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Abstract

We give variational characterizations of the leading eigenvalue of neutron transport-like ope
The proofs rely on sub- and super-eigenvalues. Various bounds of the leading eigenvalue are
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1. Introduction

This paper provides a new approach of the leading eigenvalue for neutron tran
like equations. The so-called time eigenvalue of the fundamental mode (i.e. the le
eigenvalue) of neutron transport operators plays a basic role in nuclear reactor theo
in pulsed experiments [6, Chapter 5] or in the stochastic description of neutron cha
sions [3]. This eigenvalue or, more generally, the peripheral spectrum of such ope
is strongly related to their positivity properties (in the lattice sense); see [17] and
ences therein. In the same spirit, positivity plays an essential role in reactor critic
see [14] and references therein. We refer to [10, Chapter 5] and references ther
the known results on the leading eigenvalue of neutron transport operators. Motiva
transport theory, the present paper is devoted tovariational characterizationsof the lead-
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ing eigenvalue for a class of perturbed operators of the formA = T + K whereT is an
unbounded operator with apositive resolventandK is a boundedpositiveoperator. If we
denote respectively bys(T ) ands(A) the spectral bound ofT andA and if some powe
of (λ − T )−1K is compact(λ > s(T )), then it is known thats(A) is the leading eigen
value ofA onces(T ) < s(A) [16]. Here, this leading eigenvalue is handled by mean
sub-eigenvalues or super-eigenvalues. Roughly speaking, we prove thatλ ∈ ]s(T ), s(A)[
if and only if λ is a sub-eigenvalue, i.e. there exists a nonnegative (non-trivial)ϕ such
that Aϕ � λϕ. We show also thatλ ∈ ]s(A),∞[ if and only if λ is a super-eigenvalue,
i.e. there exists a nonnegative (non-trivial)ϕ such thatAφ � λφ. It follows thats(A) can
be characterized as the supremum of sub-eigenvalues or the infimum of super-eigen
This provides us withmax–inf andmin–supprinciples for the leading eigenvalue. Th
first part of our work, of more functional analytic character, is in the spirit of I. Marek
who deals, in particular, with variational characterizations of spectral radius of certai
itive operators. In the second part, devoted specifically to neutron transport, we sho
to derive in a systematic manner, from the above (abstract) variational principles,
and lower bounds of the leading eigenvalue in terms of various physical parameter
paper resumes some results from a longer preliminary version [12] containing add
results and references. We present now our general framework. LetΩ ⊂ RN be a smooth
and bounded open set and letµ be a positive Radon measure onRN with supportV . We
refer toV as the velocity space. We assume in this paper thatV is bounded away from
zero, i.e. 0 /∈ V . We refer to [12] for the case 0∈ V . Let T be the advection operator
Lp(Ω × V ) := Lp(Ω × V ;dx dµ(v)) (1� p < ∞)

T ϕ = −v · ∂ϕ

∂x
− σ(x, v)ϕ(x, v), ϕ ∈ D(T )

with domain

W
p

0− =
{
ϕ ∈ Lp(Ω × V ); v · ∂ϕ

∂x
∈ Lp(Ω × V ), ϕ = 0 onΓ−

}

whereΓ− := {(x, v) ∈ ∂Ω × V ; v · n(x) < 0} and n(x) is the outward unit vector a
x ∈ ∂Ω . The real and bounded measurable functionσ(·,·) is the collision frequency while
the scattering (or collision) operator is

K : ϕ ∈ Lp(Ω × V ) →
∫
V

k(x, v, v′)ϕ(x, v′) dµ(v′) ∈ Lp(Ω × V ).

Finally, the neutron transport operator is given by

A : ϕ ∈ W
p

0− → −v · ∂ϕ

∂x
− σ(x, v)ϕ(x, v) +

∫
V

k(x, v, v′)ϕ(x, v′) dµ(v′)

with the same domain as the advection operatorT . The cross sectionsσ(·,·) andk(·, · ,·)
arenonnegativein accordance with the physical theory. The spectral bound ofT , s(T ) =
sup{Reλ;λ ∈ σ(T )}, is characterized in full generality in [18]:s(T ) = −λ∗ where

λ∗ = lim
t→∞ inf{(x,v)∈Ω×V ; t<τ(x,−v)} t−1

t∫
σ(x + sv, v) ds
0
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and τ(x, v) := inf{s > 0; x − sv /∈ Ω} is the “exit time” function. In particulars(T ) =
−∞ under our assumption 0/∈ V . LetX+ := L

p
+(Ω ×V ) be the positive cone of the spa

Lp(Ω × V ). We assume for all the sequel there exists an integern such that[
(λ − T )−1K

]n is compact inLp(Ω × V ) (1)

for λ > s(T ). There exists a vast literature on such compactness properties which
back to the sixtees; see [10, Chapter 4] and references therein. More recent res
given in [11,13]. In particular, if 1< p < ∞ and if, forfixedx ∈ Ω , the collision operato
is compact fromLp(V ) into itself then(1) is satisfied withn = 1 provided the linear hyper
planes have zeroµ-measure. On the other hand, forp = 1, if for fixed x ∈ Ω the collision
operator is weakly compact fromL1(V ) into itself then, under suitable assumptions onµ,
(1) is satisfied forsomen > 1. Those assumptions are satisfied by the usual contin
or multigroup models used in transport theory. According to Gohberg–Schmulyan’s
native (see [16]), (1) implies thatσ(A) ∩ {λ;Reλ > s(T )} consists (at most) of isolate
eigenvalues with finite algebraic multiplicities. Thusσ(A) ∩ {λ;Reλ > s(T )} �= ∅ if and
only if s(T ) < s(A) wheres(A) is the spectral bound ofA ands(A) is an eigenvalue o
T +K (actually the leading one) associated with anonnegativeeigenfunction [16]. Beside
the compactness hypothesis(1) we assume that

rσ
[
(λ − T )−1K

]
> 0 for all λ > s(T ). (2)

We do not discuss in details this assumption here. We note, however, that, accor
B. De Pagter’s theorem [5], the last assumption is certainly satisfied if, besides(1),

(λ − T )−1K is irreducible (3)

i.e. for eachϕ ∈ L
p
+(Ω × V ), ϕ �= 0, andψ ∈ L

p′
+ (Ω × V ), ψ �= 0 (p′ is the conjugate

exponent ofp), there exists an integerm (depending a priori onϕ and ψ ) such that
〈[(λ − T )−1K]mϕ,ψ〉 > 0 where〈·,·〉 denotes the duality pairing betweenLp(Ω × V )

andLp′
(Ω ×V ). This is satisfied, for instance, whenµ is the Lebesgue measure onRN or

on spheres (multigroup models),Ω is convex andk(x, v, v′) > 0 a.e. We refer to [10, Chap
ter 5] and references therein for more general irreducibility results. We point out tha
strict positivity assumptions are, to some extent, also “necessary.” Indeed, ifk(x, v, v′) = 0
for |v| � |v′| (which arises in the slowing down theory of “superthermal” fission neut
in a moderator [6]) then the point spectrum isemptyregardless of the size ofΩ [7]. The
mathematical reason behind this emptiness is the quasinilpotence of the collision o
(see [10, Chapter 5]). We recall, however, that under (1), (3) and the assumption that
locity space is bounded away from zero, the point spectrum is never empty [10, Cha
Theorem 5.12]. More precisely,rσ [(λ − T )−1K] > 0 (λ > s(T )) is an algebraically sim
ple eigenvalue of(λ − T )−1K . By Gohberg–Schmulyan’s alternative, the nonincrea
functionλ ∈]s(T ),∞[→ rσ [(λ−T )−1K] is actually (strictly)decreasing. Moreover, it is
continuous becauserσ [(λ − T )−1K] is an algebraically simple eigenvalue [8]. It follow
under (1), (3), thatA has a leading eigenvalue if and only if

lim
λ→s(T )

rσ
[
(λ − T )−1K

]
> 1.

In such a case,s(A) is the uniquēλ > s(T ) such that

rσ
[
(λ̄ − T )−1K

] = 1. (4)
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In particular, when the velocity space is bounded away from zero, thens(T ) = −∞ and
then convexity arguments [10, Chapter 5, Theorem 5.12] show that

lim
λ→−∞ rσ

[
(λ − T )−1K

] = ∞

so a leading eigenvalue does exist. To our knowledge, until now, the analysis of th
damental eigenvalue relied essentially on (4). In particular, this makes an approxim
theory of the leading eigenvalue based on (4) quite involved [2,4]. Our purpose h
to show that we can avoid this auxiliary “Peierls operator” and give (variational) c
acterizations ofs(A) in terms ofA itself and suitable test functions. Moreover, tho
characterizations will provide us with computable upper and lower bounds of the
ing eigenvalue in terms of various physical parameters, in particular in terms of the
time” τ(·, ·). We point out that our mathematical analysis does not rely directly on (3
on the irreducibility of(λ − T )−1K . Actually, besides (1), (2), we merely need either

There exists apositiveeigenfunction of(λ − T )−1K (5)

corresponding to its spectral radius, or

There exists apositiveeigenfunction of
[
(λ − T )−1K

]′ (6)

corresponding to its spectral radius, where[(λ − T )−1K]′ is the dual operator to(λ −
T )−1K . Note that the existence ofnonnegativeeigenfunctions (corresponding to the sp
tral radius) is already contained in (1), (2). We note that both (5), (6) are consequ
of the irreducibility of(λ − T )−1K . However, in practice, it is much easier to verify t
irreducibility of (λ − T )−1K than (5), (6). Unless otherwise stated, the basic assump
(1), (2) are made forall the sequel and will not be repeated in the different statements

2. Variational characterizations of the spectral bound

This section is devoted to several (variational) characterizations of the spectral
of A = T + K ,

s(A) := sup
{
Reλ;λ ∈ σ(A)

}
,

whereT is an unbounded operator with apositive resolventandK is a boundedpositive
operator. Those characterizations are obtained from preliminary results based on
and (5)or (6). To this end, it is useful to recall a general (abstract) characterization ofs(A)

[19] which does not rely on such assumptions:

λ > s(A) iff λ > s(T ) andrσ
[
(λ − T )−1K

]
< 1, (7)

wheres(T ) is the spectral boundT . Note that a prioris(A) � s(T ).

Lemma 1. LetE := {λ > s(T ); ∃ϕ ∈ D(T ) ∩ X+ − {0}, Aϕ − λϕ ∈ X+}. ThenE = {λ >

s(T ); rσ [(λ − T )−1K] � 1}.
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Proof. Let λ̂ ∈ E. Thenλ̂ > s(T ) and there existsϕ ∈ D(T ) ∩ X+, ϕ �= 0, such thatAϕ −
λ̂ϕ ∈ X+, i.e. T ϕ + Kϕ � λ̂ϕ. Since(λ̂ − T )−1 is positive thenϕ � (λ̂ − T )−1Kϕ and
ϕ � [(λ̂ − T )−1K]kϕ (∀k ∈ N) so∥∥[

(λ̂ − T )−1K
]k∥∥ � 1 (∀k ∈ N).

Hencerσ [(λ̂−T )−1K] � 1 andE ⊂ {λ > s(T ); rσ [(λ−T )−1K] � 1}. Now, letλ > s(T )

and rσ [(λ − T )−1K] � 1. Thenα := rσ [(λ − T )−1K] is aneigenvalueof (λ − T )−1K

associated with a nonnegative eigenvectorϕ, i.e. (λ − T )−1Kϕ = αϕ. This is possible
because(λ − T )−1K is a positive operator (sorσ [(λ − T )−1K] ∈ σ((λ − T )−1K), [15])
and power compact. Thus1

α
Kϕ = (λ − T )ϕ andλϕ − T ϕ � Kϕ i.e. λ ∈ E which shows

the reverse inclusion.�
Corollary 1. We haves(T ) < s(A) if and only if E is not empty. In such a cases(A) =
sup{λ;λ ∈ E}.

{λ > s(T ); ∃ϕ ∈ D(T ) ∩ X+ − {0}, Aϕ − λϕ ∈ X+} �= ∅.

Proof. Let λ̄ = sup{λ ∈ E}. Thenλ̄ = sup{λ > s(T ); rσ [(λ − T )−1K] � 1} by Lemma 1.
It follows thatrσ [(λ−T )−1K] < 1 ∀λ > λ̄ and, by (7),s(A) � λ̄. On the other hand, ther
exists a sequence{λ̂k} ⊂ E such that̂λk → λ̄. By Lemma 1,rσ [(λ̂k −T )−1K] � 1 ∀k. The
set{λ > s(T ); rσ [(λ − T )−1K] � 1} is closedin ]s(T ),+∞[ because the mapping

λ ∈ ]
s(T ),+∞[ → rσ

[
(λ − T )−1K

]
is upper-semicontinuous([8, Theorem 3.1 and Remark 3.3, p. 208]). Hencerσ [(λ̄ −
T )−1K] � 1 and, according to(7), λ̄ � s(A). �
Lemma 2 [12, Lemma 2]. If (6) is satisfied thenλ > s(T ) → rσ [(λ − T )−1K] is continu-
ous.

Theorem 1. For eachϕ ∈ D(T ) ∩ X+ − {0}, set

τ(ϕ) := sup
{
λ > s(T ); Aϕ − λϕ ∈ X+

}
with the conventionτ(ϕ) = s(T ) if {λ > s(T ); Aϕ − λϕ ∈ X+} = ∅. Then

s(T ) < s(A) if and only if sup
ϕ∈D(T )∩X+

τ(ϕ) > s(T ).

In such a case

sup
ϕ∈D(T )∩X+

τ(ϕ) = s(A).

Moreover, if(6) is satisfied thenτ(ϕ) = s(A) if and only ifAϕ = s(A)ϕ.

Proof. Let s(T ) < s(A) andψ ∈ D(T ) ∩ X+ − {0} be a corresponding eigenvector, th
Aψ − s(A)ψ = 0 andτ(ψ) � s(A) > s(T ) so

sup τ(ϕ) � s(A) > s(T ). (8)

ϕ∈D(T )∩X+
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Conversely, if

sup
ϕ∈D(T )∩X+

τ(ϕ) > s(T ),

then forall ϕ ∈ D(T ) ∩ X+ − {0} such thatτ(ϕ) > s(T ) we haveAϕ − τ(ϕ)ϕ ∈ X+.
According to Corollary 1,τ(ϕ) � s(A) and consequently

sup
ϕ∈D(T )∩X+

τ(ϕ) � s(A)

which ends the first part of the statement. Assume (6), then, by Lemma 2, the le
eigenvalues(A) is characterized byrσ [(s(A) − T )−1K] = 1. Now suppose thatτ(ϕ) =
s(A), i.e.

T ϕ + Kϕ − s(A)ϕ � 0. (9)

We claim that(9) is anequality. Otherwiseϕ � (s(A)−T )−1Kϕ wouldnotbe an equality
so, using apositiveeigenfunctionϕ′ of [(s(A) − T )−1K]′ corresponding to its spectr
radius,

〈ϕ,ϕ′〉 <
〈(
s(A) − T

)−1
Kϕ,ϕ′〉 = 〈

ϕ,
[(

s(A) − T
)−1

K
]′
ϕ′〉

= rσ
[(

s(A) − T
)−1

K
]〈ϕ,ϕ′〉 = 〈ϕ,ϕ′〉

which is a contradiction. �
Theorem 2. Let X∗+ = {ϕ ∈ Lp(Ω ×V ); ϕ(x, v) > 0 a.e.}. We assume that(5) is satisfied.
Thensupϕ∈D(T )∩X∗+ τ(ϕ) = s(A).

Proof. A priori supϕ∈D(T )∩X∗+ τ(ϕ) � s(A). When s(T ) < s(A), there exists apositive
eigenfunctionψ associated withs(A). Indeed,Aψ = T ψ + Kψ = s(A)ψ amounts to
(s(A) − T )−1Kψ = ψ and by(5), we can chooseψ ∈ X∗+. Hence supϕ∈D(T )∩X∗+ τ(ϕ) �
s(A) and this ends the proof.�
Theorem 3. We assume that(5) is satisfied. Then the spectral bounds(A) is given by

max
ϕ∈D(T )∩X∗+

max

{
inf

Aϕ

ϕ
, s(T )

}

whereinf Aϕ
ϕ

denotes the essential infimum ofAϕ
ϕ

.

Proof. According to Theorem 2,s(A) = supϕ∈D(T )∩X∗+ τ(ϕ). On the other hand, for eac
ϕ ∈ D(T ) ∩ X∗+, τ (ϕ) is equal to{

sup
{
λ > s(T ); Aϕ − λϕ ∈ X+

}
if {λ > s(T ); Aϕ − λϕ ∈ X+} �= ∅,

s(T ), otherwise

=
{

sup
{
λ > s(T ); Aϕ

ϕ
� λ a.e.

}
if inf Aϕ

ϕ
> s(T ),

s(T ) otherwise

= max

{
inf

Aϕ
, s(T )

}

ϕ



M. Mokhtar-Kharroubi / J. Math. Anal. Appl. 315 (2006) 263–275 269

dius

-

and this ends the proof.�
We give now some “dual” results.

Lemma 3. Let (6) be satisfied. Let

Ê := {
λ > s(T ); ∃ϕ ∈ D(T ) ∩ X+ andλϕ − Aϕ ∈ X+ − {0}}.

ThenÊ = {λ > s(T ); rσ [(λ − T )−1K] < 1}.

Proof. Let λ > s(T ) be such thatrσ [(λ − T )−1K] < 1. Thenλ > s(A) and

(λ − A)−1 =
∞∑

k=0

[
(λ − T )−1K

]k
(λ − T )−1 � 0.

Let ψ ∈ X+ − {0} andϕ := (λ − A)−1ψ . Thenϕ ∈ D(T ) ∩ X+ andλϕ − Aϕ ∈ X+ − {0}.
Conversely, letλ ∈ Ê. Thenλϕ − T ϕ − Kϕ ∈ X+ − {0} for someϕ ∈ D(T ) ∩ X+. This
implies that

ϕ − (λ − T )−1Kϕ ∈ X+ − {0}. (10)

By (6), there existsψ ′ ∈ X′+, ψ ′ > 0 a.e., an eigenvector associated to the spectral ra
of the dual operator[(λ − T )−1K]′ (which is equal to that of(λ − T )−1K ). Then(10)
implies〈ϕ − (λ − T )−1Kϕ,ψ ′〉 > 0, i.e.

〈ϕ,ψ ′〉 >
〈
(λ − T )−1Kϕ,ψ ′〉 = 〈

ϕ,
[
(λ − T )−1K

]′
ψ ′〉 = rσ

[
(λ − T )−1K

]〈ϕ,ψ ′〉
whence

rσ
[
(λ − T )−1K

]
< 1 and Ê ⊂ {

λ > s(T ); rσ
[
(λ − T )−1K

]
< 1

}
since〈ϕ,ψ ′〉 > 0. �
Theorem 4. Let (6) be satisfied. For eachϕ ∈ D(T ) ∩ X+ − {0} define

τ̂ (ϕ) := inf
{
λ > s(T ); λϕ − Aϕ ∈ X+ − {0}} (11)

with the convention that̂τ (ϕ) = +∞ if {λ > s(T ); λϕ − Aϕ ∈ X+ − {0}} is empty. Then
s(A) = infϕ∈D(T )∩X+−{0} τ̂ (ϕ).

Proof. It follows from Lemma 3 and (7) that̂E �= ∅ and s(A) = inf{λ;λ ∈ Ê}. Let
ϕ ∈ D(T ) ∩ X+ − {0} be such that̂τ(ϕ) < +∞. Let λ > τ̂(ϕ) be arbitrary. By assump
tion λϕ − Aϕ ∈ X+ − {0} and it follows thats(A) � λ whences(A) � τ̂ (ϕ). Finally
s(A) � infϕ∈D(T )∩X+−{0} τ̂ (ϕ) becauseϕ is arbitrary. Conversely, letλ > s(A) be arbi-
trary. According to Lemma 3, there existsϕ ∈ D(T ) ∩ X+ such thatλϕ − Aϕ ∈ X+ − {0}
so thatτ̂ (ϕ) � λ. Hence infϕ∈D(T )∩X+−{0} τ̂ (ϕ) � s(A) and we are done.�
Theorem 5. We assume that(5) and (6) are satisfied. Then the spectral bounds(A) is
given by

min
ϕ∈D(T )∩X∗ max

{
sup

Aϕ

ϕ
, s(T )

}
,

+
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Proof. We note that if{λ > s(T ); λϕ − Aϕ ∈ X+ − {0}} = ∅ for all ϕ ∈ X+ − {0} then
supAϕ

ϕ
� s(T ) for all ϕ ∈ X∗+ and

min
ϕ∈D(T )∩X∗+

max

{
sup

Aϕ

ϕ
, s(T )

}
= s(T ).

Otherwise,{
λ > s(T ); λϕ − Aϕ ∈ X+ − {0}} �= ∅

for someϕ ∈ X+ − {0} ands(A) > s(T ). A priori s(A) � infϕ∈D(T )∩X∗+ τ̂ (ϕ). It follows
from (5) there existsψ ∈ D(T ) ∩ X∗+ such thatAψ = s(A)ψ and consequently, for a
ε > 0, (s(A) + ε)ψ − Aψ ∈ X+ − {0} so τ̂ (ψ) � s(A) + ε for all ε > 0 or τ̂ (ψ) � s(A).
Hence infϕ∈D(T )∩X∗+ τ̂ (ϕ) � s(A) and finally s(A) = infϕ∈D(T )∩X∗+ τ̂ (ϕ). On the other
hand, forϕ ∈ D(T ) ∩ X∗+, τ̂ (ϕ) is equal to

inf
{
λ > s(T ); λϕ − Aϕ ∈ X+ − {0}} = inf

{
λ > s(T ); λ >

Aϕ

ϕ
a.e.

}

= max

{
sup

Aϕ

ϕ
, s(T )

}

and this ends the proof.�
Remark 1. Note thatAϕ � τ(ϕ)ϕ, i.e.τ(ϕ) is the best “sub-eigenvalue” ofA correspond-
ing toϕ ∈ D(T )∩X+ and supϕ∈D(T )∩X+ τ(ϕ) = s(A). In particular, the leading eigenvalu
s(A) can be approximated by “sub-eigenvalues.” The corresponding “sub-eigenfunc
also approximate the leading eigenfunction. Indeed, we show [12, Theorems 6, 7]
{ϕk} ⊂ W

p

0− ∩ X+ (appropriately normalized) is such thatAϕk � λkϕk with λk → s(A),
then‖ϕk −ϕ‖ → 0 whereϕ is an (appropriately normalized) eigenfunction ofA associated
with s(A).

3. Applications to neutron transport

This section is concerned with the derivation of upper and lower bounds for the le
eigenvalue of neutron transport operators. According to Theorem 1, for eachϕ ∈ W

p

0− ∩
X+, ϕ �= 0, s(A) is greater or equal to each realλ satisfying the inequality

−v · ∂ϕ

∂x
− σ(x, v)ϕ(x, v) +

∫
V

k(x, v, v′)ϕ(x, v′) dµ(v′) � λϕ a.e. (12)

On the other hand, according to Theorem 4, for eachϕ ∈ W
p

0− ∩ X+, ϕ �= 0, s(A) is less
than or equal to each realλ satisfying the inequality

−v · ∂ϕ

∂x
− σ(x, v)ϕ(x, v) +

∫
k(x, v, v′)ϕ(x, v′) dµ(v′) � λϕ
V
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Kσ
τ : ϕ ∈ Lp(V ) →

∫
k(x, v, v′)τ (x, v′)
1+ σ(x, v)τ (x, v)

ϕ(v′) dµ(v′) ∈ Lp(V )

indexedby the spatial parameterx ∈ Ω even if, for the simplicity of notations, we do n
make explicit its dependence onx. Define the parameter

β̂ := sup
{
β � 0; ∃ϕ ∈ L

p
+(V ),ϕ �= 0, Kσ

τ ϕ � βϕ (∀x ∈ Ω)
}
. (13)

Lemma 4. We assume that for eachx ∈ Ω

ϕ ∈ Lp(V ) →
∫

k(x, v, v′)ϕ(v′) dµ(v′) ∈ Lp(V )

is compact ifp > 1 or weakly compact ifp = 1. Then the set

I := {
β � 0; ∃ϕ ∈ L

p
+(V ),ϕ �= 0, Kσ

τ ϕ � βϕ ∀x ∈ Ω
}

is closed and consequently there existsϕ̂ ∈ L
p
+(V ), ϕ̂ �= 0, such thatKσ

τ ϕ̂ � β̂ϕ̂ (∀x ∈ Ω).

Proof. We first note that by adominationargument [1]Kσ
τ is compact ifp > 1 or weakly

compact ifp = 1. The setI ⊂ R+ is clearly a bounded interval containing zero. LetI �= {0}
and{βj } ⊂ I , βj → β̂. ThenKσ

τ ϕj � βjϕj (ϕj ∈ L
p
+(V ),ϕj �= 0). We argue with fixed

x ∈ Ω . Forp > 1, we choose the normalization∥∥Kσ
τ ϕj

∥∥
Lp(V )

= 1.

A subsequence{ϕjk
}k converges weakly to somêϕ � 0 satisfyingKσ

τ ϕ̂ � β̂ϕ̂. Now the
compactness ofKσ

τ (for eachx ∈ Ω) shows that∥∥Kσ
τ ϕj − Kσ

τ ϕ̂
∥∥

Lp(V )
→ 0

and consequently∥∥Kσ
τ ϕ̂

∥∥
Lp(V )

= 1 and ϕ̂ �= 0.

Forp = 1, we use[Kσ
τ ]2ϕj � β2

j ϕj with the normalization

∥∥[
Kσ

τ

]2
ϕj

∥∥
L1(V )

= 1.

Note that[Kσ
τ ]2 is compact as a square of a weakly compact operator. The domin

above shows that{ϕj } is weakly compact inL1(V ) and we argue as previously.�
Theorem 6. We assume that̂β � 1. Then

s(A) � (β̂ − 1)

(
1

τmax
+ σmin

)

where

τmax := sup
(x,v)∈Ω×V

τ(x, v) and σmin := inf
(x,v)∈Ω×V

σ (x, v).
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Proof. Let ψ ∈ L
p
+(V ), ϕ �= 0. Define the test functionϕ(x, v) := τ(x, v)ψ(v). Note that

τ(·,·) is bounded sinceτ(x, v) � d
vmin

wherevmin is the minimum speed. Thusϕ ∈ L
p
+(Ω ×

V ). Moreover, one sees thatϕ ∈ W
p

0− and−v · ∂ϕ
∂x

= −ψ(v). According to Theorem 1, fo
all ψ ∈ L

p
+(V ), ψ �= 0, s(A) is greater or equal to everyλ satisfying

−(
1+ σ(x, v)τ (x, v)

)
ψ(v) +

∫
V

k(x, v, v′)τ (x, v′)ψ(v′) dµ(v′)

� λτ(x, v)ψ(v). (14)

We look forψ ∈ L
p
+(V ), ϕ �= 0 andλ > −∞ satisfying(14). This is equivalent to∫

V

k(x, v, v′)τ (x, v′)ψ(v′) dµ(v′) �
[
1+ σ(x, v)τ (x, v) + λτ(x, v)

]
ψ(v)

or to ∫
k(x, v, v′)τ (x, v′)
1+ σ(x, v)τ (x, v)

ψ(v′) dµ(v′) �
[
1+ λτ(x, v)

1+ σ(x, v)τ (x, v)

]
ψ(v)

i.e.

Kσ
τ ψ �

(
1+ λτ(x, v)

1+ σ(x, v)τ (x, v)

)
ψ(v).

By Lemma 4,Kσ
τ ϕ̂ � β̂ϕ̂ so it suffices that

1+ λτ(x, v)

1+ σ(x, v)τ (x, v)
� β̂ ∀(x, v) ∈ Ω × V

i.e.

λ � (β̂ − 1)

(
1

τ(x, v)
+ σ(x, v)

)
∀(x, v) ∈ Ω × V

or equivalently

λ � inf
(x,v)

(β̂ − 1)

(
1

τ(x, v)
+ σ(x, v)

)
= (β̂ − 1) inf

(x,v)

(
1

τ(x, v)
+ σ(x, v)

)

= (β̂ − 1)

(
1

τmax
+ σmin

)

sinceβ̂ − 1� 0. �
Corollary 2. LetV be bounded. We assume that

β̄ := inf
(x,v)

∫
k(x, v, v′)τ (x, v′)
1+ σ(x, v)τ (x, v)

dµ(v′) � 1. (15)

Then

s(A) � (β̄ − 1)

(
1

τmax
+ σmin

)
.
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Proof. We note that (15) expresses that

Kσ
τ ϕ � β̄ϕ with the choiceϕ = 1

so thatβ̄ � β̂. �
Remark 2. Theorem 6 depends heavily on the assumptionβ̂ � 1. If β̂ < 1 and if

inf
(x,v)∈Γ−

∫
V

k(x, v, v′)τ (x, v′) dµ(v′) > 1,

then we can also derive a lower bound ofs(A); see [12, Theorem 7 and Corollary 3].

To deriveupper boundsof s(A), define the “dual” parameter tôβ (see (13))

α̂ := inf
ψ∈L

p
∗+(V )

sup
(x,v)

Kσ
τ ψ

ψ
. (16)

Theorem 7. If α̂ < 1 then

s(A) � (α̂ − 1)

(
1

τmax
+ σmin

)
.

Proof. Let ψ ∈ L
p
∗+(V ) be such that

sup
(x,v)

Kσ
τ ψ

ψ
< 1. (17)

Use a test function of the formϕ(x, v) := τ(x, v)ψ(v). By Theorem 4,s(A) is less than o
equal to everyλ satisfying

−(
1+ σ(x, v)τ (x, v)

)
ψ(v) +

∫
V

k(x, v, v′)τ (x, v′)ψ(v′) dµ(v′)

< λτ(x, v)ψ(v) a.e.,

or equivalently

Kσ
τ ψ

ψ
<

(
1+ λτ(x, v)

1+ σ(x, v)τ (x, v)

)
a.e.

This is satisfied if

λ > sup
(x,v)

(
Kσ

τ ψ

ψ
− 1

)(
1

τ(x, v)
+ σ(x, v)

)
. (18)

Note that(
Kσ

τ ψ

ψ
− 1

)
� 0 and

1

τ(x, v)
+ σ(x, v) � 1

τmax
+ σmin

so (
Kσ

τ ψ − 1

)(
1 + σ(x, v)

)
�

(
Kσ

τ ψ − 1

)(
1 + σmin

)

ψ τ(x, v) ψ τmax
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ents of

f trans-
and

sup
(x,v)

(
Kσ

τ ψ

ψ
− 1

)(
1

τ(x, v)
+ σ(x, v)

)
� sup

(x,v)

(
Kσ

τ ψ

ψ
− 1

)(
1

τmax
+ σmin

)
.

Thus(18) is satisfied if

λ > sup
(x,v)

(
Kσ

τ ψ

ψ
− 1

)(
1

τmax
+ σmin

)
=

(
sup
(x,v)

Kσ
τ ψ

ψ
− 1

)(
1

τmax
+ σmin

)

and

s(A) �
(

sup
(x,v)

Kσ
τ ψ

ψ
− 1

)(
1

τmax
+ σmin

)

for all ψ ∈ L
p
∗+(V ) satisfying(17). Hence

s(A) �
(

inf
ψ∈L

p
∗+(V )

sup
(x,v)

Kσ
τ ψ

ψ
− 1

)(
1

τmax
+ σmin

)

which ends the proof. �
Corollary 3. LetV be bounded. If

ᾱ := sup
(x,v)

∫
k(x, v, v′)τ (x, v′)
1+ σ(x, v)τ (x, v)

dµ(v′) < 1

then

s(A) � (ᾱ − 1)

(
1

τmax
+ σmin

)
.

Proof. We note that̄α = sup(x,v)
Kσ

τ ψ

ψ
with ψ = 1 soᾱ � α̂. �

Remark 3. Whenα̂ � 1 we can also derive an upper bound ofs(A) provided that

sup
(x,v)∈Γ−

∫
k(x, v, v′)τ (x, v′) dµ(v′) < 1;

see [12, Theorem 9 and Corollary 5].
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