinguish their fates

(Jessen et al., 1998; Shin et al., 2003; Flanagan-Steet et al., 2005;

Figure S1A). Previous studies have detected pMN and LFP

marker expressions before 12 hpf (Korzh et al., 1993; Schäfer

et al., 2005), suggesting early specification in the neural plate

stages. To capture the earliest mnx1:gfp+ cells, we performed

imaging without other fluorescent cell markers (Figure 3A). Scat-

tered GFP+ cells can be found shortly after 10.5 hpf, followed by

more in a wide LM range, and interestingly, intermingled with

GFP� cells. In trackable data sets where ubiquitous cell markers

are used,mnx1:gfp+ cells can only be distinguished later (13 hpf)

because of bleed-through signal, but importantly, these tracks

show that GFP levels increase monotonically, and LFP cells do

not turn on GFP (Figure 3B). Moreover, this GFP increase is

unaffected by Shh inhibitor Cyclopamine (Figure S3A), suggest-

ing independence of GFP expression from further Shh signaling.

These data indicate that the onset ofmnx1:gfpmarks actual fate

specification to pMNs instead of LFPs. To further assess timing

of pMN specification, we performed a time course treatment of

Cyclopamine and counted MN numbers from treated embryos

(Figures 3C and S3B). Early blockade (before 12 hpf) of Shh

activity greatly reduces MNs, whereas later treatment causes a

milder reduction, suggesting that a significant portion of pMNs

is specified early.

Olig2 reporter marks the dorsal boundary of pMN domain in

the final pattern (Figure S1A). Similar to the mnx1:gfp+ cells,

olig2:gfp+ cells emerge at different positions with negative and

positive cells intermingled in a ‘‘salt-and-pepper’’ fashion,

most evidently dorsal-laterally (Figure 3D). GFP quantification

shows that the olig2 ‘‘stripe’’ arises from a mixed population

over a wide range (Figure 3E). Nkx2.2a reporter marks the LFP

domain and bordersmnx1:gfp expression ventrally (Figure S1A).

Nkx2.2a:mgfp+ cells start to be detectable around 13 hpf at var-

iable locations but become restricted to the stereotypic two col-

umns on both sides of theMFP cell after 15 hpf (Figure S3C). The
distribution of LFPs is wide initially and becomes narrower (Fig-

ure S3D), suggesting that the LFP domain also arises frommixed

populations, although not as evident as pMNs, likely due to the

small size (two cells) of the LFP stripe.

Together, these data suggest that specification of ventral pro-

genitors occurs early in spatially mixed distributions, not in

sharply segregated stripes. These stripes form later in the final

pattern. However, because tracking of transgenic marker

expression is challenging at earlier times, it remains possible

that progenitors only transiently express these markers and

then either repress or increase the expression depending on

the Shh level at their positions (Dessaud et al., 2010). In this sce-

nario, early heterogeneity in the Shh gradient would be irrelevant

because the progenitors remain labile, and the early erroneous

responses would be overwritten by an improved gradient (Fig-

ure 3F, i). Alternatively, it is possible that the early response is

maintained, and these specified cells physically move into the

locations that match their specified identity (Figure 3F, ii).

Progenitor Divisions Are Lineage Restricted
and Contribute to Cell Mixing
To further refine our estimate of the timing of cell specification,

we analyzed the lineage trees of identified progenitors. By

tracking the mothers and/or grandmothers of specified cells

back to as early as neural ectoderm stages, we found, strikingly,

a strong positive correlation of fate in sister and first cousin cells

in the pMN and LFP pools (Figure 4A). We did not observe any

divisions that generate a pMN and a LFP cell (0 out of 83); more

generally, the final divisions rarely lead to two progenitors of

different types. Because a great portion of these divisions

(30 out of 83) happen before 12 hpf (Figure S4A), these results

argue against the labile cell fate idea because sister cells adopt-

ing different progenitor fates should be found if specification

happens late, unless sister cells keep sharing the same position

in the Shh gradient (e.g., they are neighbors). To test this, we

followed the positional dynamics of sister cells in pairs by
Cell 153, 550–561, April 25, 2013 ª2013 Elsevier Inc. 553



Figure 3. Progenitor Fates Are Specified during Cell Movements in Mixed Distributions
(A) Time course ofmnx1:gfp expression. Images are cross-sectional examples. Red arrows point tomixed negative cells.White arrows indicate scattered positive

cells. Scale bar, 10 mm.

(B) GFP (mnx1:gfp) levels in tracked cells through time. See also Figure S3A.

(C) Time course of Cyclopamine inhibition of pMN specification. Treatment of 100 mMCyclopamine started at indicated times, andMNswere counted at 28 hpf as

an indicator of pMN number. Numbers are averaged per embryo by number of neural segments counted. Greenmarks show average (±SD). See also Figure S3B.

(D) olig2:gfp (blue) domain formation. Green indicates cell membrane. Red shows cell nucleus. Filled arrows point to scattered positive cells. Empty arrows

indicate mixed negative cells. Dashed lines represent notochord boundary. Scale bar, 10 mm.

(E) Spatial distribution of olig2:gfp+ cells. At 10 hpf, they scatter in awider range and aremixedwith negative cells; in contrast, at 14 hpf, positive cells form amajor

stripe between 15 and 30 mm where negative cells are absent.

(F) Two models for sharp stripe formation. (i) Late (improved) gradient rewrites responses, predicting late specification and stable positions. (ii) Cell sorting

corrects wrong positions, predicting early specification and rearrangement afterward.
measuring their separation distance over time (Figure 4B). We

found that daughter cells immediately become separated after

cell division, even if they become neighbors later, suggesting

that cell division is one cause of positional mixing. Daughter

cells of the same fate can be found on opposite sides of the

midline and in different segments of the neural tube (Figure S4B),

consistent with previous studies by Kimmel et al. (1994) and

Park et al. (2004). To determine whether these divisions might

lead to a difference in sister cell positions in the Shh gradient,

we analyzed 50 divisions throughout the LM/DV axis and time

(Figures 4C and S4C). A significant portion (18 out of 50) of di-

visions happens along the LM/DV axis, so that the positions of

the daughter cells relative to the notochord are clearly different.
554 Cell 153, 550–561, April 25, 2013 ª2013 Elsevier Inc.
Together, these data show that sister cells share fate but not

position at early stages of patterning, suggesting that specifica-

tion (or at least fate bias) has been established in the mother/

grandmother cells in a spatially mixed pattern within a dynamic

tissue.

Our marker-tracking and lineage-tracing results show that

cells may become specified at ‘‘wrong’’ places due to move-

ments, divisions, and heterogeneous signaling. Additional mech-

anisms are required to make clean stripes from a dynamic,

mixed progenitor population. Although up to this point cell move-

ment appears to act as a limitation to morphogen-patterning

precision, could the movements after specification contribute

positively to the pattern (Figure 3F, ii)?



Figure 4. Progenitors Share Fate but Not Position with Sisters and Cousins at Early Stages

(A) Summary of lineage motif counts (n = 83). Counts are collected from 18 independent data sets. Motifs with two generations are not often captured in the

imaged timewindow, so the count does not suggest that two-generationmotifs happen in lower frequencies than one-generationmotifs. Division times are before

12 hpf (n = 30), 12–14 hpf (n = 20), and after 14 hpf (n = 33). See also Figure S4A.

(B) Separation dynamics of sister cells after birth. The zero (0) points indicate the birth time of sister cells from division of the mother cell. A distance of 6–8 mm

indicates that the sisters remain neighbors, 10–16 mm one cell separation, etc. See also Figure S4B.

(C) Cell divisions causing position instability. A total of 50 division events were randomly picked through time. A total of 18 divisions happened closely along the

LM/DV axis, generating at least one-cell-diameter difference (>8 mm) in position between sister cells. At later time, more divisions are perpendicular to the LM/DV

axis, generating no significant positional difference between sisters (<3 mm). See also Figure S4C.
Cell Sorting Establishes Sharply Bordered Progenitor
Domains
To understand how cell movements contribute to patterning, we

tracked cell-type-identified cells back in time. Surprisingly, we

found that the early distribution of the progenitors does not

match their final distribution in terms of relative position or order

(Figures 5A and 5B). In this fully tracked ventral neural segment,

progenitors that make the pattern (Figure 5A, iii and iv) are initially

spread out and mixed with cells that will not join this segment

(Figure 5A, i and ii). Moreover, future pMNs may start off either

touching the notochord or located far away from the notochord.

Later, all these pMNs come together to locate into a sharply

bordered domain (Figure 5A). LFPs and MFPs also show similar

behavior, albeit in smaller spatial ranges compared to pMNs

(Figures 5B and S5A). The early distributions of tracked MFPs,

LFPs, and pMNs resemble the wide and mixed patterns of early

shh:gfp, nkx2.2a:mgfp, and mnx1:gfp expression, respectively

(Figures 2A, S3C, and 3A). Although we found that the MFPs

always touch the notochord and line up along themidline earliest

(Figures 5B and 5C), pMNs and LFPs frequently intermingle and

switch positions (Figures 5B and 5D; Movie S5). These rear-

rangements happen most often as cells enter the neural keel

and after divisions. For example, in Movie S5, at 11 hpf, a LFP

progenitor was initially located more lateral to a pMN in the neu-

ral plate. The LFP progenitor migrated dorsal to the pMN at

around 12 hpf and remained no closer to the notochord than

the pMN. It divided around 13 hpf, generating two future LFPs.

As a result of this division, one daughter LFP was further dorsal

compared to the pMN until around 14 hpf, when it moved to

equal distances. Finally, after 14.5 hpf, this daughter LFP

inserted between an MFP and the pMN and maintained that

position onward. By locating the tracked cells in fully segmented

neural plate/tube at different times (Figure 5E), we found that the

pMN/LFP boundary marked by mnx1:gfp expression starts to

emerge between tracked cells after 14.5 hpf; at times earlier

than this, the pMNs and LFPs are located in wide ranges that
overlap. Most ventral cells settle into stable positions by 15 hpf

(Figure 5B). We verified cell fates by tracking with additional

fate markers and determined that these cells stay stably within

their domains by later-stage movies (Figures S5B–S5D; Movie

S6; data not shown). These data demonstrate that cell sorting

directly establishes the French flag pattern. The fact that cells

at initially widely separated locations can have the same fate

and final location whereas initial neighbors may have different

final locations and fates is unexpected. This observation is

inconsistent with the positional specification model. However,

we note that on the population level, a rough correlation between

position and fate exists throughout and is sharpened over time

by cell sorting (Figure 5B, inset). Together, our data rule out the

notion that naive cells are specified between spatial thresholds

and remain in the same relative positions; instead, the progenitor

domains and their boundaries form by sorting of specified cells

from widely dispersed locations.

Our results suggest that cell sorting is required for pattern for-

mation in the neural tube. To test this hypothesis, we mosaically

perturbed cadherin-2 (cdh2), a neural adhesion molecule

expressed by all neural progenitors and required for their move-

ments, using a cdh2 morpholino and a dominant-negative

version of cdh2 (Lele et al., 2002; Rieger et al., 2009). In the per-

turbed embryos, manymnx1:gfp+ cells are misplaced in a wider

and more mixed pattern at stages by which stripes have formed

in controls (Figures 5F, 5G, and S5E). Live imaging of perturbed

cells reveals that their misplacement resulted from reduced inte-

gration into the neural keel/tube, which likely blocked cell sorting

and thus preserved the noisy spatial pattern of specification

(Movie S7). These data indicate that proper adhesion is required

for cell sorting and, consequently, pattern formation.

Ectopically Induced pMNs Migrate to Form a Sharp
Domain
A model in which pattern forms by sorting of specified cells pre-

dicts that ectopically induced progenitors should migrate to the
Cell 153, 550–561, April 25, 2013 ª2013 Elsevier Inc. 555



Figure 5. Progenitors Enter Stable Locations and Form Sharp Boundaries by Intensive Cell Rearrangement

(A) Distribution of tracked cells from a fully analyzed ventral neural segment (comprised of 7MFPs, 13 LFPs, and >20 pMNs) at early neural plate stage (i and ii) and

neural tube stage (iii and iv). (ii) and (iv) are corresponding cross-sectional views of (i) and (iii). Green lines indicate the intersection of cross-section view and dorsal

view (i, ii, and lower line in iii) or the upper boundary of the data set (iv and upper line in iii). Colored spheres are 3D locations of tracked cells (red: MFP; orange:

LFP; green: pMN). Dashed lines represent notochord boundary. Small red spheres are notochord top midline.

(B) Trajectories of tracked cells along the LM/DV axis demonstrating intensive sorting. For simplicity, only six time points on the tracks are plotted. A total of 66

tracks collected from four data sets are plotted. Some cells exhibit rearrangements beyond 16 hpf. Inset shows population average position ±SD (colored bars) of

tracks by cell type plotted on the same axes. See also Figure S5A.

(C) Example of relative positional changes of a pMN (light green indicates pMN2a) and a MFP (red shows MFP1,1a). Green dashed line represents midline. White

dashed line designates notochord boundary. (iii) Full movement trajectories of the cells (same in D; for simplicity, one of the daughter cell tracks is continued with

the mother track).

(D) Example of positional switch between a pMN (light green indicates pMN1a) and a LFP cell (orange shows LFP4,4a). See also Movie S5.

(legend continued on next page)
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Figure 6. Ectopic Mnx2a-Expressing Cells Form a Sharp Ventral Domain Similar to the pMN Domain

(A) The 24 hpf neural tube phenotypes after injection of mem-mCherry ± mnx2a mRNAs in one blastomere at 8- to 16-cell stage are shown. Phenotypes are

classified according to the distribution of mCherry+ cells (brackets): class I embryos contain cells only in the ventral third of the neural tube, class II embryos

contain cells in the ventral two-thirds, and ‘‘random’’ contains injected cells throughout. Green indicates mnx1:gfp. Scale bars, 10 mm. See also Figure S6A.

(B) Summary of mosaic injection experiments. Early defect embryos failed to form neurula. Cyclopamine treatment started at 7 hpf.

(C) Sample time course of Mnx2a domain formation. This Mnx2a embryo became class II type. Dashed-line circles indicate position of the notochord. Green

shows mnx1:gfp. Red designates mem-mCherry. Scale bar, 10 mm. See also Figure S6B.

(D)Mnx2a-expressing cells replace ‘‘normal’’ pMNs. Imaging and counting ofMNs as Figure 3C. *p = 0.09, **p = 0.00004, ***p = 0.0001, and ****p = 0.03 (Student’s

t test).
correct positions corresponding to their fates. To test this pre-

diction, we mosaically overexpressed the transcription factor

Mnx2a, which is a marker of pMN (Wendik et al., 2004) and

whose homolog MNR2 induces ectopic MNs in chick embryos

(Tanabe et al., 1998). We injected mnx2a mRNA mixed with

mCherry mRNA into one blastomere at the 8- to 16-cell stage.

Strikingly, we found strong ventral segregation of mCherry-

labeled cells to the normal pMN domain in mnx2a-injected

embryos, whereas control embryos showed a random distribu-

tion of labeled cells across the DV axis (Figures 6A and 6B). In

class I embryos, the pMN domain is fully occupied by descen-

dants of the injected blastomere, and motor axons are strongly

labeled evenly along the body axis (Figure S6A), a phenomenon

never observed in control injections. Conversely, in the dorsal

domains of the neural tube, in contrast to control embryos,

injected cells are missing in mnx2a-injected embryos (Figures
(E)mnx1:gfp expression boundary formation between LFPs and pMNs. GFP inten

cell (>200 cells per time point). Colored marks show tracked cells with known fa

(F) Cdh2 perturbations on mnx1:gfp+ domain formation. Images are 24 hpf cros

negative Cdh2-cherry fusion [dnCdh2-cherry]) neural tubes. Arrowheads point to p

(G) Quantification of GFP+ cell distribution in Cdh2 morphant and control. See a
S6A and S6B). Mosaic overexpression of Mnx1 resulted in a

similar phenotype (Figure 6B; data not shown). Quantification

of GFP+ MNs further confirms that Mnx2a-injected cells

contribute more extensively to the pMN domain as compared

to random contribution of control mCherry-injected cells (Fig-

ure 6D). Cyclopamine treatment of injected embryos starting at

7 hpf does not alter the Mnx2a phenotypes (Figures 6B and

S6C), suggesting that the ventral localization of Mnx2a-injected

cells is independent of Shh response. Indeed, early-specified

normal pMNs also form a smaller but sharp domain in the pres-

ence of Cyclopamine (Figure S3B). Mnx2a injection alleviates

reduction of MNs by Cyclopamine treatment, and the injected

cells express pMN markers and maintain progenitor location

and morphology (Figures 6D and S6D), confirming that they

have become specified to pMNs. To understand how the

Mnx2a phenotypes arise at the cellular level, we tracked the
sity distribution by position plotted for four time points. Each mark represents a

tes; gray marks indicate other segmented cells at the plotted time point.

s-sections of mosaic-labeled (cherry ± cdh2 morpholino [MO] and dominant-

uncta of dnCdh2-cherry. Scale bar, 10 mm. See also Figure S5E andMovie S7.

lso Figure S5E.
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Figure 7. Revised French Flag Model Incorporating Dynamics

of Morphogen Gradient and Cell Sorting

This model depicts specification and sorting sequentially for conceptual

clarity, but they occur at different and overlapping times for different cells. See

Discussion. See also Figure S7.
movement of injected cells. Interestingly, these cells form clus-

ters in the early neural plate (Figure S6E; data not shown), sug-

gesting adhesion changes accompanying specification. They

migrate together to populate the ventral domains (Figure 6C) to

give rise to Mnx2a phenotypes, and their ventral bias becomes

evident after intercalating into the neural keel (Figure 6C,

compare 14.5 and 16.5 hpf), similar to normal pMNs. These

data suggest that Mnx2a may control specific adhesion affinities

of pMNs that control their sorting. Indeed, in cdh2 morpholino

and Mnx2a-coinjected embryos, despite severe disruption of

morphogenesis, the injected cells remain colocalized and

ventrally biased (Figures 6B and S6F).

Our results show that induced ectopic progenitors move to

form sharp domains similar to the normal pattern in a Shh

signaling-independent manner. They further suggest that speci-

fication creates adhesive differences between cells of different

fates. Together, these data support a model in which specified

progenitors self-assemble into precise spatial domains by cell

adhesion-dependent cell sorting.

DISCUSSION

The Role of Cell Movement in Neural Plate/Tube
Patterning
We captured a 4D picture of pattern formation from early neural

plate to neural tube at single-cell, trackable resolution in zebra-

fish and discovered that the sharply delineated pattern of

progenitor domains forms through sorting of specified cells.

Our observations challenge and extend the classic positional

specification model in several ways. First, the classic model

assumes graded response as a function of position in a smooth,

monotonic morphogen gradient. Although we do not know how

closely the distribution of Shh molecules in the neural plate

resembles such a gradient, we have shown that the response

is highly dynamic and heterogeneous. We suggest that, even if

Shh morphogen forms a perfect gradient, the movements of

the cells will inevitably complicate their Shh exposure, making

the response pattern noisy. Second, the classic model suggests

that naive cells become specified at stereotypic positions. We
558 Cell 153, 550–561, April 25, 2013 ª2013 Elsevier Inc.
have shown that fate markers are expressed in intermingled pat-

terns during and preceding more cell movements. In addition,

cell fates are lineage restricted (e.g., pMN versus LFP) long

before the final pattern emerges. These observations indicate

that specification and positioning are separate in time, and cells

get specified outside stereotypic positions. Third, the classic

model interprets the ventral-to-dorsal-progressing pattern of

Shh-mediated gene expression (Jeong and McMahon, 2005)

as a result of stationary cells changing their gene expression

as they accumulate more Shh signals (Chamberlain et al.,

2008; Dessaud et al., 2010). Our observations suggest that, in

addition to gene expression changes, cells can maintain their

gene expression state and physically move to contribute to the

refining pattern (e.g., a pMN moves away from the notochord).

Together, we propose a revised model for neural tube patterning

incorporating imprecision of positional information and cell

movement (Figures 7 and S7). Cell positions are unstable in the

dynamic tissue, and morphogen signaling across the tissue is

spatially noisy (at least in part due to movement of responding

cells), resulting in a salt-and-pepper specification pattern. Cell

sorting then segregates different progenitors into sharply

defined domains.

Although important for neural tube patterning in zebrafish, the

role of cell movement in other vertebrates such as chick and

mice remains to be elucidated and may be different or context

dependent. The modes of neural tube morphogenesis among

vertebrates vary considerably presumably depending on the de-

gree of progenitor epithelialization (Smith and Schoenwolf,

1997; Clarke, 2009). For example, in primary neurulation that oc-

curs in the anterior neural tubes of chick and mice, an epithelial-

ized cell sheet undergoes a folding process that forms a lumen

through invagination (Smith and Schoenwolf, 1997). In second-

ary neurulation that occurs more posteriorly, however, a neural

rod of less-epithelialized cells forms first that then cavitates to

form a lumen de novo as cells epithelialize (Catala et al., 1996).

We have observed that more epithelialized cells have less

mobility in zebrafish. The higher degree of epithelialization in pri-

mary neurulation suggests that there is unlikely as much cell

mixing or rearrangement as in the zebrafish neural tube, which

shares more similarities with secondary neurulation (Clarke,

2009). The amount of cell movement in chick and mice neural

tubes has been assessed by clonal-labeling studies (Leber and

Sanes, 1995; Inoue et al., 2000; Das and Storey, 2012). These

studies show that there is wide cell dispersion at early stages

but little cell movement later. Unfortunately, the exact trajec-

tories of these cell movements, times of cell divisions, and

how they relate to Shh responses and specification are not clear.

To determine to what extent (if any) cell sorting contributes to

neural tube patterning in these vertebrates, imaging data com-

parable to ours in spatial temporal resolution and coverage are

required. We note that ongoing efforts toward these goals

show promising potential (Yamaguchi et al., 2011; Das and

Storey, 2012).

The Mechanisms Controlling Cell Sorting
We have not yet determined the molecular details of cell sorting,

but our data suggest that it is a complex process likely orches-

trated by multiple adhesion molecules. We have shown that



Cdh2 is required for proper pMN domain formation. In addition,

Mnx2a appears to cause adhesion changes that drive sorting of

ectopic pMNs, suggesting that specification downstream of Shh

signaling may activate fate-specific affinities, as observed in the

abdomen of Drosophila (Lawrence et al., 1999). In our movies,

we also found that cell rearrangements happen most often as

cells mix during intercalation while forming the neural keel and

after divisions, conditions that likely facilitate the effect of

short-ranged adhesion forces. Disruption of such intercalation

results in misplaced progenitors. Previously, it has been shown

that differential adhesion can mediate migration and pool sorting

of postmitotic neurons (Price et al., 2002), a process that follows

progenitor domain formation. A similar strategy might be em-

ployed by the progenitors because they also express different

cadherins and protocadherins in conserved patterns along the

DV axis (Lin et al., 2012). What sets of specific adhesion mole-

cules correspond to different progenitor fates and how they

are regulated and cooperate to control cell sorting remain to

be elucidated.

An alternative sorting mechanism is chemotaxis of specified

cells, in which the direction and final location of sorting are deter-

mined by diffusible signals, whereas adhesion molecules only

serve as the structural necessity for cells to move. We have

shown that Shh response is not required for sorting, but it re-

mains possible that noncanonical Shh or other molecular gradi-

ents (e.g., Bmp, Wnt) provide positional cues for cell movement.

Cell Self-Assembly Confers Robustness to Positional
Noise and Errors
The formation of spatially distinct domains faces noise at multi-

ple scales, including molecular noise as described previously

by Paulsson (2004) and Lander et al. (2009), and cell positional

noise caused by cell movements as described here. We believe

that multiple strategies are used to achieve robust patterning in

the face of this noise. The intracellular GRN (Balaskas et al.,

2012) can help make and maintain correct fate decisions by

canalizing noisy signaling inputs into discrete, nonoverlapping

states of gene expression and thus cell fates. Intercellular inter-

actions, such as cell sorting shown in this study, allow overlap-

ping distributions of cell types caused by spatially noisy signaling

to be corrected. Furthermore, other intercellular interactions

such as lateral inhibitionmay play a role in size control of progen-

itor domains. For example, in Mnx2a-injected embryos, the final

number of pMNs seems to be regulated despite being initially too

large, suggesting that ectopic Mnx2a-expressing cells may pre-

vent uninjected cells from becoming pMNs. Characterizing the

molecular and cellular details of these different interactions will

be vitally important for understanding how embryos canalizemo-

lecular and positional noise as well as genetic and environmental

variation to attain developmental norms (Waddington, 1942).

In summary, our study highlights the power and importance of

live observation of cell behavior in understanding developmental

patterning and provides a model of how patterns robustly arise in

the dynamic environment of the developing ventral neural tube.

Cell sorting by differential affinities is a classical idea (Steinberg,

1963) alongside the morphogen model (Wolpert, 1969). There is

no reason to think that Shh signaling is unique in showing a highly

dynamic, noisy pattern of activity. If these are general features of
morphogens, then self-assemblymay be a generalmechanism to

assignpositions tospecifiedcells becausecellmovement is com-

mon during themorphogenesis and proliferation of both signaling

centers and their target fields (Kay and Thompson, 2009).

EXPERIMENTAL PROCEDURES

Zebrafish Strains and Maintenance

See the Extended Experimental Procedures for protocols, sources, and refer-

ences for transgenic strains used in this study. All fish-related procedures were

carried out with the approval of Institutional Animal Care and Use Committee

(IACUC) at Harvard University.

Microinjections of mRNAs

For in toto labeling, one-cell-stage embryos were injected (Nanoject) 2.3 nl

40 ng/ml of labeling mRNA(s) (h2b-cherry, mem-citrine, mem-cherry, mem-

EBFP2, and combinations). For mosaic injections, one blastomere of 8- to

32-cell-stage embryos was injected with approximately 1 nl 20 ng/ml one label-

ing mRNA with or without 10 ng/ml mnx2a, dnCdh2-cherry mRNA.

Time-Lapse Two-Photon/Confocal Imaging

Live imaging was performed using a Zeiss 710 confocal/two-photon micro-

scope (objective: C-Apochromat 403 1.2 NA) with a homemade heating

chamber maintaining 28�C. Chameleon (Coherent) laser line 1,020 nm was

used for three-channel two-photon in toto sessions. See Figure S1 and the

Extended Experimental Procedures for details.

Image Data Analysis

Nuclear segmentation and tracking were performed using GoFigure 2, an

open-source, cross-platform software application we have developed for

image analysis (http://www.gofigure2.org). Segmentation and track tables

exported from GoFigure 2 were further processed and plotted with Microsoft

Excel. See Figures S1 and S2 and the Extended Experimental Procedures for

details.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Extended Experimental Procedures, seven

figures, and sevenmovies and can be found with this article online at http://dx.

doi.org/10.1016/j.cell.2013.03.023.
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Sürmeli, G., Akay, T., Ippolito, G.C., Tucker, P.W., and Jessell, T.M. (2011).

Patterns of spinal sensory-motor connectivity prescribed by a dorsoventral

positional template. Cell 147, 653–665.

Takamiya, M., and Campos-Ortega, J.A. (2006). Hedgehog signalling controls

zebrafish neural keel morphogenesis via its level-dependent effects on neuro-

genesis. Dev. Dyn. 235, 978–997.

Tanabe, Y., William, C., and Jessell, T.M. (1998). Specification of motor neuron

identity by the MNR2 homeodomain protein. Cell 95, 67–80.

Waddington, C.H. (1942). The canalization of development and the inheritance

of acquired characteristics. Nature 150, 563–565.
Wendik, B., Maier, E., and Meyer, D. (2004). Zebrafish mnx genes in endocrine

and exocrine pancreas formation. Dev. Biol. 268, 372–383.

Wolpert, L. (1969). Positional information and the spatial pattern of cellular dif-

ferentiation. J. Theor. Biol. 25, 1–47.

Xu, Q., Mellitzer, G., Robinson, V., and Wilkinson, D.G. (1999). In vivo cell sort-

ing in complementary segmental domains mediated by Eph receptors and

ephrins. Nature 399, 267–271.

Yamada, T., Pfaff, S.L., Edlund, T., and Jessell, T.M. (1993). Control of cell

pattern in the neural tube: motor neuron induction by diffusible factors from

notochord and floor plate. Cell 73, 673–686.

Yamaguchi, Y., Shinotsuka, N., Nonomura, K., Takemoto, K., Kuida, K.,

Yosida, H., and Miura, M. (2011). Live imaging of apoptosis in a novel trans-

genic mouse highlights its role in neural tube closure. J. Cell Biol. 195, 1047–

1060.
Cell 153, 550–561, April 25, 2013 ª2013 Elsevier Inc. 561


	Specified Neural Progenitors Sort to Form Sharp Domains after Noisy Shh Signaling
	Introduction
	Results
	In Toto Imaging Reveals Cell Dynamics during Neural Tube Patterning in Zebrafish
	Shh-Expressing and -Responding Cells Show Dynamic Movements and Heterogeneous Levels
	Progenitors Make Early Fate Decisions in Wide and Overlapping Ranges
	Progenitor Divisions Are Lineage Restricted and Contribute to Cell Mixing
	Cell Sorting Establishes Sharply Bordered Progenitor Domains
	Ectopically Induced pMNs Migrate to Form a Sharp Domain

	Discussion
	The Role of Cell Movement in Neural Plate/Tube Patterning
	The Mechanisms Controlling Cell Sorting
	Cell Self-Assembly Confers Robustness to Positional Noise and Errors

	Experimental Procedures
	Zebrafish Strains and Maintenance
	Microinjections of mRNAs
	Time-Lapse Two-Photon/Confocal Imaging
	Image Data Analysis

	Supplemental Information
	Acknowledgments
	References


