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Abstract

In commutative algebra, a Weitzenbtck derivation is a nonzero triangular linear derivation of the
polynomial algebraK [x1, ..., x;;] in several variables over a fieli of characteristic 0. The clas-
sical theorem of Weitzenbdck states that the algebra of constants is finitely generated. (This algebra
coincides with the algebra of invariants of a single unipotent transformation.) In this paper we study
the problem of finite generation of the algebras of constants of triangular linear derivations of finitely
generated (not necessarily commutative or associative) algebra¥ aagsuming that the algebras
are free in some sense (in most of the cases relatively free algebras in varieties of associative or Lie
algebras). In this case the algebra of constants also coincides with the algebra of invariants of some
unipotent transformation.

The main results are the following: (1) We show that the subalgebra of constants of a factor al-
gebra can be lifted to the subalgebra of constants. (2) For all varieties of associative algebras which
are not nilpotent in Lie sense the subalgebras of constants of the relatively free algebrasefrank
are not finitely generated. (3) We describe the generators of the subalgebra of constants for all factor
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algebrask (x, y)/I modulo aGLy(K)-invariant ideall. (4) Applying known results from commu-
tative algebra, we construct classes of automorphisms of the algebra generated by two gereric 2
matrices. We obtain also some patrtial results on relatively free Lie algebras.

0 2005 Elsevier Inc. All rights reserved.

1. Introduction

We fix a base fieldk of characteristic 0, an integer > 2 and a set of symbol¥ =
{x1,...,x,}. We call the elements of variables. Sometimes we shall use other symbols,
e.g.,y, z, i, etc., for the elements of. We denote by, the vector space with basks.

LetK(X) = K(x1, ..., x,) be the free unitary associative algebra freely generated by
overK. The elements ok (X) are linear combinations of words, - - - x;, in the noncom-
muting variablesY. The general linear groupL,, = GL,,(K) acts naturally on the vector
spaceV,, and this action is extended diagonally &1X) by the rule

glxj--xj)=gxj)---gx;,), g€CGLy, xj,...,xj, €X.

All associative algebras which we consider in this paper are homomorphic imageX pf
modulo ideals! which are invariant under thiL,,-action. We shall use the same sym-
bols x; and X for the generators and the whole generating sek ¢X) /7. Most of the
algebras in our considerations will be relatively free algebras in varieties of unitary as-
sociative algebras. Examples of relatively free algebras are the polynomial aljgkia
and the free algebr& (X) which are free, respectively, in the varieties of all commutative
algebras and all associative algebras. We also shall consider Lie algebras which are ho-
momorphic images of the free Lie algebra withas a free generating set modulo ideals
which are alsdGL,, -invariant.

Let A be any (not necessarily associative or Lie) algebra @veRecall that thex -
linear operatos acting onA is called a derivation oA if

S(uv)=8wm)v+ud(v) forallu,veA.

The elements € A which belong to the kernel of are called constants éfand form a
subalgebra oA which we shall denote by\’. The derivations is locally nilpotent if for
anyu € A there exists a positive integersuch thats” () = 0. If § is a locally nilpotent
derivation ofA, then the linear operator of

s 82
exp5=1+I!+2—!+-~-

is well defined and is an automorphism of tkiealgebraA. It is easy to see that® coin-

cides with the subalgebra of fixed points (or invariants) of&ewhich we shall denote by

A% The mappingr — exp(as), « € K, defines an additive action & on A. It is well

known that for polynomial algebras every additive actiorkois of this kind, see for more

details Snow [68]. See also Drensky and Yu [30] for relations between exponents of locally
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nilpotent derivations and automorphisgsvith the property that the orb{ty” (a) | n € Z}
of eacha € A spans a finite dimensional vector space in the noncommutative case.

If A= K(X)/I for someGL,,-invariant ideall, then the derivatiod of A is called tri-
angular, ifé(x;), j = 1,...,m, belongs to the subalgebra afgenerated by, ..., x;_1.
Clearly, the triangular derivations are locally nilpotents Hcts linearly on the vector space
Vi =3i_1 Kxj C A, thenitis called linear.

If § is a triangular derivation, then efds a triangular automorphism of, with the
property

exps(x;)=x;+ fj(x1,....,x;-1), j=1...,m,

where f;(x1,...,x;_1) depends ony, ..., x;_1 only. Every triangular automorphisg
of this form can be presented in the fopn= exps for some triangular derivation

— — 2 - 3 - 4
1 -1 -2 -2

5='°g(‘”)=(p1 2 3 ]

(The K -linear operatop of A is well defined because the linear operat@rs- 1) map
everyf(xi,...,x;) € A to apolynomial depending on, ..., x; only, degw(go —DFF <
degcl_f—kand(w—l)Kzo.) '

Every locally nilpotent linear derivatiohis triangular with respect to a suitable basis of
V,» and the automorphism exps a unipotent linear transformation (i.e., an automorphism
of the algebrad which acts as a unipotent linear operator\gy).

In commutative algebra, the triangular linear derivations of the polynomial algebra
K[X] = K[x1,...,x,] are called Weitzenbtck derivations. The classical theorem of
Weitzenbdck [75] states that the algebra of constants of such a derivation is finitely gen-
erated. This algebra coincides with the algebra of invariants of a single unipotent transfor-
mation.

In this paper we study the problem of finite generation of the algebras of constants of
triangular linear derivations of (usually noncommutative) algel&rax) /I where the ideal
I is GL,,-invariant. As in the commutative case, the algebra of constants coincides with the
algebra of invariants of some unipotent transformation. The paper is organized as follows.
Below we assume thatis a nonzero triangular linear derivation &f(X) which induces
a derivation (which we shall also denote Byon the factor algebras of (X) modulo
GL,,-invariant ideals.

In Section 2 we present a short survey on constants of locally nilpotent derivations and
invariant theory both in the commutative and noncommutative case, giving some motiva-
tion for our investigations. We believe that some of the results exposed there can serve as
a motivation and inspiration for further investigations on noncommutative algebras.

Section 3 presents a summary of the results on the Weitzenbdck derivations of polyno-
mial algebras which we need in the next sections.

In Section 4 we are interested in the problem of lifting the constantsdf/ are two
GL,,-invariant ideals ofk (X), then we show that the subalgebra of constafitsX )/ J)®
can be lifted to the subalgebra of constafks(X)/I)°. In the special case of algebras
with two generators, y we may assume thétx) = 0, §(y) = x. Then the subalgebra of
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constants is spanned by elements which have a very special behaviour under the action of
the general linear grouBL,, the so called highest weight vectors. This allows to involve
classical combinatorial techniques as theory of generating functions and representation
theory of general linear groups.

In Section 5 we present various examples of subalgebras of constants of relatively free
associative algebras. In particular, he handle the case of the free algehra) and show
that the algebra of constants is generated kgnd a set ofSLo(K)-invariants which we
describe explicitly. As a consequence, we obtain a similar generating set for all factor
algebrasK (x, y)/I.

Section 6 considers relatively free algebfgs(20) in varieties? of associative alge-
bras. Itis known that every varie®y is either nilpotent in Lie sense or contains the algebra
of 2 x 2 upper triangular matrices. We show that for#llwhich are not nilpotent in Lie
sense the subalgebras of constan$20)° are not finitely generated.

In Section 7 we apply results from commutative algebra and construct classes of au-
tomorphisms of the relatively free algebFa(varM,(K)). This algebra is isomorphic to
the algebra generated by two generig 2 matricest andy. The centre of the associated
generic trace algebra (which coincides with the algebra of invariants of tw@ gatrices
under simultaneous conjugation B} ,) is generated by the tracesxofy andxy and the
determinants ot andy and is isomorphic to the polynomial algebra in five variables. We
want to mention that up till now most of the investigations have been performed in the
opposite direction. The automorphisms Bf(varM>(K)) and of the trace algebra have
been used to produce automorphisms of the polynomial algebra in five variables, see, e.g.,
Bergman [7], Alev and Le Bruyn [1], Drensky and Gupta [26].

Finally, we obtain also some partial results on relatively free Lie algebras.

2. Survey
2.1. Motivation from commutative algebra

Locally nilpotent derivations of the polynomial algebkd X] = K[x1, ..., x,] have
been studied for many decades and have had significant impact on different branches of
algebra and invariant theory, see, e.g., the books by Nowicki [61] and van den Essen [33].

Let G be a subgroup oBL,, and letK[X]° = K[x1, ..., x,]¢ be the algebra of;-
invariants. The problem for finite generation &K{X1¢ was the main motivation for the
famous Hilbert Fourteenth Problem [44]. The theorem of Emmy Noether [60] gives the fi-
nite generation oK [X1¢ for finite groupsG. More generally, the Hilbert—-Nagata theorem
states the finite generation &f{ X ¢ for reductive groups, see, e.g., [16].

The first counterexample of Nagata [58] to the Hilbert Fourteenth Problem was the
nonfinitely generated algebra of invariark$x1, . . ., x32]° of a specially constructed tri-
angular linear grougs . Today, most of the known counterexamples have been obtained (or
can be obtained) as algebras of constants of some derivations. This includes the original
counterexample of Nagata, see Derksen [14] who was the first to recognize the connection
between the Hilbert Fourteenth Problem and constants of derivations (but his derivations
were not always locally nilpotent) and the counterexample of Daigle and Freudenburg [12]
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of a triangular (but not linear) derivation &f[x1, ..., x5] with not finitely generated alge-
bra of constants. For more counterexamples to the Hilbert Fourteenth Problem we refer to
the recent survey by Freudenburg [39].

The theorem of Weitzenbdck gives the finite generation of the algebra of constants for a
triangular linear derivation or, equivalently, for the algebra of invariants of a single unipo-
tent transformation. (This contrasts to the counterexample of Nagata described above.)
The original proof of Weitzenbdck from 1932 was f&ir= C. Later Seshadri [63] found a
proof for any fieldK of characteristic 0. A simple proof faf = C using ideas from [63]
has been recently given by Tyc [72]. To the best of our knowledge, no constructive proof,
with effective estimates of the degree of the generators of the algebra of constants has been
given up till now.

For each dimensiom there are only finite number of essentially different Weitzenbdck
derivations to study: Up to a linear change of the coordinates, the Weitzenbdck derivations
8 are in one-to-one correspondence with the partitien+ 1, p2 + 1, ..., p; + 1) of m,
wherep1 > po>---2p; 20, (p1+D + (p2+ 1D +---+ (ps + D) =m, and the corre-
spondence is given in terms of the Jordan normal féKi) of the matrix of the derivation

L0 - 0 010.-- 00
0 4 - 0 00 1 00
Jo=| . . |, where J;i= P
ST 000 .- 01
0 0 % 000 -.--00

is the(p; +1) x (p; + 1) Jordan cell with zero diagonal.

Another important application of locally nilpotent derivations is the construction of
candidates for wild automorphisms of polynomial algebras, see, e.g., the survey of Dren-
sky and Yu [31]. A typical example is the following. i is a Weitzenbock derivation
of K[x1,...,x,) and 0# w € K[x1,...,x,]°, then A = wé is also a locally nilpo-
tent derivation ofK[xy, ..., x,,] with the same algebra of constantsé&aand expA is
an automorphism oK [x1, ..., x,]. By the theorem of Martha Smith [67], all such au-
tomorphisms are stably tame and become tame if extended[t9, ..., x,;, x;+1] by
(expA)(xm+1) = xm+1. The famous Nagata automorphism Kfx, y, z], see [59], also
can be obtained in this way: We define the derivatidoy

S()=-2y. 8=z 8x)=0, w=xz+y?eKlx,y.z,
and forA = wé the Nagata automorphismiis= expA:

w w? 2 2)2
V) =X+ (=23 + (=205 =x—2(xz+y%)y— (xz+ %)z,

_ w_ 2
V(y)—y+zﬂ—y+(xz+y )z,

v(z) =2.
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Recently Shestakov and Umirbaev [64] proved that the Nagata automorphism is wild. It
is interesting to mention that their approach is based on Poisson algebras and methods of
noncommutative, and even nonassociative, algebras.

There are few exceptions of locally nilpotent derivations and their exponents which do
not arise immediately from triangular derivations: the derivations of Freudenburg (obtained
with his local slice construction [38]) and the automorphisms of Drensky and Gupta (ob-
tained by methods of noncommutative algebra, [26]). Later, Drensky, van den Essen and
Stefanov [24] have shown that the automorphisms from [26] also can be obtained in terms
of locally nilpotent derivations and are stably tame.

2.2. Noncommutative invariant theory

An important part of noncommutative invariant theory is devoted to the study of the
algebra of invariants of a linear group c GL,, acting on the free associative algebra
K(X)=K{x1,...,xy), relatively free algebra#;, (20) in varieties of associative alge-
bras?2y, the free Lie algebrd,, = L(X) and relatively free algebrds,, () in varieties of
Lie algebrasy. For more detailed exposition we refer to the surveys on noncommutative
invariant theory by Formanek [35], Drensky [22] and the survey on algorithmic methods
for relatively free semigroups, groups and algebras by Kharlampovich and Sapir [47].

2.2.1. Free associative algebras

By a theorem of Lane [53] and Kharchenko [45], the algebra of invari&nts) is
always a free algebra (independently of the propertie€ af GL,,). By the theorem of
Dicks and Formanek [15] and Kharchenko [45],Gf is finite, thenK (X)© is finitely
generated if and only itz is cyclic and acts orV,, = Z’;’:l Kx; as a group of scalar
multiplications. This result was generalized for a much larger class of groups by Koryukin
[48] who also established a finite generationkofX ) if we equip it with a proper action
of the symmetric group.

Recall that ifV is a multigraded vector space which is a direct sum of its multihomoge-
neous componentg 1) then the Hilbert series df is defined as the formal power
series

H(V.t1, .. ty) =Y dim(VOmmd )t g
If vV is “only” graded with homogeneous componeRt4’, then its Hilbert series is

HWV.1)=Y_dim(V®):".

n>0

Dicks and Formanek [15] proved also an analogue of the Molien formula for the Hilbert
series ofK (X)Y, |G| < oo, which was generalized for compact grougsby Almkvist,
Dicks and Formanek [4] (an analogue of the Molien—Weyl formula in classical invariant
theory). In particular, Almkvist, Dicks and Formanek showed that the Hilbert series of the
algebra of invariantX (X)$ is an algebraic function i§ is a unipotent matrix. (Hence the
same holds for the algebra of constakitsX )° for a Weitzenbdck derivatiod.)
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2.2.2. Relatively free associative algebras

Let f(x1,...,xn) € K{x1,x2,...) be an element of the free algebra of countable rank.
Recall thatf (x1, ..., x,) = 0 is a polynomial identity for the algebeif f(as,...,an) =
Oforallasy,...,a, € A. The algebra is called PI, if it satisfies some nontrivial polynomial
identity. The class of all algebras satisfying a given 8ett K (x1, x2,...) of polyno-
mial identities is called the variety of associative algebras defined by the systéffe
shall denote the varieties by German letterifis a variety, ther?"(20) is the ideal of
K {x1, x2, ...) consisting of all polynomial identities @ and the algebra

Fu(20) = K (x1, ..., %) /(K (1, ..., X) N T (2D))

is the relatively free algebra of rank in 20. The idealsK (x1,...,x,) N T(20) of
K(x1,...,x,) are invariant under all endomorphisms Kfx1, ..., x,;) and, in particu-
lar, areGL,, -invariant.

Most of the work on invariant theory of relatively free algebras is devoted to the descrip-
tion of the varietieQU such thatF,, (20) is finitely generated for ath = 2,3, ..., and all
groupsG c GL,, from a given classs. The description of such varieties for the class of all
finite groups is given in different terms by several authors, starting with Kharchenko [46],
see the surveys by Formanek [35], Drensky [22], Kharlampovich and Sapir [47]. In partic-
ular, the finite generation af,,(20)¢ for all finite groups holds if and only if all finitely
generated algebras 2 are weakly noetherian (i.e., noetherian with respect to two-sided
ideals) which is equivalent to the fact tHAt satisfies a polynomial identity of a very spe-
cial form. One of the simplest descriptions is the following (see [2B])20)¢ is finitely
generated for allz > 2 and all finite groups; C GL,, if and only if F»(20)8 is finitely
generated for the linear transformatigmefined byg(x1) = —x1, g(x2) = x2.

If we consider the finite generation @, (20)¢ for the class all reductive grougs,
then the results of Vonessen [74], Domokos and Drensky [17] give Rh&@D)© is fi-
nitely generated for all reductiv@ if and only if the finitely generated algebrasi are
one-side noetherian. For unitary algebras this meansthaatisfies the Engel identity
[x2,x1,...,x1]=0.

Concerning the Hilbert series of subalgebras of invariants of relatively free alge-
bras, Formanek [35] generalized the Molien—-Weyl formula for the Hilbert series of
K[x1,...,x,]1¢ for G finite or compact to the case of any relatively free algebra, express-
ing the Hilbert series of,(20)¢ in terms of the Hilbert serie®l (F,,(20), 11, ..., tn).

If G is finite, thenH (F,,(20)%, t) involves the eigenvalues of afl € G. By a theorem
of Belov [5], the Hilbert series off,,(20) is always a rational function and this im-
plies thatH (F,,(20)¢, 1) is also rational forG finite. For reductiveG the rationality of
H(F,,(20)¢, 1) is known only for varietieQU satisfying a nonmatrix polynomial identity,
see Domokos and Drensky [17].

2.2.3. Liealgebras

We shall mention few results only. By a theorem of Bryant [9{7ifs a nontrivial finite
linear group, then the algebra of fixed points of the free Lie algéljjas never finitely
generated. This result was extended by Drensky [21] to the fixed points of all relatively
free algebrad.,, (2U) (and also for all finiteG # 1) for nonnilpotent varietie®J of Lie
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algebras. We refer also to the work done by several authors and mainly by Bryant, Kovacz
and Stohr about fixed points of free Lie algebras in the modular case, see, e.g., [10] and the
references therein.

2.3. Derivations of free algebras

The algebra of constants of the formal partial derivatiogsx;, j =1,...,m, for
K{(X)=K(x1,...,x,)was described by Falk [34]. It is generated by all Lie commutators
(I...[xj. xj],...1, xj,1, n > 2. Specht [69] applied products of such commutators in the
study of algebras with polynomial identities, see also Drensky [19] or the book [23] for fur-
ther application to the theory of Pl-algebras. Itis known, see Gerritzen [40], that in this case
the algebra of constants is free, see also Drensky and Kasparian [28] for an explicit basis.
(The freedom of the algebra of constants of the partial derivativé&q &f] does not follow
immediately from the result of Lane [53] and Kharchenko [45]. The derivatighs; are
locally nilpotent and their exponents &8@dx;) generate a group of automorphisms of
K (X) which consists of all translations of the form — x; + a;, a; € Z. Although this
group is a subgroup of the affine group, we cannot apply directly [53] and [45] because the
group is not linear.)

Similar study of the algebra of constants in a very large class of (not only associative)
algebras was performed by Gerritzen and Holtkamp [41] and Drensky and Holtkamp [27].
We shall finish the survey section with the following, probably folklore known lemma.

Lemma 2.1. Let 20 be any variety of algebras and let F(20) be therelatively free algebra
of any rank. Every mapping from the free generating set to F(20) can be extended to a
derivation.

Proof. We shall prove the lemma for relatively free associative algebras of finite or
countable rank only. The same considerations work in the case of any infinite rank. Let
80:{x1, x2, ...} > Fso(20) be any mapping and I&t(20) be the T-ideal ofK (x1, x2,...)

of all polynomial identities of28. We fix f1,..., fix € K(X) such thatép(x;) =
fi+TAD) € Fuo (W), j =1,2,.... Since every mappin@ri, xo, ...} — K{x1,x2,...)

can be extended to a derivation &f(x1,x2,...), it is sufficient to show that the
derivation A of K(x1,x2,...) defined byA(x;) = f;, j =1,2,..., has the property
A(T (20)) C T(QD). Since the fieldK is of characteristic O, ifu(x1, ..., x,) belongs

to T(20), then the multihomogeneous componentsuofilso are inT(20) and we
may assume that(xy, ..., x,) € T(20) is multihomogeneous. The partial lineariza-
tion u;(x1, ..., Xm, Xm41) N x; Of u(xy, ..., xn), i.e., the linear component ix, 1 of
u(xy,...,Xj—1,X; + Xm41, Xj4+1, ..., Xn) also belongs td”(20). It is easy to see thad

acts onu(x1, ..., x,) by

A(u(xl, .. .,xm)) = Zu.,' (xl, s X, A(x.,')).
j=1

Sinceuj(x1,...,xm, A(x;)) € T(20) we obtain thatA(x) € T(20) and this means that
A induces a derivatiod on Foo (20) = K (x1, x2, ...}/ T (20) with the additional prop-
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erty 8(x;) = f;, ands extendssp. This implies also the case &, (20): If f1,..., fin €

F,,(20), then we extend the mapping to a derivation/af (20) (e.g., bydo(x;) = 0 for

Jj > m). Then the restriction td@F,,(20) of the derivation ofF,(20) is a derivation of
F,Q0). O

3. Weitzenbdck derivations of polynomial algebras

Since we consider nonzero Weitzenbdck derivations only, without loss of generality
we may assume that the derivatidms in its Jordan normal form§(x1) = 0, 8(x2) = x1
and the set of variableX = {x1, ..., x,,} iS a Jordan basis of,, = Z'}L1 Kx;j. If the
rank of § is equal tom — 1 (i.e.,8(x;) =x;_1, j = 2,...,m), then$ is called the basic
Weitzenbdck derivation ok [ X ]. The following proposition, see [61], gives the description
of the algebras of constants of any Weitzenbdck derivation. (It is a very special case of the
more general situation of an arbitrary locally nilpotent derivation.) For our purposes we
work in the localization of the polynomial algeba X 1[x; 1] = K [x1, x2, ..., X 1[x7 7]
consisting of all polynomials in1, ..., x,, allowing negative degrees of. Sincex; is a
constant (i.e.§(x1) = 0), we may extend to a derivation oﬂ([X][x{l].

Proposition 3.1. Let 87/ *1(x;) =0, j=1,...,m, and let

Pj ok
8% (x;) i~k
ijz k!] (—xz)kxf’ , j=34,...,m.
k=0

() (K[XIx ') = K[x1, 23, 24, . 2wl
(i) K[X1°=K[X]N(K[X][xM .

Example 3.2. If § is a basic Weitzenbdck derivation, then

2 3
2 tX1_ x 2 2 X2
73 =X3X] — 5 = 5 (2x3x1 — xz), 74 = x1| X4x7 — X3X2x1 + 3 )

P i+1 (j+1)'j_l 1 i—k
zj=(D) — x|+ ) (D ————x{ xhxja ).
’ (+D! (2 j ;) G+t e
Corollary 3.3. For any Weitzenbdck derivation §, the transcendence degree (i.e., the max-
imal number of algebraically independent elements) of K [x1, ..., x,1° isequal tom — 1.

The explicit form of the generators & [x1, ..., x,]° is known for smalln only. Tan
[71] presented an algorithm for computing the generators of the algebra of constants of a
basic derivation. It was generalized by van den Essen [32] for any locally nilpotent deriva-
tion assuming that the finite generation of the algebra of constants is known. The algorithm
involves Grdbner bases techniques.
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Examples 3.4. We have selected few examples of the generating sets of the algebra of
constants, all of them taken from [61]. F&ibeing a basic Weitzenbdck derivation (with
S(x)=0ands(x;) =xj_1, j=2,...,m):

Klx1, x2° = K[x1], K[x1, x2, x31° = K [x1, x5 — 2x1x3],
K[x1.x2,x3,x4)° = K I:Xl, x5 — 2x1x3, X3 — 3x1xox3 + 3xixa,

8
x§x3 2x2x4+6x1x2x3x4 §x1x3 3x1x4

(see [61, Example 6.8.2]),
K[x1, x2, X3, x4, x5]° = K [x1. X5 — 2x1x3, 2xpx4 — X5 — 2x1x5, x5 — 3x1x2x3 + 3x3x4,
6x2x5 — 6xox3x4 + 2x3 — 12x1x3x5 + 9x1x4]

(see [61, Example 6.8.4]).
Foré§ nonbasicg (x2) = x1, §(xq) = x3, §(x1) = 8(x3) = 0 (see [61, Proposition 6.9.5]):

)
K[x1,x2,x3, x4]° = K[x1, x3, x1X4 — x2x3],

for § defined bys(x3) = x2, 8(x2) = x1, §(x5) = x4, 8(x1) = §(x4) = 0 (see [61, Exam-
ple 6.8.5]):

2
K[x1, X2, X3, X4, x5]° = = K [x1, x4, x1x5 — X2x4, X5 — 2x1x3, 2x3x2 — 2x2x4X5 + x1x§].

Remark 3.5. Springer [70] found a formula for the Hilbert series of the algebra of in-
variants of9.,(K) acting on the forms of degre& This is equivalent to the description

of the Hilbert series of the algebra of constants of the basic Weitzenbdck derivation of
K[x1,...,xq+1]. Almkvist [2,3] related these invariants with invariants of the modular
action of a cyclic group of ordep.

4. Lifting and description of the constants

We need the following easy lemma.
Lemma 4.1. Let G C H be groups and let the H-module M be completely reducible. If
N C M isan H-submodule and /i € M /N is a G-invariant, then m can be lifted to a
G-invariantm € M.
Proof. Let P be anH-complement otV in M, i.e., M =N & P. SinceM/N = P, there

exists an element € P which maps onn under the natural homomorphisii — M/N.
Sincem is G-invariant, we obtain thatG(m) = G(m) = m. Taking into account that
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m1, m2 € P, my # ma, implies thatm1 # m» in M/N, andG(P) = P, we deduce that
G(m)=min M,i.e.,mis G-invariant. O

Proposition 4.2. Let K(X) = K(x1,...,x,) be the free associative algebra with the
canonical GL,,-action, and let I c J be GL,,-invariant two-sided ideals of K (X). Then
for every subgroup G of GL,,, the G-invariants of K (X)/J can be lifted to G-invariants
of K(X)/I.

Proof. The statement follows immediately from Lemma 4.1 because,@s,amodule,
K({X) is completely reducible. O

Corollary 4.3. If I ¢ J are GL,,-invariant two-sided ideals of K (X) and § is a Weitzen-
bick derivation on K (X), then the algebra of constants (K (X)/J)? can be lifted to the
algebra of constants (K (X)/1)°.

Proof. The corollary is a straightforward consequence of Proposition 4.2 because the al-
gebras of constantsk (X)/J)% and (K (X)/1)? coincide, respectively, with the algebras

of g-invariants(K (X)/J)% and(K(X)/I)8, whereg = expé is the linear transformation
correspondingté. O

Corollary 4.4. Let I C J be GL,,-invariant two-sided ideals of K(X) and let § be a
Weitzenboick derivation on K (X). If the algebra of constants (K (X)/J)® is not finitely
generated, then (K (X)/I)% isalso not finitely generated.

Remark 4.5. Corollary 4.4 holds also for Lie algebras and other free algebras including
free (special or not) Jordan algebras and the absolutely free algébia. . ., x,,}.

Now we shall describe the algebras of constants in the case of two variables, assuming
thatK (x1, x2) = K (x, y) and§(x) =0, 8(y) = x.

Recall that any irreducible polynomi@L,-module W (11, A2) has a unique (up to a
multiplicative constant) element(x, y) which is bihomogeneous of degrée, 1») and
is called the highest weight vector &F (A1, A2). For any GLs-invariant homomorphic
imageK (x, y)/I of K (x, y) the algebra of constantX (x, y)/I)? coincides with the al-
gebra ofg-invariants(K (x, y)/I1)8 whereg = exps. Sinceg(x) = x, g(y) =x + y and
chark =0, the algebra of-invariants coincides with the algebra of invariants of the uni-
triangular groupUT2(K). Hence, as in Almkvist, Dicks and Formanek [4], we may use
Theorem 3.3(i) of De Concini, Eisenbud and Procesi [13] and obtain:

Theorem 4.6. For any GlLo-invariant ideal I of K{(x,y) the algebra of constants
(K (x, y)/1)? is spanned by the highest weight vectors of the GLo-irreducible components
of K{x,y)/I.

Remarks 4.7. (1) A direct proof of Theorem 4.6 can be obtained using the crite-
rion of Koshlukov [49] which states: A multihomogeneous of degree (A1, ..., An)
polynomial w(x1, ..., x,) € K{(x1,...,xy) iS @ highest weight vector of an irreducible
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GL,,-submoduleW (1) of K({(xi,...,x,) if and only if for all partial linearizations
W (X1, ... Xy Xmy1) OF wxg, ..., x,) ON€ haSW; (x1, ..., %, x;) =0foralli < j.

(2) By Almkvist, Dicks and Formanek [4] the algeb(& (x1, ..., x,)YT»&) of all
UT,, (K)-invariants coincides with the vector space spanned by all highest weight vectors
wx1, ..., xm) € W) C K{x1,...,xn), Wwheni = (A1, ..., A;) runs on the set of all
partitions in not more tham parts.

(3) Following Almkvist, Dicks and Formanek [4], for any unipotent transformagiarf
K{x1,...,xy) (and hence for any Weitzenbétck derivati®none can define &L,-action
on K(xi,...,x,) and on the factor algebra& (x1, ..., x,,)/I modulo GL,,-invariant
ideals, such thatK (x1, ..., x;))% and (K (x1,...,x,)/I1)8 are spanned by the highest
weight vectors with respect to tit&l_>-action.

The necessary background on symmetric functions which we need can be found, e.g., in
the book by Macdonald [57]. Any symmetric functionsnvariablesf (z1, ..., t,,) which
can be expressed as a formal power series has the presentation

[ ) =Y mA)S (11, 1),
A

whereS, (1, ..., t,) is the Schur function corresponding to the partitiog (A1, ..., A;)
andm()) is the multiplicity of S, (¢1, ..., t,) in f(t1,..., ). This presentation agrees
with the theory of polynomial representations®f,, because the Schur functions play
the role of characters of the irreducible polynonll,,-representations. In our case this
relation gives the following: IfK (X) /I for someGL,,-invariant ideall, then the Hilbert
series ofK (X) /I has the presentation

H(K(X)/1,t1, ... tn) =Y m)Si(t1. ... t),
A

if and only if K (X)/I is decomposed as@L,,-module as

K(X)/I EZm(A)W(A).
A

In the case of two variables the Schur functions have the following simple expression

A1—Ax+1 . t)\.l—)tz-'rl
A2l 2

n—1n

S (T1, 12) = (1112)
Drensky and Genov [25] defined the multiplicity series of

[l 1) =Y m)Si (1, 12)
s
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as the formal power series

M)t u) =7y mOy 2,
A

or, if one introduces a new variable= ru, as

M'(f)(tv) =) mr—2p*2,
A

The relation between the symmetric function and its multiplicity series is

_ M ()1, tatp) — M (f) (12, 1112)
- -1 ’

ft, 1)

Theorem 4.6 gives that the Hilbert series of the algebra of congi&iriis y)/1)® (with re-
spect to the bigrading) is equal to the multiplicity series of the Hilbert serié&s(of y)/I:

Corollary 4.8. For any GLp-invariant ideal I of K (x, y) and for the basic Weitzenbdck
derivation 8

H((K (e, y)/1)° 1, u) = M(H (K (x, y)/1, 11, 12)) (2, ).

If we consider the usual grading, Corollary 4.8 has the form

H((K (x, y)/1)°, 1) = M(H(K (x, y) /1, 11, 122)) (¢, 1) = M'(H (K (x, y)/1, 11, 12) ) (£, 7).

We shall apply Corollary 4.8 in the next section in the concrete description of the generators
of the constants ik (x, y) and, more generally, in any relatively free associative algebra.

5. Examples and concrete gener ator s of algebras of constants

We start this section with several examples when we determine completely the algebras
of constants and their generators. We shall consider algebras of rank 2 and 3 only and shall
denote the free generators byy andx, y, z, respectively. We shall handle the case of
basic Weitzenbdck derivatiordsonly, assuming that(x) = 0, §(y) = x (andé(z) = y if
the rank of the algebra is equal to 3).

Example 5.1. Let £, be the variety of associative algebras defined by the identity
[[x, ¥], z] = 0. By the theorem of Krakowski and Regev [5£}, coincides with the variety
generated by the infinite dimensional Grassmann algebrasS,Heecharacter sequence of
Lo is equal to

WV

n
(L) =) Xgwby n=1,

k=1



406 V. Drensky, C.K. Gupta / Journal of Algebra 292 (2005) 393-428

see [51]. In virtue of the correspondence between cocharacters and Hilbert series, see [6]
and [18] (or the book [23]) the Hilbert series of the relatively free algefyraly) is equal
to

m—1
H(Fn(€2), 11, tw) =14+ > ) Sy (1, - t).
k>11=0

It is well known thatF,, (£2) has a basis
Xyt X0 Xy, Xip] [Xip, 1, Xig, ], 1<ii<iz<---<izp_1<izp<m,

see, for example, Bokut and Makar-Limanov [8] or the book [23]. The commutators
[x;, x;] are in the centre of;, (£2) and satisfy the relations

(X0 @) X0 @] - [Xo2p-1); Xo2p)] = (SiQNO)[x1, X2] - - - [X2p—1, X2p], O € S2p.
Letm = 2. ThenF>(£») has a basis
{x“yb,x”yb[x, yl|a,b>0}.

Its Hilbert series and the related multiplicity series are, respectively,

1+ 11
H(Fo(£9), 1, )= —"""— = Sy (t1, t: Stn— t1,12),
(F2(£2), 11, 12) A-mld—1) D St t2) + Y Su-1.1)(t1. 12)
n>0 n>=2

1+1¢

M(H(Fa(L2). 1. 12))(tu) =Y 1"+ Y 1" tu= #

n=>0 n>=2 —1

By Corollary 4.8,
1+ tu

H((Fa(£2)’, 1,u) = T

Since the vector subspace Bf(£») spanned by”, n > 0, andx"2[x, y],n > 2, consists
of §-constants and has the same Hilbert serig¢#a625))?, we obtain that it coincides with
the algebra of constants. This immediately implies that the algeie,))? is generated
by x and[x, y].

Letm = 3. ThenF3(£>) has a basis

{xyPz¢ xyP 2 x, y1, x4 yP 2  x, 2], x9Y 2 [y, 21 | @, b, ¢ > O}

and the commutator ideal of F3(£2) is a free K[x, y, z]-module with free genera-
tors[x, yl, [x, z], [y, z]. By Examples 3.4K [x, v, z]® = K[x, y? — 2xz]. We may choose
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y2—xz—zx as alifting in(F3(£2))® of y2—2xz € (K[x, y, z])®. Hence(F3(£2))? is gen-
erated byr, y2 — xz — zx and some elements in the commutator ideéaEvery element of
K|x,y,z] can be written in a unique way as

fo(x, y% —2xz) + Z Fu(x,y2 —2x2) 2" + Zgn (x,y% —2xz)yz" L.

n>1 n>1
The elements i€ have the form
f=alx, y, 9l yl+ B, y, Dlx, 2l + v, y,Dly.zl, a B,y €Klx,y,zl
If fis ad-constant, then
0=58(f)=(8(c) + B)[x, y1+ (8(B) + ¥)Lx, 2] + 8Ly, zl.
In this way, f € (F3(£))? if and only if
§(y)=0, 5(B)=—v, §(a) =—p.

We presenB(x, y, z) in the form

B=fo+ D (fud"+ e Yy).  fo. furgn € (Klx.y.21)’,

n>1

and calculate, bearing in mind thﬁﬁ = (y2 — 2xz) + 2xz,

—y=8B) =) _(nfaz" Ty + (n — Dgnz" 2y +xg,2" )
n>1

=Y ((n=Dga(y* — 202)2" 2+ (21 — Dxgaz" F +nfu" 1Y),
n>1

This easily implies thaf, =0,n > 1,g, =0,n > 2,andg = fo+g1y, fo. g1 € K[x, y°—
2xz] = (K[x, v, z])°. Hencey = —gyx. Continuing in this way, we obtain the final form
ofa, B, y:

a =aoz + a1y + a2, B = —agy —aix, Yy = aox.

Hence the part of the algebra of constantsFgf£z) which belongs to the commutator
ideal C is spanned as & [x, y, z])*-module by

[x,y], ylx,yl—x[x,z], z[x,yl—ylx,z]+x[y,z],

and(F3(£))® is generated by

x, y*—xz—zx, [x,yl, ylx,yl—xlx,zl,  zlx,yl—ylx, 21+ x[y, z).
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Example 5.2. Let us consider the varie®¥t of all “metabelian” associative algebras de-
fined by the identityx1, x2][x3, x4] = 0. It is well known thatF>(90t) has a basis

{x“yb, xyPx, ylx€y? |a,b,c,d>0}.
We shall write the element* y’[x, y]x¢y? as|x, y]x;’y’;xgyg. In this way, the commutator

ideal C of Fo(OM) is a free cyclicK [x, y]-bimodule (or a free cyclidK [x1, y1, X2, y2]-
module) with theK [x, y]-action defined by

x[x,y1=1[x,ylx1, ylx,yl=1[x,yly1, [x,ylx=I[x,ylx2, [x,yly=I[x,yly2.
The Hilbert series of> (M) is

1 1112

H(FR(M.0.12) = o 5= S T 2=

One can calculate directly th%,-cocharacter oflt using the Young rule as in [23] or to
apply techniques of [25] to see that the multiplicity series of the Hilbert seri&s@R) is

1
M (H(Fa00). 12,12)) 0 0) = T + 7oy

By Corollary 4.8 this is also the Hilbert series of the algebra of cons(@min))’. We
consider the linearly independent highest weight vectors

n

x", n=0,  [x,ylx{xd(x1y2—y1ix2)",  p.gq.r =0

They span a graded vector subspace &f(9))° and its Hilbert series coincides with
the Hilbert series of F>(9))%. Hence the above highest weight vectors spas(9n))°.
Since the square of the commutator id€ais equal to 0, the elementtogether with all
[x, yl(x1y2 — y1x2)", r > 0, is a minimal generating set 0f>(9))° and the algebra of
constants is not finitely generated.

Now we start with the description of the constants of the free alg&na y) which
will gives also the description of the constants in any two-generated associative algebra.

Proposition 5.3. The Hilbert series of the algebra of constants (K (x, y))® are

A A A A
e [ )

(A1,A2)

_1-V1-4 1
o v 1 1vid,’




V. Drensky, C.K. Gupta/ Journal of Algebra 292 (2005) 393-428 409

where v = tu and, in one variable,
2 2 1
H((K(x,y)){t):Z(( p>t2p+< p+ >t2[7+1>_
SSo\P P

Proof. By Corollary 4.8 the Hilbert series of the algebra of constaftsr, y))® is equal to
the multiplicity series of the Hilbert series &f(x, y). By representation theory of general
linear groups, the multiplicityn;, of the irreducibleGL,,-moduleW (1) in K{x1, ..., xn)
for the partitioni of n is equal to the degred, of the irreducibleS, -charactery; . By the
hook formula, forA = (A1, A2)

dy,

_ a4t a—22+1) - Matr2) (At
n (A1 4+ D! ao! R ro—1)

This gives the expression fd (K (x, y))?, ¢, u). If we set thera: =+ we obtain that the
coefficient ofr?? is equal to

2((7)-(7))-C)

and similarly for the coefficient af??+1. In order to obtain the formula in terms ofand

v we can either use the known formulas for the summation of formal power series with
binomial coefficients or proceed in the following way using ideas from [25]. The Hilbert
series ofK (x, y) is equal to

1

Sl =H(K (x.y).0.12) = T

It is sufficient to show that the multiplicity series ¢{1, t2) is

—v1-4 1

2v =

1
M'(f)(t,v) =

Since the multiplicity series of any symmetric functigiir1, r2) € K[[t1, £2]] is a uniquely
determined formal power series K[z, v]), it is sufficient to show that the expansion of

1-V1-4 1

2v 1_— 1—«2%—47) ¢

is in K [[¢, v]] (which is obvious because-1/1— 4v = Zn>1an v" for someq, € K and
(1-+/1—-4v)/(2v) € K[[v]]) and to use the formula

nM'(f)(t, tatp) — M’ (f) (12, 1at2)
1n—1 -

f, ).
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Direct verification shows that for

C1-V1-4v 1
g(t7v)_ 2U '1_1_Mt7
2v
11g(n, tar2) — 128 (12, at2) 1
11—t 1-(t1+1)

which gives thag(z, v) = M'(f)(t,v). O

By the theorem of Lane [53] and Kharchenko [45], the algebra of const&rifs))® is a
graded free algebra and hence has a homogeneous system of free generators. The following
theorem describes the generating function of the set of free generators.

Theorem 5.4. The generating function of any bihomogeneous system of free generators of
(K (X)) with respect to the variablesr and v = tu is

1-J/1I—4
a(t,v):t—i—fv.

Proof. If a(z, v) is the generating function of the set of free generatorskofX ))?, then
the Hilbert series ofK (X)) is

Applying Proposition 5.3 we obtain that

1 1-V1-4v 1

1—a(t,v) - 2v 1— 17«/2174vt
v

and the expression af(z, v) is a result of easy calculations

Corollary 5.5. The algebra of constants (K (x, y))®, where §(x) =0, 8(y) = x, is gener-
ated by x and by SL(K)-invariants.

Proof. An elementf (x, y) € K{x, y) is anSLp-invariant if and only if it is a linear com-
bination of highest weight vectors ofGL,-submoduledV (A1, A1). By Theorem 4.6, the
8-constants are linear combinations of highest weight vecigfs ,,), and wg ., IS
bihomogeneous of degrdg1, A2). Hence we obtain that the set 8f»-invariants coin-
cides with the linear combinations of bihomogeneous elements of dégree. The only
nonzero coefficients of the Hilbert seriés((K (x, y))32,¢,u) are forv* = (tu)" and
H((K (x, y)32,t,u) is obtained fromH ((K (x, y))°, t,v) by replacings with 0. Hence
Theorem 5.4 gives that the set of homogeneous generators of the algébraradtants is
spanned by andSL,-invariants. O
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Corollary 4.3 gives immediately:

Corollary 5.6. For any GLp-invariant ideal I of K{x,y) the algebra of constants
(K (x,y)/1)?, where §(x) =0, 8§(y) = x, isgenerated by x and by SL(K)-invariants.

Remark 5.7. By Almkvist, Dicks and Formanek [4, Example 5.10], the Hilbert series of
the algebra o8L,-invariants ofK (x, y) is

H((K (x, )32, v)

1-V1—4v 1 <2n) "
== Z v,
2v o +1\n
and the coefficient of” is the (n + 1)st Catalan number, 1. (By definitionc, is the
number of possibilities to distribute parentheses in the syl ¥ - - - + 1 of n units, see,
e.g., [42].) This agrees with Proposition 5.3 becaHs¢K (x, y))32, v) is obtained from

_1-V1-4 1

8
H((K(x,y)) ,t,v) > | L/ia,
— i

by replacing: with 0.
Theorem 5.4 gives that the generating function of a homogeneous system of free gener-
ators of(K (X))32 is

1-J1-4
b(v) = fv = vH((K(x, y))s'z, v).

Sincev = tu is of second degree, the number of generatorgkafr, y))32 of degree 2
is equal to therth Catalan number.

Below we give an inductive procedure to construct an infinite set of free generators of
the algebra K (x, y))3=2.

Algorithm 5.8. The following infinite procedure gives a complete $et, wo, ...} of
free generators of the algebt& (x, y>)5'-2. We setw; = [x, y]. If we have already con-
structed all free generatous;, wo, ..., wy of degree< 2n, then we form alk,, 1 products
wj, - - - w;, of degree 2, which we number a&;, j =1,...,c,41, and add to the system
of generators the, ;1 elements

Witj =XWjy — YO X =XWjy -+ Wi,y — YWiy -~ wi X, j=1...,¢cup1.
The first several elements of the generating set are:
w1 =[x,y], w2=x[x,yly —ylx, ylx,

w3 =xw%y — yw%x =x[x, y]zy — y[x, y]zx,

W4 = XW2Y — YW2X =x(x[x, yly — ylx, y]x)y — y(x[x, yly — ylx, y]x)x.
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Proof. By Remark 5.7 and by inductive arguments, we may assume that the number of
productsw; = w;, --- w;, of degree 2 is equal to the Catalan numbey, ;. Hence the
number of wordscw;y — yw;jx, all of degree 2z + 1) is also equal t@, ;1 which agrees
with the number of free generators of degrée 2 1). Clearly, if w; is anS_,-invariant,
the elemenkw;y — yw;x is also anS_p-invariant. Hence it is sufficient to show that all
productsw;, - --w;, of degree 22 + 1) and allxw;y — yw;x are linearly independent.

We introduce the lexicographic ordering d@(x, y) assuming thatt < y. Then by
induction we prove that the minimal monomialg - - - zk,,.,, 2k € {x, ¥}, of wj, -~ wj,
andxw;y — yw;x have the property that the numbendd in every beginningy, - - - zx, of
Tk Thoyo 1S DIgQeEr Or equal to the number p&. For example, the minimal monomial of
w2 = x[x, y]y — y[x, y]x isxxyy, all its beginnings are, xx, xxy, xxyy and the number
of entries ofx andy are (1,0), (2,0), (2, 1), (2, 2), respectively. Similarly, the minimal
monomial of

wiws =[x, y](x[x, yly — y[x, ylx) (x[x, yly — ylx, ylx)

is xyxxyyxxyy and the entries of andy in the beginnings are
(1,0),(1,D.(2,1),(31),3,2),3,3).(4,3),(53,(54),(55).

Pay attention that the first place where the numbet’sfis equal to the number of’s,
namely the beginningy, corresponds to the beginning, = [x, y] in wlwg and the rest
of the minimal monomiakxyyxxyy has the same property.

We shall show that the products;, - --w;, (including the case = 1 of a product
of one free generatorw;y — yw;x) are in a one-to-one correspondence with the words
Tky*Thoage 1N x @nd y with the property that the number afs in every beginning
2k, -+~ 2k, 1S bigger or equal to the number ofs. Let w = wj, ---w;, be a product of
elements of the constructed setpl&= 1, i.e.,w = w; is in the set, thew ; = xw'y — yow'x
and the minimal monomial; - - - zp, of w’ has the property that the numbernd$ in every
beginning ofz; - - - z2, is bigger or equal to the corresponding numbelysf Since the
minimal monomial ofw; is xz1 - - - z2,y, we obtain that in every of its proper beginnings
the number of occurrences ofis strictly bigger than the number of entriesyoflf p > 1,
then, reading the minimal word from left to right, the first place where the numbers of the
x's and they’s is the same, is the end af;,. This arguments combined with induction
easily imply that the different products;, - - - w;, have different minimal monomials and
each word corresponds to some produgf ---w;,. Hence the products, ---w;, are
linearly independent and this completes the proafi

Corollary 5.9. For any variety 20 of associative algebras which does not contain the
metabelian variety 91, the algebra of constants F»(20)° is finitely generated.

Proof. It is well known that any variety2J which does not contaif)t satisfies some
Engel identity[x2, x1, ..., x1] = 0. By a theorem of Latyshev [54] any finitely generated
Pl-algebra satisfying a nonmatrix polynomial identity, satisfies also some identity of the
form [xq1, x2]- - - [x2k—1, x2¢] = 0. Applying this result toF>(20) we obtain thatF,(20)
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is solvable as a Lie algebra, and, by a theorem of Higgins [48%0) is Lie nilpotent.
(Actually Zelmanov [76] proved the stronger result that any Lie algebra over a field of
characteristic zero satisfying the Engel identity is nilpotent.)

By Drensky [19], for any nilpotent varietyd, and for a fixed positive integes, the
vector spaceB,, (20) of so called proper polynomials if;, (20) is finite dimensional.
Using the relation

F,(0) = K[x1,...,xm] ®k By (20)

between thé&L,,,-modulesF;, (20) and B,, (20) and the Young rule, we can derive the fol-
lowing. There exists a positive constgmtsuch that the nonzero irreducible components
W(A1, ..., An) Of the GL,,-module F,,, (20) satisfy the restriction, < p. Hence the sub-
algebraF,(20)32 of SLp-invariants of F»(20) (which is spanned on the highest weight
vectors ofW (A1, A1) with A1 < p) is finite dimensional. Now the statement follows from
Corollary 5.6 becaus&,(20)° is generated by and the finite dimensional vector space
RS2, O

Corollary 5.9 inspires the following:

Question 5.10. Is it true that, form > 2 and for a fixed nonzero Weitzenbdck derivatign
the algebra of constants,, (20)° is finitely generated if and only if the variety of associa-
tive algebra®y does not contain the metabelian varign?

Corollary 4.3, Example 5.2 and Corollary 5.9 show that the answer to this question
is affirmative form = 2. In the next section we shall show that the algebra of constants
F,,(20)? is not finitely generated #J containsit.

6. Constants of relatively free associative algebras

First we shall work in the free metabelian associative algey;@)t) where the
metabelian variety is defined by the polynomial identity, x2][x3, x4] = 0. We need
an embedding of},, (9) into a wreath product. For this purpose, et= {y1, ..., ym},
U=A{u1,...,u,}andV ={vs,..., v,} be three sets of commuting variables and let

m
M:ZaiK[U, V]
i=1

be the freeK[U, V]-module of rankn generated byas, ..., a,}. Clearly, M has also a
structure of a fre& [Y ]-bimodule with the action oK [Y] defined by

yjai =ajuj, ayj=ajvj, i,j=1...,m.
Define the trivial multiplicationM - M = 0 on M and consider the algebra

W=KI[Y]AM,
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which is similar to the abelian wreath product of Lie algebras, see [@@k(an ideal ofW

with multiplication by K[Y] induced by the bimodule action &f[Y] on M). Obviously

W satisfies the metabelian identity and hence belon§g.tdhe following proposition is a
partial case of the main result of Lewin [56], see also Umirbaev [73] for further applications
of this construction to automorphisms of relatively free associative algebras.

Proposition 6.1. The mapping t:x; — y; +a;, j =1,...,m, defines an embedding ¢ of
Fu(OM) intoW =K[Y] AM.

Proposition 6.2. For any nontrivial Weitzenbdck derivation § of the free metabelian as-
sociative algebra F,,, () of rank m > 2, the algebra of constants F,, (91)° is not finitely
generated.

Proof. The derivatior$ acts as a linear operator on the vector space with basis. . , x,,,}
and we define in a similar way the actionéoén the vector spaces with bades, ..., ym}
and{al, U P If S(Xj) = Z;ﬂ:laijxj, ojj € K, thena(yj) = er'n:]_(xijyj andS(aj) =
Yoitqaijaj, j=1,...,m. As in the proof of Lemma 2.1 we can show that this action
5 defines a derivation o and on the polynomial algebr&[U, V] (which we denote
also bys). Additionally, we consider the embeddingf F,,(91)° as a subalgebra i,
as stated in Proposition 6.1. By definitiét(x;)) = 8(y; + a;) = 1(8(x;)) and hence if
3(f (X)) =0in F,,(9M), then the same holds for the imagg’) of f in W. In this way,
. embeds the algebra of constafits(90t)° into the algebra of constant®.

As till now, we assume thai(x1) = 0 andé§(x2) = x1. If the algebra of constants
F,, (9% is generated by a finite s¢f1, ..., f,}, then, as elements a¥,

t(fi) = gr(¥) + Zaihik(U, V), &(¥Y) e K[Y], hy(U,V) € K[U, V],
i=1

i=1....mk=1,...,n,and

m
g(¥), by =Y aihiu(U, V), k=1...n,
i=1

are also constants. Hencg,, (91)°%) is a subalgebra of the subalgebraisf generated
by the union of the finite sets

{g1,....8n) CK[Y, {b1,...,b,}C M°.

This implies thatF,, (9)? is a subalgebra of

Wo=K[Y]’ £ Zka[U]‘*K[V]S.
k=1
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By Corollary 3.3 the transcendence degre& ¥ ]’ is equal ton — 1 and hence the tran-
scendence degree KU ° K[V’ is equal to 2m — 1). Since, see, e.g., the book by Krause
and Lenagan [52], the Gelfand—Kirillov dimension of a commutative algebra is equal to the
transcendence degree of the algebra, we easily derive that the Gelfand—Kirillov dimension
of the algebra¥y is bounded from above by — 1). On the other hand, the vector space
t([x1, x2)K[U, V] is contained in(F,, (M)) and is a freeK [U, V]-module generated by
a1(va — u2) + ax(u1 — v1). Sinceu([x1, x2]) € M®, we obtain that([x1, x2)K[U, V1° is
afreeK [U, V]’-module. By Corollary 3.3 the transcendence degrek[df, V] is equal

to 2n — 1, and hence the Gelfand—Kirillov dimension of tkiéU, V 1*-module is equal to

2m — 1. This is also a lower bound for the Gelfand—Kirillov dimensiorFfit)? which
contradicts with the inequality GKdi¢#,, (01)?) < GKdim(Wp) < 2(m —1). O

Remark 6.3. In the notation of Proposition 6.2, ify, ..., by is a finite number of ele-
ments inM?, then the subalgebra &€ [Y]° < M? generated byK[Y]® and by, ..., by,
contains only a finite number of element§x1, x2]) (u1v2 — u2v1)”. This can be seen in
the following way. We consider the localization of the polynomial algebté(][yil] =
K[y1, y2, -+, ywlly; 11, and similarlyK [U1[u7 1, K[V 1[v; }]. Then we define

W =K[Y1[y; '] A MK[u7t v

Sinceys, u1, v1 ares-constants, we can extend the actionsais a derivation oW to a
derivation onW’. Letal’/“(yj) =0,j=1,...,m, and let us define

Pj ok

- 8" (yj) —k

Yji= z : k'] (—}’Z)kyfj B =3,4,....m,
k=0

and similarlyy;, i;, v;. Let alsow, = u1v, — upv1. By Proposition 3.1

(KIYI[1Y))’ = K[y, 1 i3s3 - ],

(KU, VI[ug 5 vrY])’ = K[un, o1, ug b vy s, i, 93, - i 2]

The algebra generated #{Y]° andby, ..., by is a subalgebra of

k

(K[y )" <D b (Kwifug ™))’ (KIvi[vr )’

j=1
and hence its elements have the form
m
F@30 e Fm)+ b fi@iz, . iim, T3, ., D),
j=1

where f and f; are polynomials with coefficients depending respectivelyygny; !
andu;, vl,uzl, vl_l. Sinceus, ..., Uy, V3, ..., U, w are algebraically independent on
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K(u1,vi,u;t, v71], and the finite number of elements, ..., b contains only a fi-
nite number of summands, we cannot present all elemeénts, x2])(u1v2 — upv1)"” =
(a1(v2 —u2) +azx(u1 — vl))ﬁ); in the form

m
(al(UZ - MZ) +a2(ul - Ul))wg = Zb]fjn(ﬁ37 ceey ﬁmv ﬁ3a ceey 5111)
j=1

Theorem 6.4. Let 20 be a variety of associative algebras containing the metabelian vari-
ety 90t. Then for any m > 2 and for any fixed nonzero Weitzenbock derivation §, the algebra
of constants F,, (20)° is not finitely generated.

Proof. By Corollary 4.3 the algebr&,, (9t)° is a homomorphic image af,, (20)°. Now
the proof follows immediately becausg, (9)° is not finitely generated by Proposi-
tion6.2. O

Remark 6.5. Using the elements([x1, x2]) (u1v2 — uzv1)", n > 0, from Remark 6.3 for

any variety2lJ containing the metabelian variel}f and any nontrivial Weitzenbdck deriva-
tion § we can construct an infinite set of constants which is not contained in any finitely
generated subalgebra Bf, (20)°. Again, we assume thatx;) = 0, §(x2) = x1. Let/, and

r, be, respectively, the operators of left and right multiplication:by F,,, (23). Consider

the elements

(lxlrxz - lxzrxl)n[xlv x2]v n > O

All these elements are constants which are liftings of the constants from Remark 6.3
and hence any finitely generated subalgebraFp{20)° does not containty,r., —
Ly, ryy)" [x1, x2] for sufficiently largen.

Corollary 6.6. Let 20 be a variety of associative algebras containing the metabelian va-
riety 9t. Then for any m > 2 the algebra F,,, (20)Y™ of UT,, (K)-invariantsis not finitely
generated.

Proof. Let the algebraF,,(20)VT» be finitely generated. By Remarks 4.7, the alge-
bra (K (x1, ..., x,)YT", and hence als@,,(20)VT" is spanned by all highest weight
vectors. HenceF,, (20)YT» is generated by a finite system of highest weight vectors
WXL, ..., %m) € W) C F,()YT". Hence F,,(20)Y™" is multigraded and has a fi-
nite multihomogeneous set of generators. The generators which depetd and x»
only, generate the subalgebra spanned by all highest weight veetass..., x,;) €

W (i1, A2,0,...,0). This subalgebra coincides with the algebradf,-invariants of
F>(20) and hence with the algebra of constants of the Weitzenbdck deriviatbii> (20)
defined bys(x1) = 0, §(x2) = x1. By Theorem 6.4 foim = 2 (or by Corollary 4.3 and
Example 5.2)F>(20)° is not finitely generated. Hence the algetia20)Y™» cannot be
finitely generated. O
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Remark 6.7. Let 20 be a Lie nilpotent variety of associative algebras and:léle a fixed
positive integer. Using the approach of [19] (as in the proof of Corollary 5.9), and the
fact thatF,,, (20) is a direct sum ofsL,,,-modules of the formWW (A1, ..., A,;) with Ao <

p for somep, one can show that there exists a finite system of highest weight vectors
w;(x1,...,xx) € Fr, (W), i =1,...,k, such that all highest weight vectors Bf, (20) are
linear combinations of"w; (x1, ..., x¢). Hence the algebra,, (20)YT» of UT,,-invariants

is generated by andw; (x1, ..., xx),i =1, ..., k. HenceF,,(20)V T~ is finitely generated.

7. Generic 2 x 2 matrices

In this section we construct classes of automorphisms of the relatively free algebra
Fa(varM»(K)). This algebra is isomorphic to the algebra generated by two generiz 2
matricest andy. So, the results are stated in the natural setup of the trace algebra. We start
with the necessary background, see Formanek [36], Alev and Le Bruyn [1], or Drensky and
Gupta [26].

We consider the polynomial algebra in 8 variables= K[x;;, yi; | i, j = 1, 2]. The
algebrar of two generic 2x 2 matrices

v <X11 X12) and y= (y11 y12>
X21 X22 Y21 y22
is the subalgebra a/2($2) generated by andy. We denote byC the centre ofR and
by C the algebra generated by all the traces of elements Roidentifying the elements

of C ‘with 2 x 2 scalar matrices we denote Bythe generic trace algebra generatediby
andC. Itis well known thatC is generated by

tr(x), tr(y), detx), det(y), tr(xy)
and is isomorphic to the polynomial algebra in five variables.

Proposition 7.1 (Formanek, Halpin, and Li [37])The vector subspace of C consisting of
all polynomials without constant termis a free C-module generated by [x, y]2.

For our purposes it is more convenient to replac ifas in [1]) the generic matrices
andy by the generic traceless matrices

1tr( ) 1tr( )
xp=x — =tr(x), =y —=
0 2 Yo y 2 y

and assume that is generated by, yo, tr(x), tr(y), detxo), det(yo), tr(xoyo). A further
reduction is to use the formulas

1 1
det(xg) = _Etr(xg), det(yo) = _étr(yg),
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and to replace the determinants b@xgr) and n(yg>. In this way, we may assume th@tis
generated by

p=1tr(x), qg =1r(y), u= tr(xg), v= tr(yg), t =1r(xo0yo)-

Then[x, y]? =2 — uv and
T = C + Cxo+ Cyo + Clxo, yol

is a freeC-module generated by, 1o, yo, [x0, yol.

The defining relations of the algebra generated by the22raceless matriceg andyg
are [xg, yo] = [yg, xo0] =0, see, e.g., [55] or [29] for the case of characteristic 0 and [50]
for the case of an arbitrary infinite base field. More generally, the defining relations of the
algebra generated hy generic 2x 2 traceless matrices, ..., yu are[vf, v2] =0, where
v1, v2 run on the set of all Lie elements K (y1, ..., y,) which is a restatement of the
theorem of Razmyslov [62] for the weak polynomial identitiesMf(K). An explicitly
written system of defining relations consists{pﬁ, yil=0,lyiyj+yjyi. l=0,i, j, k=
1,...,m, and the standard polynomialf(y;,, ¥i,, iz, yiy) =0, 1< i1 < iz < iz <ig < m,
see [29].

Lemma 7.2. Every mapping d: {p. g, xo0, yo} — T such that
8(p),8(g)eC,  8(x0),38(y0) € Cxo+ Cyo+ Clxo, yol

can be extended to a derivation of T'.

Proof. The defining relations of are

[p,q]=1[p,xo0l =I[p,yol =g, x0]l =g, yol =0,

together with the defining relations of the subalgebra generateg, byy. It is sufficient to
see that the extension &{inductively, by the rulé( fg) =5(f)g + f3(g)) to a derivation
on T is well defined, i.e., sends the defining relations to 0. For the relations invopving
andgq this can be checked directly:

8(lp.q1) =[8(p).q] + [p.8(@)] =0,

analogously fors([p. xol). 8([p. yol). 8([g. xal). 8([g. yol), becausep, ¢, 8(p), (¢) are
in the centre ofT. The condition for the defining relations of the algebra gener-
ated byxg, yo can be proved using the universal properties of this algebra or directly:
Sincex3, y2, xoyo + yoxo, [xo, yol? are in the centre of’, andxo[xo, yol + [x0, yolxo =

yolxo, yol + [x0, Yolyo = 0, if §(x0) = axo + byo + c[xo, yol, a, b, c € C, then
2
(8(x0))” = a?x§ + b2y§ + c?[x0, yol? + ab(xoyo + yoxo).
8(x0)x0 + x08 (x0) = axg + b(xoyo + yoxo)

are in the centre of ands([x2, yol) = 0. In the same way([y3, xo]) =0. O
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Example 7.3. Let us consider the basic Weitzenbdck derivatiatefined on the relatively
free algebraF,(varM2(K)) in its realization as the generic trace algebra generated by
generic 2x 2 matricest andy by §(x) =0, §(y) = x. We extend to the trace algebr@

by

8(p) =38(tr(x)) =tr(8(x)),
8(q) =8(tr(y)) =tr(8(y)),
8(x0) =0,  d(y0) = xo,
30) = 3(tr(x3)) =tr(5(<3)).
8() =3(tr(35)) = tr(8(35)).
8(1) = 8(tr(xoy0)) = tr(8(x0¥0)).

By Lemma 7.2 this is possible. Direct calculations give that
§(p)=0, d(g)=p, Sw)=0, §@t)=u, sw) =2t

Replacingv with 2v1, we obtain that the action of on C = K[p,q,u,t,v1] is as in
Examples 3.4. Hence

(€)* =K[p.u. pt — qu.1? — 2uvy, 2p*v1 — 2pqt + q%u]
= K[p, u, pt —qu, 12 — uv, qzu —2pqt + va]_
The generators afC)® satisfy the relation
u(qzu —2pqt + pzv) + pz(tz - uv) = (pt — qu)z.

If we (C)?, then expws) is an automorphism of . If 12 — uv dividesw, then expws) is
an automorphism also @&. This automorphism acts ok as

exp(wé) :x — x, exp(wé):y — y + wx,

wherew = (2 — uv)wi(p, u, pt — qu, t*> — uv, g°u — 2pqt + p?v) for some polyno-
mial w1. Such automorphisms (fixing) were studied in the PhD thesis of Chang [11].

Example 7.4. Now we shall modify Example 7.3 in the following way. We use Lemma 7.2
and define the derivatiohof T by

3(p) = aru + it + y1v, 3(q) = p + azu + Baf + you,
o, BivieC,i=1,2,

Sw)=0, s(t)=u, S()=2.
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This derivation is locally nilpotent and acts on the generic matrjbc&e%tr(x) + xo and
y = 3tr(y) + yo by

1 1
d(x) = E(Ollu + Bt + y1v), s(y)=x+ 5(062u + Bat + yov).

The matrix of the linear operatéracting on the vector spadép + Kqg + Ku + Kt + Kv
(with respect to the basiy, g, u, t, v}) is

0O 1 0O

0O 0 00O
a1 a2 0 1 O
B B2 0 0 2
vi 2 0 00

and has rank 3 or 4 depending on whethee 0 or y1 # 0. Hence its Jordan normal form
is one of the following matrices:

0100 010 0100

0 010 0 0 1 0 0100

0 0 01 , 0 0O , 0 0010

0 00O 0 1 0 00 01
0 00 0 00 0O

Examples 3.4 give concrete systems of generators of the algebras of constahtsarid
hence automorphisms of the algebfaandR.
For example, if we fiXs(p) = v, §(¢) = p, thens is a basic derivation with

8(q) =p, 8(p)=v, S(v) =2, §(t)=u, 8(u)=0.

ConsideringC = K[q/2, p/2,v/2,t,u], we obtain after some easy calculations that the
algebra of constants is generated by

2

w, 2—uv, tp—qu—">

b 9 4’
3

3 3 3 9
- Eutv + Euzp, 3t2q - étvp + UZ — 3uvg + Zupz.

3

In this case acts onx andy by
1 1
§(x) = Etr(yg) =5v. sy =x.

If wisin (C)%, then
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. wy  w’t wiu
eX[Xw8).x—>x+ﬁ+2—!+T,
. wx  wv o wd  wi
eX[XwB).y—>y+T!+ﬁ+?+T!.
If w is divisible byr? — uv, then expws) is also an automorphism &. Since all these au-
tomorphisms exfws) are obtained by the construction of Martha Smith [67], they induce

stably tame automorphisms 6f= K[p, ¢, u, t, v].

8. Relatively free Liealgebras

We start with few examples for the algebras of constants of relatively free algebras. By
the well-known dichotomy a variety of Lie algebras either satisfies the Engel condition
(and by the theorem of Zelmanov [76] is nilpotent) or contains the metabelian vaidety
(which consists of all solvable of class 2 Lie algebras and is defined by the identity
[[x1, x2], [x3, x4]] = 0). Since the finitely generated nilpotent Lie algebras are finite di-
mensional, the problem for the finite generation of the algebras of constants of relatively
free nilpotent Lie algebras is solved trivially.

The bases of the free polynilpotent Lie algebras were described by Shmelkin [65]. Con-
sidering relatively free algebras of rank 2, we assume that the algebra is generated by
andy and the basic Weitzenbotck derivatidis defined bys (x) =0, §(y) = x.

Example 8.1. Let Lo(2?) = Lz/L% be the free metabelian Lie algebra of rank 2. It has a
basis

{x,y,[y,x,x,...,x,y,...,y]|a,b20}.

atimes  p times

It is well known (and can be also obtained by simple arguments from the Hilbert series of
L., (22)) that thenth cocharacter of the varie®y? is

Xl(mz) = X1 Xn (9[2) =X(n-11, n=2.
The corresponding highest weight vectors are

w) =X, Wr-11) =y, x,x,...,x], n=2
——

n—2 times
Hence the algebra of constarits(2?)° is generated by and[x, y].

Example 8.2. The free abelian-by-{nilpotent of class 2} Lie algebia(291,) =
Ly/[L», Lo, L] satisfies the identity

[[x1. x2, x3], [x4, x5, x6]] = O
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and has a basis

[x.y. Dyl [yox, >, coox vy [yl x vl ] |a+ 5> 0, ¢ >0},
—_— — ——
atimes b times c times

Its Hilbert series is

t1tp(t1 + 12)
A-1)A—-1)A—-1112)

=St 12) + Sz (1. 22+ Y Seuap (11 12)

H(L2(AN2), 11, 12) =11+ 12+ 1112 +

r>r02>1
and the highest weight vectors b§(2(1,) are
X, [xvy]a [y7-xa-xa"'a-xa['x9y]7"'a['x7y]]a a>0,C>0.

a times ¢ times
Hence the algebra,(AN,)? is generated by and[x, y].

Example 8.3. We consider the relatively free algebka(varslo(K)) of the variety of Lie
algebras generated by the algebra of 2 traceless matrices. This algebra is isomorphic
to the Lie algebra generated by the generie 2 traceless matrices, yo considered in
Section 7. By Drensky [18], as@L,-moduleL,(vard2(K)) has the decomposition

La(varsa(K)) = WD) @ Y W(h1, ),

where the summation runs on all= (11, A2) such thati, > 0 and at least one of the
integersi1, A2 is odd. The highest weight vectors Bf(i1, A2) are given in [18] but we do
not need their concrete form for our purposes. The algebra of congtatvarsl>(K))° is
bigraded. Assuming that the degreexoforresponds te and the degree of isu = v /¢,
the Hilbert series oL»(vard»(K))? is

H(Lg(varsig(K))‘S,t,v)=t+v< Z tPul — Z t2pv2‘1+1>
p.q=0 p.q=0

v U2

IS Y R Sl s e g v

If Lo(varso(K))? is finitely generated, we may fix a finite system of bigraded generators.
For every homogeneous € Ly(varsly(K))? we have degf > deg,f. Hence the subal-
gebra spanned on the homogeneous components of bidegree n odd, is also finitely
generated. This subalgebra is infinite dimensional and its Hilbert series is obtained from
the Hilbert seriesd (Lo (vars»(K))?, ¢, v) by the substitution =0, i.e.,

v2

H(Lo(varsz(K))".0.0) = 3= = 75
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Besides, the subalgebra is abelian because the commutator of any two highest weight vec-
torswp41,2p+1) aNdw(z4+1,2¢+1) iS @ highest weight vectan o(p14+1),2(p+¢+1)) Which

does not participate in the decompositionigfivarsl>(K))?. Since the finitely generated
abelian Lie algebras are finite dimensional, we obtain a contradiction which gives that
Lo(varsla(K))? cannot be finitely generated.

Example 8.4. The free abelian-by-{nilpotent of class 3} Lie algebia (2(913) =
Ly/[L2, L2, L2, L]’ has a basis consisting ®f y and commutators of the form

[v.x.x,oxy, oy eyl ey Dy xxl o Dy xx L Dy, x vl Ly, x, vl
—_—

a times b times c times d times e times

with some natural restrictions af b, ¢, d, ¢ > 0 which guarantee that these commutators
are different from zero and, up to a sign, pairwise different. If the algebra of constants
L>(AN3)? is finitely generated, then it has a generating set consisting of a finite number of
bihomogeneous elements, ..., w; of degree> 4 (and bidegreén1, n2), whereny > n»)

and constants of degreg 3 (i.e., x, [x, ], [y, x, x]). Since the commutators of length

> 4 commute, we derive thdt>(AN3)? is a sum of the Lie subalgebrd generated by

x, [x, y], [y, x, x] and theN-module generated by, ..., wi. The following elements are
constants:

Up = Z Sigr(/og"'T)[yvxyx’Zp(l),Zo(l)v~~7Zr(1)7[x:y,Zp(l)],
£,0,...,TES2

[-xv y, ZU(l)]v cee [x, y, Z‘r(l)]]’

where{z1, z2} = {x, y} and, in the summatiom, o, ..., T run onn copies of the symmetric
groupS». They are homogeneous of bideg(@e + 2, 2n + 1) and hence can be written as
linear combinations of commutators involvingug, severalx, y] and not more than one
x or [y, x, x]. But this is impossible because for sufficiently largene cannot obtain the
summands oft,,

[y,x,x,x,...,x,[x,y,y],...,[x,y,y]].

n times n times

Hence the algebra,(AN3)? is not finitely generated.

Example 8.5. Let m > 2 and lets be the Weitzenbdck derivation of the free metabelian
Lie algebraL,, (A%) defined bys(x2) = x1, 8(x;) = 0 for j # 2. Then, sinceL,, (A?)
has a basis consisting af and all commutatorsx;,, x;,, ..., x;,] with iy > i <i3z <

--- <y, then the free generatars, j # 2, and the commutators which do not include
are constants. It is easy to see that the commutatorsvwitine of the form

U =1[x2,X1, ..., X1, X2, ooy X2, Xipy -, Xiy 1, a>0, b>0, iy >2,
—_— —

a times b times
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4 ..
' =[x, X1, ..., X1, %2, ..., X2, Xipy o Xiy ], a=20,b>0, i >2.
— —
a times b times

It is easy to see that a linear combinationudfandu” is a constant if and only if it con-
tains as summands only with » = 0 and does not contain amy'. Hence the algebra of
constantd.,, (2A2)? is generated by, xj, j > 2, and[xy, x2].

Example 8.6. Let m > 2 and lets be the Weitzenbdck derivation of the free abelian-
by-{nilpotent of class 2} Lie algebrd.,, (2(912) defined, as in the previous example, by
8(x2) = x1, 8(x;) =0 for j # 2. We define aGLo-action onL,, (A9,) assuming that
GL; fixes xs, ..., x,, and acts canonically on the linear combinationsgfx,. Then the
subspaces oL, (2(9%2) which are homogeneous in each variablg. .., x,, are GLo-
invariant. This easily implies that the algebra of constdntg91,)° is multigraded and
deg, f > deg, f for each multihomogeneous constafit If the algebraL,, (AMy)° is
finitely generated, then as in Example 8.4, it is generatedibjxs, x2], x3, x4, ..., X
and a finite systemy, . .., w; of homogeneous elements of degee8. ThenL,, (AN,)°

is a sum of the subalgebrd generated by, [x1, x2], x3, X4, ..., x,, and theN-module
generated by, ..., wg. The constants

D sign(po - Ty = (X1, X2, Xp(1) Xo (1) - -2 Xe(t) X3, Xp()],
0£,0,...,TES?

[x3, Xo )], - - .. [x3, Xz 0]

where in the summatiop, o, ..., T run onn copies of the symmetric grougp, are homo-
geneous of degre@ + 1,n + 1,1,0, ..., 0) and arguments as in Example 8.4 show that
this is impossible. Hence the algelita (A912)° cannot be finitely generated.

In the above examples, the matrix of the Weitzenbdck derivati@s a linear operator
acting on the vector space with bagig, ..., x;,}) is of rank 1. This gives rise to the
following natural problem.

Problem 8.7. If the matrix of the Weitzenbock derivation § is of rank 1, find the exact
frontier where the algebra of constants L, (20)° becomes finitely generated, i.e., describe
all varieties of Lie algebras 20 and all integers m > 1 such that the algebra L,,(20)° is
finitely generated.

Finally, we shall give the solution of this problem in the case of rark

Theorem 8.8. Let 20 be a nonnilpotent variety of Lie algebras and let § be a Weitzenbdck
derivation of the relatively free algebra L,,(20), m > 3. If the rank of the matrix of § is
> 2, then the algebra of constants L, (20)° is not finitely generated.
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Proof. As inthe associative case, itis sufficient to establish the theorem for the metabelian
variety of Lie algebras only. We consider the abelian wreath product of Lie algebras

m
Wi =(Ky1® -+ @ Kym) <Y _a;K[yL,.... yml,
j=1

wherely;, yj1=lai fi,a; f;1=0andla; fi, yj1=ai fiyj (fi, fj € K[y1, ..., ym]). Then
by the theorem of Shmelkin [66] the mappingx; — a; + y;, j = 1,...,m, defines
an embedding of the free metabelian Lie algebya2?) into W,,. We assume that is
in its normal Jordan form (anél(x2) = x1, 8(x1) = 0). Hence the fixed part ok y; @
-+ @® Ky, is of dimensionm — rank(§) < m — 2 and is spanned on some free generators
Xjy = X1, Xjp, ..., Xj,, p<m—2.Ifthe algebraL,, (2?)? is finitely generated, then it is a
sumofKx1 ® Kx;, ®--- @ Kxj, and a finitely generatefl [x1, xj,, .. ., xjp]—submodule
of the commutator idedl,, (22)’. But, as in the associative case, this is impossible because
the image of this module undershould contain, for example([x2, x1) K [y1, ..., ym]®
and the transcendence degree&df1, . . ., v, 1° is equal tom — 1.

One can see directly, that f(x3) = x2, then a finitely generated subalgebra of
(L, (A%)?%) cannot contain all constants

t([xz, xl])(xzz — 2x1X3)n, n>0.
Similarly, if §(x4) = x3, 8(x3) =0, thend(L,, (2%)%) cannot contain all

t([x2, x1]) (x1x4 — x2x3)", n = 0. O
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