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Abstract

We give variational characterizations of the leading eigenvalue of neutron transport-like operators.
The proofs rely on sub- and super-eigenvalues. Various bounds of the leading eigenvalue are derived.
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1. Introduction

This paper provides a new approach of the leading eigenvalue for neutron transport-
like equations. The so-called time eigenvalue of the fundamental mode (i.e. the leading
eigenvalue) of neutron transport operators plays a basic role in nuclear reactor theory, e.g.,
in pulsed experiments [6, Chapter 5] or in the stochastic description of neutron chain fis-
sions [3]. This eigenvalue or, more generally, the peripheral spectrum of such operators
is strongly related to their positivity properties (in the lattice sense); see [17] and refer-
ences therein. In the same spirit, positivity plays an essential role in reactor criticality;
see [14] and references therein. We refer to [10, Chapter 5] and references therein for
the known results on the leading eigenvalue of neutron transport operators. Motivated by
transport theory, the present paper is devotedartational characterizationsf the lead-
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ing eigenvalue for a class of perturbed operators of the farsa T + K whereT is an
unbounded operator with@ositive resolvenand K is a boundegbositiveoperator. If we
denote respectively by(T) ands(A) the spectral bound df and A and if some power

of (A — T)"1K is compact(x > s(T)), then it is known thak(A) is the leading eigen-
value of A onces(T) < s(A) [16]. Here, this leading eigenvalue is handled by means of
sub-eigenvalues or super-eigenvalues. Roughly speaking, we provedHatT), s(A)[

if and only if A is a sub-eigenvaluei.e. there exists a nonnegative (non-trivigl)such

that Ap > Ap. We show also that € ]s(A), oo if and only if A is asuper-eigenvalue

i.e. there exists a nonnegative (non-trivialsuch thatd¢ < 1¢. It follows thats(A) can

be characterized as the supremum of sub-eigenvalues or the infimum of super-eigenvalues.
This provides us withmax—inf and min—supprinciples for the leading eigenvalue. This
first part of our work, of more functional analytic character, is in the spirit of I. Marek [9]
who deals, in particular, with variational characterizations of spectral radius of certain pos-
itive operators. In the second part, devoted specifically to neutron transport, we show how
to derive in a systematic manner, from the above (abstract) variational principles, upper
and lower bounds of the leading eigenvalue in terms of various physical parameters. This
paper resumes some results from a longer preliminary version [12] containing additional
results and referenced/e present now our general framework. l2tc RV be a smooth

and bounded open set and Jebe a positive Radon measure 8 with supportV. We

refer toV as the velocity space. We assume in this paper th& bounded away from

zerqg i.e. 0¢ V. We refer to [12] for the case & V. Let T be the advection operator in

LP (2 xV):=LP(2 xV;dxdu)) (1< p<o0)

0
To=—-v- a—(p —o(x,v)px,v), @eD(T)
X

with domain
0
Wc‘;:: {(peLP(.Q x V); v-a—q) ceLP(2xV), w:OonF_}
X

whereI'_ :={(x,v) € 02 x V; v-n(x) <0} andn(x) is the outward unit vector at
x € 982. The real and bounded measurable functign-) is the collision frequency while
the scattering (or collision) operator is

K:pelL?P(2xV)— /k(x, v, V), v)du®@) e LP(2 x V).
4
Finally, the neutron transport operator is given by

0
ArpeW] — —v- a_(p —o(x,v)e((x,v) +/k(x, v, V)0, v)du®@)
X
v
with the same domain as the advection oper@tof he cross sections(-,-) andk(-, - ,-)
arenonnegativen accordance with the physical theory. The spectral bourid,o{7T) =
sugRex; A € o (T)}, is characterized in full generality in [18(T) = —A* where

t

A= lim inf t_l/G(x +sv,v)ds
=00 {(x,v)eENRXV; t<t(x,—v)}
0
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andt(x,v) :=inf{s > 0; x — sv ¢ £2} is the “exit timé function. In particulars(7T) =
—oo under our assumption@V. Let X := Lﬁ(ﬂ x V) be the positive cone of the space
L?(£2 x V). We assume for all the sequel there exists an integerch that

[x —T)"K]" is compact inL” (2 x V) (1)

for A > s(T). There exists a vast literature on such compactness properties which goes
back to the sixtees; see [10, Chapter 4] and references therein. More recent results are
givenin [11,13]. In particular, if k p < oo and if, forfixedx € £2, the collision operator

is compact fromL?” (V) into itself then(1) is satisfied with: = 1 provided the linear hyper-
planes have zerp-measure. On the other hand, foe= 1, if for fixed x € §2 the collision
operator is weakly compact from! (V) into itself then, under suitable assumptions.an

(1) is satisfied forsomen > 1. Those assumptions are satisfied by the usual continuous
or multigroup models used in transport theory. According to Gohberg—Schmulyan’s alter-
native (see [16]), (1) implies that(A) N {A; Rex > s(T)} consists (at most) of isolated
eigenvalues with finite algebraic multiplicities. ThaigsA) N {A; Rex > s(T)} #£ ¢ if and

only if s(T) < s(A) wheres(A) is the spectral bound of ands(A) is an eigenvalue of

T + K (actually the leading one) associated witheanegativeigenfunction [16]. Besides

the compactness hypothes¢iy we assume that

re[(—T)"'K]>0 forallx>s(T). 2)

We do not discuss in details this assumption here. We note, however, that, according to
B. De Pagter’s theorem [5], the last assumption is certainly satisfied if, bgdides

(A — T)"*K isirreducible ©)

i.e. for eachp € LY (2 x V), ¢ #0, andys € Lﬁ’r/(Q x V), ¥ # 0 (p’ is the conjugate
exponent ofp), there exists an integen (depending a priori orp and ) such that

(v = T) 1K@, ¥) > 0 where(-,-) denotes the duality pairing betweém (2 x V)
andL” (2 x V). This is satisfied, for instance, wheris the Lebesgue measure 8 or

on spheres (multigroup models,is convex and (x, v, v') > 0 a.e. We refer to [10, Chap-

ter 5] and references therein for more general irreducibility results. We point out that such
strict positivity assumptions are, to some extent, also “necessary.” Indé¢d, if, v') =0

for |v| > |v/| (which arises in the slowing down theory of “superthermal” fission neutrons

in a moderator [6]) then the point spectruneisiptyregardless of the size @2 [7]. The
mathematical reason behind this emptiness is the quasinilpotence of the collision operator
(see [10, Chapter 5]). We recall, however, that under (1), (3) and the assumption that the ve-
locity space is bounded away from zero, the point spectrum is never empty [10, Chapter 5,
Theorem 5.12]. More precisely, [(A — T)"1K] > 0 (1 > s(T)) is an algebraically sim-

ple eigenvalue ofx — T)~1K. By Gohberg—Schmulyan’s alternative, the nonincreasing
function € 1s(T), oo[ — r, [(x — T) 1K1 is actually (strictly)decreasingMoreover, it is
continuous becausg [(A — T)~1K ] is an algebraically simple eigenvalue [8]. It follows,
under (1), (3), tha#d has a leading eigenvalue if and only if

lim ro[(x—T)7'K] > 1.
r—s(T)

In such a case,(A) is the unique. > s(T') such that
re[G.—-T) K] =1 (4)
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In particular, when the velocity space is bounded away from zero stt#én= —oco and
then convexity arguments [10, Chapter 5, Theorem 5.12] show that

Nim oG- T) K] =00

so a leading eigenvalue does exist. To our knowledge, until now, the analysis of the fun-
damental eigenvalue relied essentially on (4). In particular, this makes an approximation
theory of the leading eigenvalue based on (4) quite involved [2,4]. Our purpose here is
to show that we can avoid this auxiliary “Peierls operator” and give (variational) char-
acterizations ofs(A) in terms of A itself and suitable test functions. Moreover, those
characterizations will provide us with computable upper and lower bounds of the lead-
ing eigenvalue in terms of various physical parameters, in particular in terms of the “exit
time” ¢ (-, -). We point out that our mathematical analysis does not rely directly on (3), i.e.
on the irreducibility of(A» — T)~1K . Actually, besides (1), (2), we merely need either

There exists ositiveeigenfunction ofx — 7)1k (5)
corresponding to its spectral radius, or
There exists positiveeigenfunction of (x — 7) k|’ (6)

corresponding to its spectral radius, whéte — T)~1K7 is the dual operator tgr —
T)~1K . Note that the existence abnnegativesigenfunctions (corresponding to the spec-
tral radius) is already contained in (1), (2). We note that both (5), (6) are consequences
of the irreducibility of (A — 7)~1K. However, in practice, it is much easier to verify the
irreducibility of (\ — T)~1K than (5), (6). Unless otherwise stated, the basic assumptions
(1), (2) are made foall the sequel and will not be repeated in the different statements.

2. Variational characterizations of the spectral bound

This section is devoted to several (variational) characterizations of the spectral bound
of A=T +K,
s(A) :=sup{Rex; A € 5 (A)},

whereT is an unbounded operator withpasitive resolvenand K is a boundegositive
operator. Those characterizations are obtained from preliminary results based on (1), (2)
and (5)or (6). To this end, it is useful to recall a general (abstract) characterizatig pf

[19] which does not rely on such assumptions:

A>s(A) iff A>s(T)andr,[(n—T)'K] <1, 7

wheres(T) is the spectral bound. Note that a priork(A) > s(T).

Lemmal LetE:={A>s(T); Ipe D(T)N X+ — {0}, Ap —rp € X;}. ThenE = {1 >
s(T); rol(h = T)"* K1 > 1.
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Proof. Leti € E. Theni. > s(T) and there existg € D(T) N X4, ¢ #0, such thattp —
A e X, ieTo+Kp> A¢. Since(h — T) 1 is positive thenp < (A — T)"1K¢ and
e <[h—T)1KT¢ (Vk e N) so

I[G-=D) k]| =1 vkeN).

Hencer,[(A — T) " K] >1andE C {A > s(T); ro[(A — T)"1K] > 1}. Now, leti > s(T)
andr,[(A — T)"1K]1 > 1. Thena := ry[(A — T)"1K] is aneigenvalueof (A — T)~1K
associated with a nonnegative eigenvegtoi.e. (A — T)"1K¢ = ag. This is possible
becausdxr — T)~1K is a positive operator (sg [(A — T) " 1K] € o (A — T)~1K), [15])
and power compact. ThL§K<p (L —=T)p andrp — Ty < K¢ i.e. 1 € E which shows
the reverse inclusion. O

Corollary 1. We haves(T) < s(A) if and only if E is not empty. In such a cas¢A) =
Supx; A € E}.
{A>s(T); Ipe D(T)NX: —{0}, Ap —rp e X1} #0.
Proof. Leti =supi € E}. Thenx = supgA > s(T); rel(A—T)~ 1K1> 1} by Lemma 1.
It follows thatr(,[()L T)"1K]<1Vi> i and, by (7)s(A) < A. On the other hand, there

exists a sequenqek} C E such that; — . By Lemma 1r5[(kk —T)"1K]>1Vk.The
set{x > s(T); ro[(A — T)"1K] > 1} is closedin 1s(T'), +oo[ because the mapping

A€ s(T), +oo = re[( — T) K]
is upper-semicontinuoug{8, Theorem 3.1 and Remark 3.3, p. 208]). Hengé(L —
7)~1K1> 1 and, according t67), 2 < s(A). O

Lemma2[12, Lemma 2] If (6) is satisfied then. > s(T) — r,[(A — T)~1K] is continu-
ous.

Theorem 1. For eachg € D(T) N X4 — {0}, set
T(p) :==sup{r > s(T); Ap —Lrp € X}
with the convention (¢) = s(T) if {A > s(T); Ap —rp € X} =0. Then

s(T) <s(A) ifandonly if sup  1(p) >s(T).
peD(T)NX 4

In such a case

sup  t(p) =s(A).
peD(T)NX 4

Moreover, if(6) is satisfied then (¢) = s(A) if and only if Ap = s(A).
Proof. Lets(T) <s(A) andy € D(T) N X, — {0} be a corresponding eigenvector, then
Ay —s(A)y =0andt(y) = s(A) > s(T) so

sup () =s(A) > s(T). (8)
0eD(T)NX 4
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Conversely, if

sup  t(p) >s(T),
peD(T)NX 4

then forall ¢ € D(T) N X4+ — {0} such thatr (¢) > s(T) we havedp — t(p)p € X .
According to Corollary 17 (¢) < s(A) and consequently

sup  t(p) <s(A)
peD(T)NX 4

which ends the first part of the statement. Assume (6), then, by Lemma 2, the leading
eigenvalues(A) is characterized by, [(s(A) — T)"1K] = 1. Now suppose that(p) =
s(A),i.e.

To+Kp—s(A)g=0. 9)
We claim that(9) is anequality. Otherwisep < (s(A) — T')~1K ¢ would notbe an equality
S0, using gpositiveeigenfunctiong’ of [(s(A) — T)~1K] corresponding to its spectral
radius,

-1 ’ -1 /oy
(0, ¢) <{(s(A) = T) Ko, ¢')=0,[(s(4) = T) " K]'¢')
=15 [(s(A) = T) 'K (0. ¢) = (9. ¢)

which is a contradiction. O

Theorem 2. Let X7} ={p € LP(£2 x V); ¢(x,v) > 0a.e}. We assume thab) is satisfied.
TheI’ISUQpeD(T)QXi T((p) = S(A)

Proof. A priori SURyen(T)nx* 7(p) < s(A). Whens(T) < s(A), there exists gositive
eigenfunctionyr associated withy(A). Indeed, Ay = Ty + K¢ = s(A)y¥y amounts to
(s(A) — T)~1Ky = ¢ and by(5), we can choose) € X% . Hence SUPe p(1)nx: T(p) =
s(A) and this ends the proof.O

Theorem 3. We assume thdb) is satisfied. Then the spectral bound) is given by

. Agp
max max|inf —, s(T)
peD(T)NX* (7

whereinf % denotes the essential infimumfgﬁ.
Proof. According to Theorem 25(A) = SURyen(rynx*. (). On the other hand, for each
o e D(T)NX*, 1(p) is equal to

Sup{)»>s(T); A¢—A<peX+} if {A>s(T); Ap —Arp € X1} #0,
s(T), otherwise
_ {sup{/\>s(T); % >xae) if inf % > s(T),
s(T) otherwise

=max{infﬂ,s(T)}
%
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and this ends the proof.
We give now some “dual” results.

Lemma 3. Let (6) be satisfied. Let
E:={r>s(T); 3p € D(T)N X1 andrg — Ap € X4 — {0}
ThenE = {1 > s(T); ro[(A — T)"1K] < 1}.

Proof. Let A > s(7) be such that,[(A — T)"1K] < 1. Theni > s(A) and
o0
G-Mr=>o-nk]e-n1>0
k=0
Lety € X, — {0} andg := (A — A)~!y. Thenp € D(T) N X andip — Ap € X —{0}.
Conversely, lek. € E. Thenip — Ty — K¢ € X4+ — {0} for somep € D(T) N X 4. This
implies that
¢—O—T)'Kpe X, —{0}. (10)

By (6), there existg)’ € X', , ¥’ > 0 a.e., an eigenvector associated to the spectral radius
of the dual operator[(x» — T)~1K] (which is equal to that ofx — 7)~1K ). Then(10)
implies(¢p — (A —T) 1K ¢, ¥') > 0, i.e.

(0, ¥) > (0. =) Ko, v') = o, [0 = ) K]YW) =ro [ = ) K (0, ¥
whence

re[0=T)'K] <1 and EcC{r>s(T); re[.—T) K] <1}
since{p, ¥’y >0. O

Theorem 4. Let (6) be satisfied. For each € D(T) N X, — {0} define
T(p) :==inf{A > s(T); rp — Ap € X1 — (O} (12)

with the convention that (¢) = +oo if {A > s(T); A¢p — Ap € X — {0}} is empty. Then
s(A) =infoeprynx.—i0) T(9).

Proof. It follows from Lemma 3 and (7) that # ¢ and s(A) = inf{x; A € E}. Let
¢ € D(T) N X4 — {0} be such that(¢) < +oo. Let A > T(¢) be arbitrary. By assump-
tion Ap — Ap € X, — {0} and it follows thats(A) < A whences(A) < 7(p). Finally
s(A) < infyepr)nx, —(0) T(p) becausep is arbitrary. Conversely, let > s(A) be arbi-
trary. According to Lemma 3, there exists= D(T) N X, such thatvp — Ag € X — {0}
so thatt (¢) < A. Hence infep(rynx, —(0; T(¢) < s(A) and we are done. O

Theorem 5. We assume thab) and (6) are satisfied. Then the spectral bound) is
given by

. Ap
min  max; sup—, s(7) ¢,
peD(T)NXY 1)
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Wheresup% denotes the essential supremun%@f

Proof. We note that iffA > s(T); A¢p — Ap € X — {0}} =0 for all p € X1 — {0} then
sup% <s(T) forall € X* and

. A
min max{sup—(p, s(T)} =s(T).
peD(T)NX% )

Otherwise,

{A >s(T); rp —Ape Xy — {0}} #0
for somey € X — {0} ands(A) > s(T). A priori s(A) < infyeprnx: T(e). It follows
from (5) there exists) € D(T) N X% such thatAyr = s(A)y and consequently, for all
£>0,(5(A) +e)y — Ay € X, — {0} sot(¥) <s(A)+eforalle >0 ort(y) <s(A).
Hence in;eD(T)mXi 7(p) < s(A) and finally s(A) = infyep(rynx: 7(p). On the other
hand, forp € D(T) N X*, T(p) is equal to

inf{1 > s(T); Lp — Ap e X4 — {0} = inf{k >s(T); A> Ay a.e.}
®

Ag
=max{ sup—, s(T)
%
and this ends the proof.

Remark 1. Note thatAg > t(¢)g, i.e.7(p) is the best “sub-eigenvalue” @f correspond-
ingtoy € D(T)NX and supcp(r)nx, T(®) = s(A). Inparticular, the leading eigenvalue
s(A) can be approximated by “sub-eigenvalues.” The corresponding “sub-eigenfunctions”
also approximate the leading eigenfunction. Indeed, we show [12, Theorems 6, 7] that if
{or} € W N X4 (appropriately normalized) is such thaty > Aker With A — s(A),
then|lpx — ¢|| — 0 wherey is an (appropriately normalized) eigenfunctiontoéssociated

with s(A).

3. Applicationsto neutron transport

This section is concerned with the derivation of upper and lower bounds for the leading
eigenvalue of neutron transport operators. According to Theorem 1, for@adﬂfé’_ N
X+, ¢ #0,s(A) is greater or equal to each reakatisfying the inequality

—v- g—i —o(x,v)e(x,v) + / k(x,v, V), v)du@) > rp a.e. (12)

14

On the other hand, according to Theorem 4, for e,aehWéi NX4, o #0, s(A)isless
than or equal to each realsatisfying the inequality

d
—v- a—(p —o(x,v)e(x,v) +/k(x, v, V)0, v)du®) < rp
X
v
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with a strict inequality on a set of positive measure. Consider the operator

k(x,v,v)1(x,v)
0. r
K;:9€elL (V)_)/1+g(x,v)f(xav)

indexedby the spatial parametere £2 even if, for the simplicity of notations, we do not
make explicit its dependence anDefine the parameter

Bi=sup{p>0; Jpe Ll (V),p#0, KZp > Po (Vx € 2)}. (13)

e()du@) e LP(V)

Lemma 4. We assume that for eache 2

pell’(V)— /k(x, v, V)e)du@’) e LP(V)
is compact ifp > 1 or weakly compact ip = 1. Then the set
1:={B>0; pe Ll (V),9#0, KI¢ > By Vx e 2}

A

is closed and consequently there exqstsL (V), ¢ #0,suchthatk? ¢ > ¢ (Vx € £2).

Proof. We first note that by dominationargument [1]K? is compact ifp > 1 or weakly
compactifp =1.The set C R is clearly a bounded interval containing zero. Let {0}
and{g;} C I, B; —> B. Thenk%¢; > Bjp; (¢; € L% (V), p; # 0). We argue with fixed
x € 2. For p > 1, we choose the normalization

“ Ko; ”LP(V) =1
A subsequencéy;, }x converges weakly to somg > 0 satisfyingK? ¢ > B¢. Now the
compactness k¢ (for eachx € £2) shows that

|KZ¢; — Kg@”LP(V) —0
and consequently

|k7¢

||Lp(v) =1 and ¢+#0.

Forp=1,we use[K" 1°p; > ,3 @; with the normalization

2
” [Kf] ®j ”Ll(V) =1

Note that[K? ]2 is compact as a square of a weakly compact operator. The domination
above shows thdly;} is weakly compact ir.1(V) and we argue as previouslyo

Theorem 6. We assume that > 1. Then

1
s(A) 2 (,3 1)<—+Um|n)

Tmax

where

Tmax:= SUp t(x,v) and omin:= inf  o(x,v).
(x,0)eNR XV (x,v)e22xV
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Proof. Lety € Li(V), ¢ # 0. Define the test function(x, v) := t(x, v)¥ (v). Note that

7(-,-) is bounded since(x, v) < # wherevmin is the minimum speed. Thyse Lﬁ’r(Q X

V). Moreover, one sees thate W(‘)”_ and—v - g—ﬁ = —y(v). According to Theorem 1, for
all y € Lﬁ’r(V), ¥ #0,5(A) is greater or equal to evepysatisfying

_(1+a(x,v)r(x,v)):ﬂ(v)%—/k(x,v,v/)r(x,v/)W(v’)du(v’)
4
> AT (x, V)Y (V). (14)

We look foryr € LfL(V), ¢ # 0 andx > —oo satisfying(14). This is equivalent to

/k(x, v, V)T, V)Y ) du) = [1+0(x, v)T(x, v) + AT (x, v) | (v)
14
orto
k(x,v,v)t(x,v)
f 1+o(x,v)t(x,v)

At(x,v)
14+o(x,v)T(x,v)

Y dp@) > [1+ }ﬂ(v)

- At(x,v)
Koy > (1+ 1+0(X’U)T(x,v)>w(v).

By Lemma 4,K? ¢ > B¢ so it suffices that

AT(x,v)
1+o0(x,v)T(x,v)

gﬁ Vix,v)e 2 xV

Ag(,é—l)( +a(x,u)> V(x,0) e xV

T(x,v)

or equivalently

1
T(x,v)
A 1
=(B— 1)<— + Gmin)

Tmax

A< (LI:]I)('B — 1)( + o (x, v)) =(B-1 (L?I)(r(x, %) + o (x, v))

since—1>0. O

Corollary 2. Let V be bounded. We assume that

[ k(x,v,v)t(x,v)
1+o0(x,v)T(x,v)

B = inf

du@ > 1. (15)
(x.v)

Then

- 1
s(A) = (B — 1)( + Umin)-

Tmax
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Proof. We note that (15) expresses that
K%¢ > By with the choicep = 1
sothatd <B. O

Remark 2. Theorem 6 depends heavily on the assumpfioal. If 8 < 1 and if

inf fk(x, v, V)T(x,v)dp@) > 1,
(x,v)el—
v

then we can also derive a lower bounds¢fi); see [12, Theorem 7 and Corollary 3].

To deriveupper boundsf s(A), define the “dual” parameter 1 (see (13))
KO'
a:= inf sup’—w. (16)
vell, (V) (xv) W

Theorem 7. If & < 1then

S(A) < (@— 1)({i + omm).

max

Proof. Lety e LY (V) be such that

(o2

sup— v <1 a7

(x,v)
Use a test function of the forg(x, v) := t(x, v)¥ (v). By Theorem 4s(A) is less than or
equal to every. satisfying

(14 o0&, VT, v)Y @) + / k(x, v, v)T(x, V)P () dpn )
4
<it(x,v)¥(v) a.e,

or equivalently
o
Krv < <1+ Ar(x. v) ) a.e.

4 l+o(x,v)(x,v)
This is satisfied if
A> sup(K’w —1)( 1 +o(x,v)>. (18)
(x,v) Y T(x,v)
Note that

0 and

+o(x,v) >

+ Omin
, V) Tmax

()
(5 ) e v>) (3 ()

SO
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Kew (1 Kew (L
o 55 ) Gy o) < o557 1) (o)

Thus(18) is satisfied if

A > sup(K’ v — 1) (i + amin) = <sup Kry — 1) <i 4 amin>
(x,v) I/I Tmax (x,v) I/I Tmax

Kfl// 1
s(A) < | sup -1 + Omin
(x,v) ) Tmax

forall y e LY, (V) satisfying(17). Hence

s(A) < ( inf sup@ — l) (i + Umin)

Yyell (V) (x,v) 4 Tmax

and

and

which ends the proof. O

Corollary 3. Let V be bounded. If

k s Uy ! ’ ! /
&::sup/ @0 )Tl Y) Ly <1
s 1+ox,v)T(x,v)

then

1
s(A) < (& — 1)<t— + Umin)

max
Proof. We note that = sup, ,, % withy =1soa>&. O

Remark 3. Whena > 1 we can also derive an upper bounds@f) provided that

sup [ k(x,v,v)T(x,v)du®@) < 1;
(x,v)er-

see [12, Theorem 9 and Corollary 5].
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