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Abstract

In commutative algebra, a Weitzenböck derivation is a nonzero triangular linear derivation
polynomial algebraK[x1, . . . , xm] in several variables over a fieldK of characteristic 0. The clas
sical theorem of Weitzenböck states that the algebra of constants is finitely generated. (This
coincides with the algebra of invariants of a single unipotent transformation.) In this paper we
the problem of finite generation of the algebras of constants of triangular linear derivations of fi
generated (not necessarily commutative or associative) algebras overK assuming that the algebra
are free in some sense (in most of the cases relatively free algebras in varieties of associativ
algebras). In this case the algebra of constants also coincides with the algebra of invariants
unipotent transformation.

The main results are the following: (1) We show that the subalgebra of constants of a fac
gebra can be lifted to the subalgebra of constants. (2) For all varieties of associative algebra
are not nilpotent in Lie sense the subalgebras of constants of the relatively free algebras of r� 2
are not finitely generated. (3) We describe the generators of the subalgebra of constants for a
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algebrasK〈x, y〉/I modulo aGL2(K)-invariant idealI . (4) Applying known results from commu
tative algebra, we construct classes of automorphisms of the algebra generated by two gene× 2
matrices. We obtain also some partial results on relatively free Lie algebras.
 2005 Elsevier Inc. All rights reserved.

1. Introduction

We fix a base fieldK of characteristic 0, an integerm � 2 and a set of symbolsX =
{x1, . . . , xm}. We call the elements ofX variables. Sometimes we shall use other symb
e.g.,y, z, yi , etc., for the elements ofX. We denote byVm the vector space with basisX.

LetK〈X〉 = K〈x1, . . . , xm〉 be the free unitary associative algebra freely generatedX
overK . The elements ofK〈X〉 are linear combinations of wordsxj1 · · ·xjn in the noncom-
muting variablesX. The general linear groupGLm = GLm(K) acts naturally on the vecto
spaceVm and this action is extended diagonally onK〈X〉 by the rule

g(xj1 · · ·xjn) = g(xj1) · · ·g(xjn), g ∈ GLm, xj1, . . . , xjn ∈ X.

All associative algebras which we consider in this paper are homomorphic images ofK〈X〉
modulo idealsI which are invariant under thisGLm-action. We shall use the same sy
bols xj andX for the generators and the whole generating set ofK〈X〉/I . Most of the
algebras in our considerations will be relatively free algebras in varieties of unitar
sociative algebras. Examples of relatively free algebras are the polynomial algebraK[X]
and the free algebraK〈X〉 which are free, respectively, in the varieties of all commuta
algebras and all associative algebras. We also shall consider Lie algebras which
momorphic images of the free Lie algebra withX as a free generating set modulo ide
which are alsoGLm-invariant.

Let A be any (not necessarily associative or Lie) algebra overK . Recall that theK-
linear operatorδ acting onA is called a derivation ofA if

δ(uv) = δ(u)v + uδ(v) for all u,v ∈ A.

The elementsu ∈ A which belong to the kernel ofδ are called constants ofδ and form a
subalgebra ofA which we shall denote byAδ . The derivationδ is locally nilpotent if for
anyu ∈ A there exists a positive integern such thatδn(u) = 0. If δ is a locally nilpotent
derivation ofA, then the linear operator ofA

expδ = 1+ δ

1! + δ2

2! + · · ·

is well defined and is an automorphism of theK-algebraA. It is easy to see thatAδ coin-
cides with the subalgebra of fixed points (or invariants) of expδ which we shall denote b
Aexpδ . The mappingα → exp(αδ), α ∈ K , defines an additive action ofK onA. It is well
known that for polynomial algebras every additive action ofK is of this kind, see for more
details Snow [68]. See also Drensky and Yu [30] for relations between exponents of l
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nilpotent derivations and automorphismsϕ with the property that the orbit{ϕn(a) | n ∈ Z}
of eacha ∈ A spans a finite dimensional vector space in the noncommutative case.

If A = K〈X〉/I for someGLm-invariant idealI , then the derivationδ of A is called tri-
angular, ifδ(xj ), j = 1, . . . ,m, belongs to the subalgebra ofA generated byx1, . . . , xj−1.
Clearly, the triangular derivations are locally nilpotent. Ifδ acts linearly on the vector spa
Vm = ∑m

j=1 Kxj ⊂ A, then it is called linear.
If δ is a triangular derivation, then expδ is a triangular automorphism ofA, with the

property

expδ(xj ) = xj + fj (x1, . . . , xj−1), j = 1, . . . ,m,

wherefj (x1, . . . , xj−1) depends onx1, . . . , xj−1 only. Every triangular automorphismϕ
of this form can be presented in the formϕ = expδ for some triangular derivation

δ = log(ϕ) = ϕ − 1

1
− (ϕ − 1)2

2
+ (ϕ − 1)3

3
− (ϕ − 1)4

4
+ · · · .

(TheK-linear operatorδ of A is well defined because the linear operators(ϕ − 1)k map
everyf (x1, . . . , xj ) ∈ A to a polynomial depending onx1, . . . , xj only, degxj

(ϕ − 1)kf �
degxj

f − k and(ϕ − 1)K = 0.)
Every locally nilpotent linear derivationδ is triangular with respect to a suitable basis

Vm and the automorphism expδ is a unipotent linear transformation (i.e., an automorph
of the algebraA which acts as a unipotent linear operator onVm).

In commutative algebra, the triangular linear derivations of the polynomial alg
K[X] = K[x1, . . . , xm] are called Weitzenböck derivations. The classical theorem
Weitzenböck [75] states that the algebra of constants of such a derivation is finitel
erated. This algebra coincides with the algebra of invariants of a single unipotent tra
mation.

In this paper we study the problem of finite generation of the algebras of consta
triangular linear derivations of (usually noncommutative) algebrasK〈X〉/I where the idea
I is GLm-invariant. As in the commutative case, the algebra of constants coincides w
algebra of invariants of some unipotent transformation. The paper is organized as fo
Below we assume thatδ is a nonzero triangular linear derivation ofK〈X〉 which induces
a derivation (which we shall also denote byδ) on the factor algebras ofK〈X〉 modulo
GLm-invariant ideals.

In Section 2 we present a short survey on constants of locally nilpotent derivation
invariant theory both in the commutative and noncommutative case, giving some m
tion for our investigations. We believe that some of the results exposed there can s
a motivation and inspiration for further investigations on noncommutative algebras.

Section 3 presents a summary of the results on the Weitzenböck derivations of p
mial algebras which we need in the next sections.

In Section 4 we are interested in the problem of lifting the constants: IfI ⊂ J are two
GLm-invariant ideals ofK〈X〉, then we show that the subalgebra of constants(K〈X〉/J )δ

can be lifted to the subalgebra of constants(K〈X〉/I)δ . In the special case of algebr
with two generatorsx, y we may assume thatδ(x) = 0, δ(y) = x. Then the subalgebra o



396 V. Drensky, C.K. Gupta / Journal of Algebra 292 (2005) 393–428

ction of
lve
ntation

ly free

factor

-
bra

of au-
o
d

We
n the
ve
e, e.g.,

ches of
n [33].

e
he fi-
m

s the
i-
d (or

original
nection
ations
g [12]
constants is spanned by elements which have a very special behaviour under the a
the general linear groupGL2, the so called highest weight vectors. This allows to invo
classical combinatorial techniques as theory of generating functions and represe
theory of general linear groups.

In Section 5 we present various examples of subalgebras of constants of relative
associative algebras. In particular, he handle the case of the free algebraK〈x, y〉 and show
that the algebra of constants is generated byx and a set ofSL2(K)-invariants which we
describe explicitly. As a consequence, we obtain a similar generating set for all
algebrasK〈x, y〉/I .

Section 6 considers relatively free algebrasFm(W) in varietiesW of associative alge
bras. It is known that every varietyW is either nilpotent in Lie sense or contains the alge
of 2 × 2 upper triangular matrices. We show that for allW which are not nilpotent in Lie
sense the subalgebras of constantsFm(W)δ are not finitely generated.

In Section 7 we apply results from commutative algebra and construct classes
tomorphisms of the relatively free algebraF2(varM2(K)). This algebra is isomorphic t
the algebra generated by two generic 2× 2 matricesx andy. The centre of the associate
generic trace algebra (which coincides with the algebra of invariants of two 2× 2 matrices
under simultaneous conjugation byGL2) is generated by the traces ofx, y andxy and the
determinants ofx andy and is isomorphic to the polynomial algebra in five variables.
want to mention that up till now most of the investigations have been performed i
opposite direction. The automorphisms ofF2(varM2(K)) and of the trace algebra ha
been used to produce automorphisms of the polynomial algebra in five variables, se
Bergman [7], Alev and Le Bruyn [1], Drensky and Gupta [26].

Finally, we obtain also some partial results on relatively free Lie algebras.

2. Survey

2.1. Motivation from commutative algebra

Locally nilpotent derivations of the polynomial algebraK[X] = K[x1, . . . , xm] have
been studied for many decades and have had significant impact on different bran
algebra and invariant theory, see, e.g., the books by Nowicki [61] and van den Esse

Let G be a subgroup ofGLm and letK[X]G = K[x1, . . . , xm]G be the algebra ofG-
invariants. The problem for finite generation ofK[X]G was the main motivation for th
famous Hilbert Fourteenth Problem [44]. The theorem of Emmy Noether [60] gives t
nite generation ofK[X]G for finite groupsG. More generally, the Hilbert–Nagata theore
states the finite generation ofK[X]G for reductive groupsG, see, e.g., [16].

The first counterexample of Nagata [58] to the Hilbert Fourteenth Problem wa
nonfinitely generated algebra of invariantsK[x1, . . . , x32]G of a specially constructed tr
angular linear groupG. Today, most of the known counterexamples have been obtaine
can be obtained) as algebras of constants of some derivations. This includes the
counterexample of Nagata, see Derksen [14] who was the first to recognize the con
between the Hilbert Fourteenth Problem and constants of derivations (but his deriv
were not always locally nilpotent) and the counterexample of Daigle and Freudenbur
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of a triangular (but not linear) derivation ofK[x1, . . . , x5] with not finitely generated alge
bra of constants. For more counterexamples to the Hilbert Fourteenth Problem we r
the recent survey by Freudenburg [39].

The theorem of Weitzenböck gives the finite generation of the algebra of constant
triangular linear derivation or, equivalently, for the algebra of invariants of a single u
tent transformation. (This contrasts to the counterexample of Nagata described a
The original proof of Weitzenböck from 1932 was forK = C. Later Seshadri [63] found
proof for any fieldK of characteristic 0. A simple proof forK = C using ideas from [63
has been recently given by Tyc [72]. To the best of our knowledge, no constructive
with effective estimates of the degree of the generators of the algebra of constants h
given up till now.

For each dimensionm there are only finite number of essentially different Weitzenb
derivations to study: Up to a linear change of the coordinates, the Weitzenböck deriv
δ are in one-to-one correspondence with the partition(p1 + 1,p2 + 1, . . . , ps + 1) of m,
wherep1 � p2 � · · · � ps � 0, (p1 + 1) + (p2 + 1) + · · · + (ps + 1) = m, and the corre
spondence is given in terms of the Jordan normal formJ (δ) of the matrix of the derivation

J (δ) =




J1 0 · · · 0

0 J2 · · · 0
...

... · · · ...

0 0 · · · Js


 , where Ji =




0 1 0 · · · 0 0

0 0 1 · · · 0 0
...

...
... · · · ...

...

0 0 0 · · · 0 1

0 0 0 · · · 0 0




is the(pi + 1) × (pi + 1) Jordan cell with zero diagonal.
Another important application of locally nilpotent derivations is the constructio

candidates for wild automorphisms of polynomial algebras, see, e.g., the survey of
sky and Yu [31]. A typical example is the following. Ifδ is a Weitzenböck derivatio
of K[x1, . . . , xm] and 0 �= w ∈ K[x1, . . . , xm]δ , then ∆ = wδ is also a locally nilpo-
tent derivation ofK[x1, . . . , xm] with the same algebra of constants asδ and exp∆ is
an automorphism ofK[x1, . . . , xm]. By the theorem of Martha Smith [67], all such a
tomorphisms are stably tame and become tame if extended toK[x1, . . . , xm, xm+1] by
(exp∆)(xm+1) = xm+1. The famous Nagata automorphism ofK[x, y, z], see [59], also
can be obtained in this way: We define the derivationδ by

δ(x) = −2y, δ(y) = z, δ(z) = 0, w = xz + y2 ∈ K[x, y, z]δ,

and for∆ = wδ the Nagata automorphism isν = exp∆:

ν(x) = x + (−2y)
w

1! + (−2z)
w2

2! = x − 2
(
xz + y2)y − (

xz + y2)2
z,

ν(y) = y + z
w

1! = y + (
xz + y2)z,

ν(z) = z.
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Recently Shestakov and Umirbaev [64] proved that the Nagata automorphism is w
is interesting to mention that their approach is based on Poisson algebras and met
noncommutative, and even nonassociative, algebras.

There are few exceptions of locally nilpotent derivations and their exponents whi
not arise immediately from triangular derivations: the derivations of Freudenburg (ob
with his local slice construction [38]) and the automorphisms of Drensky and Gupta
tained by methods of noncommutative algebra, [26]). Later, Drensky, van den Ess
Stefanov [24] have shown that the automorphisms from [26] also can be obtained in
of locally nilpotent derivations and are stably tame.

2.2. Noncommutative invariant theory

An important part of noncommutative invariant theory is devoted to the study o
algebra of invariants of a linear groupG ⊂ GLm acting on the free associative algeb
K〈X〉 = K〈x1, . . . , xm〉, relatively free algebrasFm(W) in varieties of associative alge
brasW, the free Lie algebraLm = L(X) and relatively free algebrasLm(V) in varieties of
Lie algebrasV. For more detailed exposition we refer to the surveys on noncommu
invariant theory by Formanek [35], Drensky [22] and the survey on algorithmic met
for relatively free semigroups, groups and algebras by Kharlampovich and Sapir [47

2.2.1. Free associative algebras
By a theorem of Lane [53] and Kharchenko [45], the algebra of invariantsK〈X〉G is

always a free algebra (independently of the properties ofG ⊂ GLm). By the theorem o
Dicks and Formanek [15] and Kharchenko [45], ifG is finite, thenK〈X〉G is finitely
generated if and only ifG is cyclic and acts onVm = ∑m

j=1 Kxj as a group of scala
multiplications. This result was generalized for a much larger class of groups by Kor
[48] who also established a finite generation ofK〈X〉G if we equip it with a proper action
of the symmetric group.

Recall that ifV is a multigraded vector space which is a direct sum of its multihom
neous componentsV (n1,...,nm), then the Hilbert series ofV is defined as the formal powe
series

H(V, t1, . . . , tm) =
∑

dim
(
V (n1,...,nm)

)
t
n1
1 · · · tnm

m .

If V is “only” graded with homogeneous componentsV (n), then its Hilbert series is

H(V, t) =
∑
n�0

dim
(
V (n)

)
tn.

Dicks and Formanek [15] proved also an analogue of the Molien formula for the H
series ofK〈X〉G, |G| < ∞, which was generalized for compact groupsG by Almkvist,
Dicks and Formanek [4] (an analogue of the Molien–Weyl formula in classical inva
theory). In particular, Almkvist, Dicks and Formanek showed that the Hilbert series o
algebra of invariantsK〈X〉g is an algebraic function ifg is a unipotent matrix. (Hence th
same holds for the algebra of constantsK〈X〉δ for a Weitzenböck derivationδ.)
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2.2.2. Relatively free associative algebras
Let f (x1, . . . , xm) ∈ K〈x1, x2, . . .〉 be an element of the free algebra of countable ra

Recall thatf (x1, . . . , xm) = 0 is a polynomial identity for the algebraA if f (a1, . . . , am) =
0 for all a1, . . . , am ∈ A. The algebra is called PI, if it satisfies some nontrivial polynom
identity. The class of all algebras satisfying a given setU ⊂ K〈x1, x2, . . .〉 of polyno-
mial identities is called the variety of associative algebras defined by the systemU . We
shall denote the varieties by German letters. IfW is a variety, thenT (W) is the ideal of
K〈x1, x2, . . .〉 consisting of all polynomial identities ofW and the algebra

Fm(W) = K〈x1, . . . , xm〉/(K〈x1, . . . , xm〉 ∩ T (W)
)

is the relatively free algebra of rankm in W. The idealsK〈x1, . . . , xm〉 ∩ T (W) of
K〈x1, . . . , xm〉 are invariant under all endomorphisms ofK〈x1, . . . , xm〉 and, in particu-
lar, areGLm-invariant.

Most of the work on invariant theory of relatively free algebras is devoted to the de
tion of the varietiesW such thatFm(W)G is finitely generated for allm = 2,3, . . . , and all
groupsG ⊂ GLm from a given classG. The description of such varieties for the class of
finite groups is given in different terms by several authors, starting with Kharchenko
see the surveys by Formanek [35], Drensky [22], Kharlampovich and Sapir [47]. In p
ular, the finite generation ofFm(W)G for all finite groups holds if and only if all finitely
generated algebras ofW are weakly noetherian (i.e., noetherian with respect to two-s
ideals) which is equivalent to the fact thatW satisfies a polynomial identity of a very sp
cial form. One of the simplest descriptions is the following (see [20]):Fm(W)G is finitely
generated for allm � 2 and all finite groupsG ⊂ GLm if and only if F2(W)g is finitely
generated for the linear transformationg defined byg(x1) = −x1, g(x2) = x2.

If we consider the finite generation ofFm(W)G for the class all reductive groupsG,
then the results of Vonessen [74], Domokos and Drensky [17] give thatFm(W)G is fi-
nitely generated for all reductiveG if and only if the finitely generated algebras inW are
one-side noetherian. For unitary algebras this means thatW satisfies the Engel identit
[x2, x1, . . . , x1] = 0.

Concerning the Hilbert series of subalgebras of invariants of relatively free
bras, Formanek [35] generalized the Molien–Weyl formula for the Hilbert serie
K[x1, . . . , xm]G for G finite or compact to the case of any relatively free algebra, exp
ing the Hilbert series ofFm(W)G in terms of the Hilbert seriesH(Fm(W), t1, . . . , tm).
If G is finite, thenH(Fm(W)G, t) involves the eigenvalues of allg ∈ G. By a theorem
of Belov [5], the Hilbert series ofFm(W) is always a rational function and this im
plies thatH(Fm(W)G, t) is also rational forG finite. For reductiveG the rationality of
H(Fm(W)G, t) is known only for varietiesW satisfying a nonmatrix polynomial identit
see Domokos and Drensky [17].

2.2.3. Lie algebras
We shall mention few results only. By a theorem of Bryant [9], ifG is a nontrivial finite

linear group, then the algebra of fixed points of the free Lie algebraLG
m is never finitely

generated. This result was extended by Drensky [21] to the fixed points of all rela
free algebrasLm(V) (and also for all finiteG �= 1) for nonnilpotent varietiesV of Lie
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algebras. We refer also to the work done by several authors and mainly by Bryant, K
and Stöhr about fixed points of free Lie algebras in the modular case, see, e.g., [10]
references therein.

2.3. Derivations of free algebras

The algebra of constants of the formal partial derivatives∂/∂xj , j = 1, . . . ,m, for
K〈X〉 = K〈x1, . . . , xm〉 was described by Falk [34]. It is generated by all Lie commuta
[[. . . [xj1, xj2], . . .], xjn ], n � 2. Specht [69] applied products of such commutators in
study of algebras with polynomial identities, see also Drensky [19] or the book [23] fo
ther application to the theory of PI-algebras. It is known, see Gerritzen [40], that in thi
the algebra of constants is free, see also Drensky and Kasparian [28] for an explici
(The freedom of the algebra of constants of the partial derivatives ofK[X] does not follow
immediately from the result of Lane [53] and Kharchenko [45]. The derivations∂/∂xj are
locally nilpotent and their exponents exp(∂/∂xj ) generate a group of automorphisms
K〈X〉 which consists of all translations of the formxi → xi + ai , ai ∈ Z. Although this
group is a subgroup of the affine group, we cannot apply directly [53] and [45] becau
group is not linear.)

Similar study of the algebra of constants in a very large class of (not only assoc
algebras was performed by Gerritzen and Holtkamp [41] and Drensky and Holtkamp
We shall finish the survey section with the following, probably folklore known lemma

Lemma 2.1. Let W be any variety of algebras and let F(W) be the relatively free algebra
of any rank. Every mapping from the free generating set to F(W) can be extended to a
derivation.

Proof. We shall prove the lemma for relatively free associative algebras of finit
countable rank only. The same considerations work in the case of any infinite ran
δ0 : {x1, x2, . . .} → F∞(W) be any mapping and letT (W) be the T-ideal ofK〈x1, x2, . . .〉
of all polynomial identities ofW. We fix f1, . . . , fm ∈ K〈X〉 such thatδ0(xj ) =
fj + T (W) ∈ F∞(W), j = 1,2, . . . . Since every mapping{x1, x2, . . .} → K〈x1, x2, . . .〉
can be extended to a derivation ofK〈x1, x2, . . .〉, it is sufficient to show that th
derivation ∆ of K〈x1, x2, . . .〉 defined by∆(xj ) = fj , j = 1,2, . . . , has the property
∆(T (W)) ⊂ T (W). Since the fieldK is of characteristic 0, ifu(x1, . . . , xm) belongs
to T (W), then the multihomogeneous components ofu also are inT (W) and we
may assume thatu(x1, . . . , xm) ∈ T (W) is multihomogeneous. The partial lineariz
tion uj (x1, . . . , xm, xm+1) in xj of u(x1, . . . , xm), i.e., the linear component inxm+1 of
u(x1, . . . , xj−1, xj + xm+1, xj+1, . . . , xm) also belongs toT (W). It is easy to see that∆
acts onu(x1, . . . , xm) by

∆
(
u(x1, . . . , xm)

) =
m∑

j=1

uj

(
x1, . . . , xm,∆(xj )

)
.

Sinceuj (x1, . . . , xm,∆(xj )) ∈ T (W) we obtain that∆(u) ∈ T (W) and this means tha
∆ induces a derivationδ on F∞(W) = K〈x1, x2, . . .〉/T (W) with the additional prop-
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erty δ(xj ) = fj , andδ extendsδ0. This implies also the case ofFm(W): If f1, . . . , fm ∈
Fm(W), then we extend the mapping to a derivation ofF∞(W) (e.g., byδ0(xj ) = 0 for
j > m). Then the restriction toFm(W) of the derivation ofF∞(W) is a derivation of
Fm(W). �

3. Weitzenböck derivations of polynomial algebras

Since we consider nonzero Weitzenböck derivations only, without loss of gene
we may assume that the derivationδ is in its Jordan normal form,δ(x1) = 0, δ(x2) = x1
and the set of variablesX = {x1, . . . , xm} is a Jordan basis ofVm = ∑m

j=1 Kxj . If the
rank of δ is equal tom − 1 (i.e., δ(xj ) = xj−1, j = 2, . . . ,m), thenδ is called the basic
Weitzenböck derivation ofK[X]. The following proposition, see [61], gives the descript
of the algebras of constants of any Weitzenböck derivation. (It is a very special case
more general situation of an arbitrary locally nilpotent derivation.) For our purpose
work in the localization of the polynomial algebraK[X][x−1

1 ] = K[x1, x2, . . . , xm][x−1
1 ]

consisting of all polynomials inx1, . . . , xm allowing negative degrees ofx1. Sincex1 is a
constant (i.e.,δ(x1) = 0), we may extendδ to a derivation ofK[X][x−1

1 ].

Proposition 3.1. Let δpj +1(xj ) = 0, j = 1, . . . ,m, and let

zj =
pj∑

k=0

δk(xj )

k! (−x2)
kx

pj −k

1 , j = 3,4, . . . ,m.

(i) (K[X][x−1
1 ])δ = K[x1, z3, z4, . . . , zm][x−1

1 ];
(ii) K[X]δ = K[X] ∩ (K[X][x−1

1 ])δ .

Example 3.2. If δ is a basic Weitzenböck derivation, then

z3 = x3x
2
1 − x2

2x1

2
= x1

2

(
2x3x1 − x2

2

)
, z4 = x1

(
x4x

2
1 − x3x2x1 + x3

2

3

)
, . . . ,

zj = (−1)j
j

(j + 1)!x1

(
x

j+1
2 + (j + 1)!

j

j−1∑
k=0

(−1)j−k 1

(j + 1)!x
j−k

1 xk
2xj+1−k

)
.

Corollary 3.3. For any Weitzenböck derivation δ, the transcendence degree (i.e., the max-
imal number of algebraically independent elements) of K[x1, . . . , xm]δ is equal to m − 1.

The explicit form of the generators ofK[x1, . . . , xm]δ is known for smallm only. Tan
[71] presented an algorithm for computing the generators of the algebra of constan
basic derivation. It was generalized by van den Essen [32] for any locally nilpotent d
tion assuming that the finite generation of the algebra of constants is known. The alg
involves Gröbner bases techniques.
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Examples 3.4. We have selected few examples of the generating sets of the alge
constants, all of them taken from [61]. Forδ being a basic Weitzenböck derivation (wi
δ(x1) = 0 andδ(xj ) = xj−1, j = 2, . . . ,m):

K[x1, x2]δ = K[x1], K[x1, x2, x3]δ = K
[
x1, x

2
2 − 2x1x3

]
,

K[x1, x2, x3, x4]δ = K

[
x1, x

2
2 − 2x1x3, x

3
2 − 3x1x2x3 + 3x2

1x4,

x2
2x2

3 − 2x3
2x4 + 6x1x2x3x4 − 8

3
x1x

3
3 − 3x2

1x2
4

]

(see [61, Example 6.8.2]),

K[x1, x2, x3, x4, x5]δ = K
[
x1, x

2
2 − 2x1x3,2x2x4 − x2

3 − 2x1x5, x
3
2 − 3x1x2x3 + 3x2

1x4,

6x2
2x5 − 6x2x3x4 + 2x3

3 − 12x1x3x5 + 9x1x
2
4

]
(see [61, Example 6.8.4]).

Forδ nonbasic,δ(x2) = x1, δ(x4) = x3, δ(x1) = δ(x3) = 0 (see [61, Proposition 6.9.5]

K[x1, x2, x3, x4]δ = K[x1, x3, x1x4 − x2x3],

for δ defined byδ(x3) = x2, δ(x2) = x1, δ(x5) = x4, δ(x1) = δ(x4) = 0 (see [61, Exam
ple 6.8.5]):

K[x1, x2, x3, x4, x5]δ = K
[
x1, x4, x1x5 − x2x4, x

2
2 − 2x1x3,2x3x

2
4 − 2x2x4x5 + x1x

2
5

]
.

Remark 3.5. Springer [70] found a formula for the Hilbert series of the algebra of
variants ofSL2(K) acting on the forms of degreed . This is equivalent to the descriptio
of the Hilbert series of the algebra of constants of the basic Weitzenböck derivat
K[x1, . . . , xd+1]. Almkvist [2,3] related these invariants with invariants of the modu
action of a cyclic group of orderp.

4. Lifting and description of the constants

We need the following easy lemma.

Lemma 4.1. Let G ⊂ H be groups and let the H -module M be completely reducible. If
N ⊂ M is an H -submodule and m̄ ∈ M/N is a G-invariant, then m̄ can be lifted to a
G-invariant m ∈ M .

Proof. Let P be anH -complement ofN in M , i.e.,M = N ⊕ P . SinceM/N ∼= P , there
exists an elementm ∈ P which maps onm̄ under the natural homomorphismM → M/N .
Since m̄ is G-invariant, we obtain thatG(m) = G(m̄) = m̄. Taking into account tha
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m1,m2 ∈ P , m1 �= m2, implies thatm̄1 �= m̄2 in M/N , andG(P ) = P , we deduce tha
G(m) = m in M , i.e.,m is G-invariant. �
Proposition 4.2. Let K〈X〉 = K〈x1, . . . , xm〉 be the free associative algebra with the
canonical GLm-action, and let I ⊂ J be GLm-invariant two-sided ideals of K〈X〉. Then
for every subgroup G of GLm, the G-invariants of K〈X〉/J can be lifted to G-invariants
of K〈X〉/I .

Proof. The statement follows immediately from Lemma 4.1 because, as aGLm-module,
K〈X〉 is completely reducible. �
Corollary 4.3. If I ⊂ J are GLm-invariant two-sided ideals of K〈X〉 and δ is a Weitzen-
böck derivation on K〈X〉, then the algebra of constants (K〈X〉/J )δ can be lifted to the
algebra of constants (K〈X〉/I)δ .

Proof. The corollary is a straightforward consequence of Proposition 4.2 because
gebras of constants(K〈X〉/J )δ and(K〈X〉/I)δ coincide, respectively, with the algebr
of g-invariants(K〈X〉/J )g and(K〈X〉/I)g , whereg = expδ is the linear transformatio
corresponding toδ. �
Corollary 4.4. Let I ⊂ J be GLm-invariant two-sided ideals of K〈X〉 and let δ be a
Weitzenböck derivation on K〈X〉. If the algebra of constants (K〈X〉/J )δ is not finitely
generated, then (K〈X〉/I)δ is also not finitely generated.

Remark 4.5. Corollary 4.4 holds also for Lie algebras and other free algebras inclu
free (special or not) Jordan algebras and the absolutely free algebraK{x1, . . . , xm}.

Now we shall describe the algebras of constants in the case of two variables, as
thatK〈x1, x2〉 = K〈x, y〉 andδ(x) = 0, δ(y) = x.

Recall that any irreducible polynomialGL2-moduleW(λ1, λ2) has a unique (up to
multiplicative constant) elementw(x,y) which is bihomogeneous of degree(λ1, λ2) and
is called the highest weight vector ofW(λ1, λ2). For anyGL2-invariant homomorphic
imageK〈x, y〉/I of K〈x, y〉 the algebra of constants(K〈x, y〉/I)δ coincides with the al
gebra ofg-invariants(K〈x, y〉/I)g whereg = expδ. Sinceg(x) = x, g(y) = x + y and
charK = 0, the algebra ofg-invariants coincides with the algebra of invariants of the u
triangular groupUT2(K). Hence, as in Almkvist, Dicks and Formanek [4], we may
Theorem 3.3(i) of De Concini, Eisenbud and Procesi [13] and obtain:

Theorem 4.6. For any GL2-invariant ideal I of K〈x, y〉 the algebra of constants
(K〈x, y〉/I)δ is spanned by the highest weight vectors of the GL2-irreducible components
of K〈x, y〉/I .

Remarks 4.7. (1) A direct proof of Theorem 4.6 can be obtained using the c
rion of Koshlukov [49] which states: A multihomogeneous of degreeλ = (λ1, . . . , λm)

polynomialw(x1, . . . , xm) ∈ K〈x1, . . . , xm〉 is a highest weight vector of an irreducib
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GLm-submoduleW(λ) of K〈x1, . . . , xm〉 if and only if for all partial linearizations
wj(x1, . . . , xm, xm+1) of w(x1, . . . , xm) one haswj(x1, . . . , xm, xi) = 0 for all i < j .

(2) By Almkvist, Dicks and Formanek [4] the algebra(K〈x1, . . . , xm〉)UTm(K) of all
UTm(K)-invariants coincides with the vector space spanned by all highest weight v
w(x1, . . . , xm) ∈ W(λ) ⊂ K〈x1, . . . , xm〉, when λ = (λ1, . . . , λm) runs on the set of al
partitions in not more thanm parts.

(3) Following Almkvist, Dicks and Formanek [4], for any unipotent transformationg of
K〈x1, . . . , xm〉 (and hence for any Weitzenböck derivationδ) one can define aGL2-action
on K〈x1, . . . , xm〉 and on the factor algebrasK〈x1, . . . , xm〉/I modulo GLm-invariant
ideals, such that(K〈x1, . . . , xm〉)g and (K〈x1, . . . , xm〉/I)g are spanned by the highe
weight vectors with respect to theGL2-action.

The necessary background on symmetric functions which we need can be found,
the book by Macdonald [57]. Any symmetric function inm variablesf (t1, . . . , tm) which
can be expressed as a formal power series has the presentation

f (t1, . . . , tm) =
∑
λ

m(λ)Sλ(t1, . . . , tm),

whereSλ(t1, . . . , tm) is the Schur function corresponding to the partitionλ = (λ1, . . . , λm)

andm(λ) is the multiplicity of Sλ(t1, . . . , tm) in f (t1, . . . , tm). This presentation agree
with the theory of polynomial representations ofGLm because the Schur functions pl
the role of characters of the irreducible polynomialGLm-representations. In our case th
relation gives the following: IfK〈X〉/I for someGLm-invariant idealI , then the Hilbert
series ofK〈X〉/I has the presentation

H
(
K〈X〉/I, t1, . . . , tm

) =
∑
λ

m(λ)Sλ(t1, . . . , tm),

if and only if K〈X〉/I is decomposed as aGLm-module as

K〈X〉/I ∼=
∑
λ

m(λ)W(λ).

In the case of two variables the Schur functions have the following simple expressio

S(λ1,λ2)(t1, t2) = (t1t2)
λ2

t
λ1−λ2+1
1 − t

λ1−λ2+1
2

t1 − t2
.

Drensky and Genov [25] defined the multiplicity series of

f (t1, t2) =
∑

m(λ)Sλ(t1, t2)
λ
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M(f )(t, u) =
∑
λ

m(λ)tλ1uλ2,

or, if one introduces a new variablev = tu, as

M ′(f )(t, v) =
∑
λ

m(λ)tλ1−λ2vλ2.

The relation between the symmetric function and its multiplicity series is

f (t1, t2) = t1M
′(f )(t1, t1t2) − t2M

′(f )(t2, t1t2)

t1 − t2
.

Theorem 4.6 gives that the Hilbert series of the algebra of constants(K〈x, y〉/I)δ (with re-
spect to the bigrading) is equal to the multiplicity series of the Hilbert series ofK〈x, y〉/I :

Corollary 4.8. For any GL2-invariant ideal I of K〈x, y〉 and for the basic Weitzenböck
derivation δ

H
((

K〈x, y〉/I)δ
, t, u

) = M
(
H

(
K〈x, y〉/I, t1, t2

))
(t, u).

If we consider the usual grading, Corollary 4.8 has the form

H
((

K〈x, y〉/I)δ
, t

) = M
(
H

(
K〈x, y〉/I, t1, t2

))
(t, t) = M ′(H (

K〈x, y〉/I, t1, t2
))(

t, t2).
We shall apply Corollary 4.8 in the next section in the concrete description of the gene
of the constants inK〈x, y〉 and, more generally, in any relatively free associative alge

5. Examples and concrete generators of algebras of constants

We start this section with several examples when we determine completely the al
of constants and their generators. We shall consider algebras of rank 2 and 3 only a
denote the free generators byx, y andx, y, z, respectively. We shall handle the case
basic Weitzenböck derivationsδ only, assuming thatδ(x) = 0, δ(y) = x (andδ(z) = y if
the rank of the algebra is equal to 3).

Example 5.1. Let L2 be the variety of associative algebras defined by the ide
[[x, y], z] = 0. By the theorem of Krakowski and Regev [51],L2 coincides with the variety
generated by the infinite dimensional Grassmann algebra. TheSn-cocharacter sequence
L2 is equal to

χn(L2) =
n∑

χ(k,1n−k), n � 1,
k=1
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see [51]. In virtue of the correspondence between cocharacters and Hilbert series,
and [18] (or the book [23]) the Hilbert series of the relatively free algebraFm(L2) is equal
to

H
(
Fm(L2), t1, . . . , tm

) = 1+
∑
k�1

m−1∑
l=0

S(k,1l )(t1, . . . , tm).

It is well known thatFm(L2) has a basis

x
a1
1 · · ·xam

m [xi1, xi2] · · · [xi2p−1, xi2p
], 1� i1 < i2 < · · · < i2p−1 < i2p � m,

see, for example, Bokut and Makar-Limanov [8] or the book [23]. The commut
[xi, xj ] are in the centre ofFm(L2) and satisfy the relations

[xσ(1), xσ(2)] · · · [xσ(2p−1), xσ(2p)] = (signσ)[x1, x2] · · · [x2p−1, x2p], σ ∈ S2p.

Let m = 2. ThenF2(L2) has a basis

{
xayb, xayb[x, y] ∣∣ a, b � 0

}
.

Its Hilbert series and the related multiplicity series are, respectively,

H
(
F2(L2), t1, t2

) = 1+ t1t2

(1− t1)(1− t2)
=

∑
n�0

S(n)(t1, t2) +
∑
n�2

S(n−1,1)(t1, t2),

M
(
H

(
F2(L2), t1, t2

))
(t, u) =

∑
n�0

tn +
∑
n�2

tn−1u = 1+ tu

1− t
.

By Corollary 4.8,

H
((

F2(L2)
)δ

, t, u
) = 1+ tu

1− t
.

Since the vector subspace ofF2(L2) spanned byxn, n � 0, andxn−2[x, y], n � 2, consists
of δ-constants and has the same Hilbert series as(F2(L2))

δ , we obtain that it coincides wit
the algebra of constants. This immediately implies that the algebra(F2(L2))

δ is generated
by x and[x, y].

Let m = 3. ThenF3(L2) has a basis

{
xaybzc, xaybzc[x, y], xaybzc[x, z], xaybzc[y, z] ∣∣ a, b, c � 0

}
and the commutator idealC of F3(L2) is a freeK[x, y, z]-module with free genera
tors [x, y], [x, z], [y, z]. By Examples 3.4,K[x, y, z]δ = K[x, y2 − 2xz]. We may choose
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or
y2−xz−zx as a lifting in(F3(L2))
δ of y2−2xz ∈ (K[x, y, z])δ . Hence(F3(L2))

δ is gen-
erated byx, y2 − xz − zx and some elements in the commutator idealC. Every element o
K[x, y, z] can be written in a unique way as

f0
(
x, y2 − 2xz

) +
∑
n�1

fn

(
x, y2 − 2xz

)
zn +

∑
n�1

gn

(
x, y2 − 2xz

)
yzn−1.

The elements inC have the form

f = α(x, y, z)[x, y] + β(x, y, z)[x, z] + γ (x, y, z)[y, z], α,β, γ ∈ K[x, y, z].
If f is aδ-constant, then

0= δ(f ) = (
δ(α) + β

)[x, y] + (
δ(β) + γ

)[x, z] + δ(γ )[y, z].

In this way,f ∈ (F3(L2))
δ if and only if

δ(γ ) = 0, δ(β) = −γ, δ(α) = −β.

We presentβ(x, y, z) in the form

β = f0 +
∑
n�1

(
fnz

n + gnz
n−1y

)
, f0, fn, gn ∈ (

K[x, y, z])δ
,

and calculate, bearing in mind thaty2 = (y2 − 2xz) + 2xz,

−γ = δ(β) =
∑
n�1

(
nfnz

n−1y + (n − 1)gnz
n−2y2 + xgnz

n−1)
=

∑
n�1

(
(n − 1)gn

(
y2 − 2xz

)
zn−2 + (2n − 1)xgnz

n−1 + nfnz
n−1y

)
.

This easily implies thatfn = 0,n � 1,gn = 0,n � 2, andβ = f0+g1y, f0, g1 ∈ K[x, y2−
2xz] = (K[x, y, z])δ . Henceγ = −g1x. Continuing in this way, we obtain the final for
of α,β, γ :

α = α0z + α1y + α2, β = −α0y − α1x, γ = α0x.

Hence the part of the algebra of constants ofF3(L2) which belongs to the commutat
idealC is spanned as a(K[x, y, z])δ-module by

[x, y], y[x, y] − x[x, z], z[x, y] − y[x, z] + x[y, z],
and(F3(L2))

δ is generated by

x, y2 − xz − zx, [x, y], y[x, y] − x[x, z], z[x, y] − y[x, z] + x[y, z].
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Example 5.2. Let us consider the varietyM of all “metabelian” associative algebras d
fined by the identity[x1, x2][x3, x4] = 0. It is well known thatF2(M) has a basis

{
xayb, xayb[x, y]xcyd

∣∣ a, b, c, d � 0
}
.

We shall write the elementxayb[x, y]xcyd as[x, y]xa
1yb

1xc
2y

d
2 . In this way, the commutato

ideal C of F2(M) is a free cyclicK[x, y]-bimodule (or a free cyclicK[x1, y1, x2, y2]-
module) with theK[x, y]-action defined by

x[x, y] = [x, y]x1, y[x, y] = [x, y]y1, [x, y]x = [x, y]x2, [x, y]y = [x, y]y2.

The Hilbert series ofF2(M) is

H
(
F2(M), t1, t2

) = 1

(1− t1)(1− t2)
+ t1t2

(1− t1)2(1− t2)2
.

One can calculate directly theSn-cocharacter ofM using the Young rule as in [23] or t
apply techniques of [25] to see that the multiplicity series of the Hilbert series ofF2(M) is

M ′(H (
F2(M), t1, t2

))
(t, v) = 1

1− t
+ v

(1− t)2(1− v)
.

By Corollary 4.8 this is also the Hilbert series of the algebra of constants(F2(M))δ . We
consider the linearly independent highest weight vectors

xn, n � 0, [x, y]xp

1 x
q

2 (x1y2 − y1x2)
r , p, q, r � 0.

They span a graded vector subspace of(F2(M))δ and its Hilbert series coincides wit
the Hilbert series of(F2(M))δ . Hence the above highest weight vectors span(F2(M))δ .
Since the square of the commutator idealC is equal to 0, the elementx together with all
[x, y](x1y2 − y1x2)

r , r � 0, is a minimal generating set of(F2(M))δ and the algebra o
constants is not finitely generated.

Now we start with the description of the constants of the free algebraK〈x, y〉 which
will gives also the description of the constants in any two-generated associative alge

Proposition 5.3. The Hilbert series of the algebra of constants (K〈x, y〉)δ are

H
((

K〈x, y〉)δ
, t, u

) =
∑

(λ1,λ2)

((
λ1 + λ2

λ2

)
−

(
λ1 + λ2

λ2 − 1

))
tλ1uλ2

= 1− √
1− 4v

2v
· 1

1− 1−√
1−4v t

,

2v
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where v = tu and, in one variable,

H
((

K〈x, y〉)δ
, t

) =
∑
p�0

((
2p

p

)
t2p +

(
2p + 1

p

)
t2p+1

)
.

Proof. By Corollary 4.8 the Hilbert series of the algebra of constants(K〈x, y〉)δ is equal to
the multiplicity series of the Hilbert series ofK〈x, y〉. By representation theory of gener
linear groups, the multiplicitymλ of the irreducibleGLm-moduleW(λ) in K〈x1, . . . , xm〉
for the partitionλ of n is equal to the degreedλ of the irreducibleSn-characterχλ. By the
hook formula, forλ = (λ1, λ2)

dλ = (λ1 + λ2)! (λ1 − λ2 + 1)

(λ1 + 1)!λ2! =
(

λ1 + λ2

λ2

)
−

(
λ1 + λ2

λ2 − 1

)
.

This gives the expression forH((K〈x, y〉)δ, t, u). If we set thereu = t we obtain that the
coefficient oft2p is equal to

p∑
i=0

((
2p

i

)
−

(
2p

i − 1

))
=

(
2p

p

)
,

and similarly for the coefficient oft2p+1. In order to obtain the formula in terms oft and
v we can either use the known formulas for the summation of formal power series
binomial coefficients or proceed in the following way using ideas from [25]. The Hi
series ofK〈x, y〉 is equal to

f (t1, t2) = H
(
K〈x, y〉, t1, t2

) = 1

1− (t1 + t2)
.

It is sufficient to show that the multiplicity series off (t1, t2) is

M ′(f )(t, v) = 1− √
1− 4v

2v
· 1

1− 1−√
1−4v

2v
t
.

Since the multiplicity series of any symmetric functionf (t1, t2) ∈ K[[t1, t2]] is a uniquely
determined formal power series inK[[t, v]], it is sufficient to show that the expansion of

1− √
1− 4v

2v
· 1

1− 1−√
1−4v

2v
t

is in K[[t, v]] (which is obvious because 1− √
1− 4v = ∑

n�1 anv
n for somean ∈ K and

(1− √
1− 4v )/(2v) ∈ K[[v]]) and to use the formula

t1M
′(f )(t1, t1t2) − t2M

′(f )(t2, t1t2) = f (t1, t2).

t1 − t2
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Direct verification shows that for

g(t, v) = 1− √
1− 4v

2v
· 1

1− 1−√
1−4v

2v
t
,

t1g(t1, t1t2) − t2g(t2, t1t2)

t1 − t2
= 1

1− (t1 + t2)

which gives thatg(t, v) = M ′(f )(t, v). �
By the theorem of Lane [53] and Kharchenko [45], the algebra of constants(K〈X〉)δ is a

graded free algebra and hence has a homogeneous system of free generators. The f
theorem describes the generating function of the set of free generators.

Theorem 5.4. The generating function of any bihomogeneous system of free generators of
(K〈X〉)δ with respect to the variables t and v = tu is

a(t, v) = t + 1− √
1− 4v

2
.

Proof. If a(t, v) is the generating function of the set of free generators of(K〈X〉)δ , then
the Hilbert series of(K〈X〉)δ is

H
((

K〈X〉)δ
, t, v

) = 1

1− a(t, v)
.

Applying Proposition 5.3 we obtain that

1

1− a(t, v)
= 1− √

1− 4v

2v
· 1

1− 1−√
1−4v

2v
t

and the expression ofa(t, v) is a result of easy calculations.�
Corollary 5.5. The algebra of constants (K〈x, y〉)δ , where δ(x) = 0, δ(y) = x, is gener-
ated by x and by SL2(K)-invariants.

Proof. An elementf (x, y) ∈ K〈x, y〉 is anSL2-invariant if and only if it is a linear com
bination of highest weight vectors of aGL2-submodulesW(λ1, λ1). By Theorem 4.6, the
δ-constants are linear combinations of highest weight vectorsw(λ1,λ2), and w(λ1,λ2) is
bihomogeneous of degree(λ1, λ2). Hence we obtain that the set ofSL2-invariants coin-
cides with the linear combinations of bihomogeneous elements of degree(p,p). The only
nonzero coefficients of the Hilbert seriesH((K〈x, y〉)SL2, t, u) are for vn = (tu)n and
H((K〈x, y〉)SL2, t, u) is obtained fromH((K〈x, y〉)δ, t, v) by replacingt with 0. Hence
Theorem 5.4 gives that the set of homogeneous generators of the algebra ofδ-constants is
spanned byx andSL2-invariants. �



V. Drensky, C.K. Gupta / Journal of Algebra 292 (2005) 393–428 411

s of

,

gener-

ors of

-

Corollary 4.3 gives immediately:

Corollary 5.6. For any GL2-invariant ideal I of K〈x, y〉 the algebra of constants
(K〈x, y〉/I)δ , where δ(x) = 0, δ(y) = x, is generated by x and by SL2(K)-invariants.

Remark 5.7. By Almkvist, Dicks and Formanek [4, Example 5.10], the Hilbert serie
the algebra ofSL2-invariants ofK〈x, y〉 is

H
((

K〈x, y〉)SL2, v
) = 1− √

1− 4v

2v
=

∑
n�0

1

n + 1

(
2n

n

)
vn,

and the coefficient ofvn is the (n + 1)st Catalan numbercn+1. (By definition cn is the
number of possibilities to distribute parentheses in the sum 1+ 1+ · · · + 1 of n units, see
e.g., [42].) This agrees with Proposition 5.3 becauseH((K〈x, y〉)SL2, v) is obtained from

H
((

K〈x, y〉)δ
, t, v

) = 1− √
1− 4v

2v
· 1

1− 1−√
1−4v

2v
t

by replacingt with 0.
Theorem 5.4 gives that the generating function of a homogeneous system of free

ators of(K〈X〉)SL2 is

b(v) = 1− √
1− 4v

2
= vH

((
K〈x, y〉)SL2, v

)
.

Sincev = tu is of second degree, the number of generators of(K〈x, y〉)SL2 of degree 2n
is equal to thenth Catalan number.

Below we give an inductive procedure to construct an infinite set of free generat
the algebra(K〈x, y〉)SL2.

Algorithm 5.8. The following infinite procedure gives a complete set{w1,w2, . . .} of
free generators of the algebra(K〈x, y〉)SL2. We setw1 = [x, y]. If we have already con
structed all free generatorsw1,w2, . . . ,wk of degree� 2n, then we form allcn+1 products
wi1 · · ·wis of degree 2n, which we number asωj , j = 1, . . . , cn+1, and add to the system
of generators thecn+1 elements

wk+j = xωjy − yωjx = xwi1 · · ·wis y − ywi1 · · ·wis x, j = 1, . . . , cn+1.

The first several elements of the generating set are:

w1 = [x, y], w2 = x[x, y]y − y[x, y]x,

w3 = xw2
1y − yw2

1x = x[x, y]2y − y[x, y]2x,

w4 = xw2y − yw2x = x
(
x[x, y]y − y[x, y]x)

y − y
(
x[x, y]y − y[x, y]x)

x.
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Proof. By Remark 5.7 and by inductive arguments, we may assume that the num
productsωj = wi1 · · ·wis of degree 2n is equal to the Catalan numbercn+1. Hence the
number of wordsxωjy − yωjx, all of degree 2(n + 1) is also equal tocn+1 which agrees
with the number of free generators of degree 2(n + 1). Clearly, if ωj is anSL2-invariant,
the elementxωjy − yωjx is also anSL2-invariant. Hence it is sufficient to show that a
productswj1 · · ·wjp of degree 2(n + 1) and allxωjy − yωjx are linearly independent.

We introduce the lexicographic ordering onK〈x, y〉 assuming thatx < y. Then by
induction we prove that the minimal monomialszk1 · · · zk2n+2, zk ∈ {x, y}, of wj1 · · ·wjp

andxωjy −yωjx have the property that the number ofx ’s in every beginningzk1 · · · zkq of
zk1 · · · zk2n+2 is bigger or equal to the number ofy ’s. For example, the minimal monomial o
w2 = x[x, y]y − y[x, y]x is xxyy, all its beginnings arex, xx, xxy, xxyy and the numbe
of entries ofx andy are (1,0), (2,0), (2,1), (2,2), respectively. Similarly, the minima
monomial of

w1w
2
2 = [x, y](x[x, y]y − y[x, y]x)(

x[x, y]y − y[x, y]x)
is xyxxyyxxyy and the entries ofx andy in the beginnings are

(1,0), (1,1), (2,1), (3,1), (3,2), (3,3), (4,3), (5,3), (5,4), (5,5).

Pay attention that the first place where the number ofx ’s is equal to the number ofy ’s,
namely the beginningxy, corresponds to the beginningw1 = [x, y] in w1w

2
2 and the res

of the minimal monomialxxyyxxyy has the same property.
We shall show that the productswj1 · · ·wjp (including the casep = 1 of a product

of one free generatorxωjy − yωjx) are in a one-to-one correspondence with the wo
zk1 · · · zk2n+2 in x and y with the property that the number ofx ’s in every beginning
zk1 · · · zkq is bigger or equal to the number ofy ’s. Let ω = wj1 · · ·wjp be a product of
elements of the constructed set. Ifp = 1, i.e.,ω = wj is in the set, thenwj = xω′y − yω′x
and the minimal monomialz1 · · · z2n of ω′ has the property that the number ofx ’s in every
beginning ofz1 · · · z2n is bigger or equal to the corresponding number ofy ’s. Since the
minimal monomial ofwj is xz1 · · · z2ny, we obtain that in every of its proper beginnin
the number of occurrences ofx is strictly bigger than the number of entries ofy. If p > 1,
then, reading the minimal word from left to right, the first place where the numbers o
x ’s and they ’s is the same, is the end ofwj1. This arguments combined with inductio
easily imply that the different productswj1 · · ·wjp have different minimal monomials an
each word corresponds to some productwj1 · · ·wjp . Hence the productswj1 · · ·wjp are
linearly independent and this completes the proof.�
Corollary 5.9. For any variety W of associative algebras which does not contain the
metabelian variety M, the algebra of constants F2(W)δ is finitely generated.

Proof. It is well known that any varietyW which does not containM satisfies some
Engel identity[x2, x1, . . . , x1] = 0. By a theorem of Latyshev [54] any finitely genera
PI-algebra satisfying a nonmatrix polynomial identity, satisfies also some identity o
form [x1, x2] · · · [x2k−1, x2k] = 0. Applying this result toF2(W) we obtain thatF2(W)
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is solvable as a Lie algebra, and, by a theorem of Higgins [43]F2(W) is Lie nilpotent.
(Actually Zelmanov [76] proved the stronger result that any Lie algebra over a fie
characteristic zero satisfying the Engel identity is nilpotent.)

By Drensky [19], for any nilpotent varietyW, and for a fixed positive integerm, the
vector spaceBm(W) of so called proper polynomials inFm(W) is finite dimensional
Using the relation

Fm(W) ∼= K[x1, . . . , xm] ⊗K Bm(W)

between theGLm-modulesFm(W) andBm(W) and the Young rule, we can derive the f
lowing. There exists a positive constantp such that the nonzero irreducible compone
W(λ1, . . . , λm) of theGLm-moduleFm(W) satisfy the restrictionλ2 � p. Hence the sub
algebraF2(W)SL2 of SL2-invariants ofF2(W) (which is spanned on the highest weig
vectors ofW(λ1, λ1) with λ1 � p) is finite dimensional. Now the statement follows fro
Corollary 5.6 becauseF2(W)δ is generated byx and the finite dimensional vector spa
F2(W)SL2. �

Corollary 5.9 inspires the following:

Question 5.10. Is it true that, form � 2 and for a fixed nonzero Weitzenböck derivationδ,
the algebra of constantsFm(W)δ is finitely generated if and only if the variety of assoc
tive algebrasW does not contain the metabelian varietyM?

Corollary 4.3, Example 5.2 and Corollary 5.9 show that the answer to this que
is affirmative form = 2. In the next section we shall show that the algebra of cons
Fm(W)δ is not finitely generated ifW containsM.

6. Constants of relatively free associative algebras

First we shall work in the free metabelian associative algebraFm(M) where the
metabelian variety is defined by the polynomial identity[x1, x2][x3, x4] = 0. We need
an embedding ofFm(M) into a wreath product. For this purpose, letY = {y1, . . . , ym},
U = {u1, . . . , um} andV = {v1, . . . , vm} be three sets of commuting variables and let

M =
m∑

i=1

aiK[U,V ]

be the freeK[U,V ]-module of rankm generated by{a1, . . . , am}. Clearly,M has also a
structure of a freeK[Y ]-bimodule with the action ofK[Y ] defined by

yjai = aiuj , aiyj = aivj , i, j = 1, . . . ,m.

Define the trivial multiplicationM · M = 0 onM and consider the algebra

W = K[Y ] � M,
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which is similar to the abelian wreath product of Lie algebras, see [66] (M is an ideal ofW
with multiplication byK[Y ] induced by the bimodule action ofK[Y ] on M). Obviously
W satisfies the metabelian identity and hence belongs toM. The following proposition is a
partial case of the main result of Lewin [56], see also Umirbaev [73] for further applica
of this construction to automorphisms of relatively free associative algebras.

Proposition 6.1. The mapping ι :xj → yj + aj , j = 1, . . . ,m, defines an embedding ι of
Fm(M) into W = K[Y ] � M .

Proposition 6.2. For any nontrivial Weitzenböck derivation δ of the free metabelian as-
sociative algebra Fm(M) of rank m � 2, the algebra of constants Fm(M)δ is not finitely
generated.

Proof. The derivationδ acts as a linear operator on the vector space with basis{x1, . . . , xm}
and we define in a similar way the action ofδ on the vector spaces with bases{y1, . . . , ym}
and{a1, . . . , am}: If δ(xj ) = ∑m

i=1 αij xj , αij ∈ K , thenδ(yj ) = ∑m
i=1 αij yj andδ(aj ) =∑m

i=1 αij aj , j = 1, . . . ,m. As in the proof of Lemma 2.1 we can show that this act
δ defines a derivation onW and on the polynomial algebraK[U,V ] (which we denote
also byδ). Additionally, we consider the embeddingι of Fm(M)δ as a subalgebra inW ,
as stated in Proposition 6.1. By definitionδ(ι(xj )) = δ(yj + aj ) = ι(δ(xj )) and hence if
δ(f (X)) = 0 in Fm(M), then the same holds for the imageι(f ) of f in W . In this way,
ι embeds the algebra of constantsFm(M)δ into the algebra of constantsWδ .

As till now, we assume thatδ(x1) = 0 and δ(x2) = x1. If the algebra of constant
Fm(M)δ is generated by a finite set{f1, . . . , fn}, then, as elements ofW ,

ι(fk) = gk(Y ) +
m∑

i=1

aihik(U,V ), gk(Y ) ∈ K[Y ], hik(U,V ) ∈ K[U,V ],

i = 1, . . . ,m, k = 1, . . . , n, and

gk(Y ), bk =
m∑

i=1

aihik(U,V ), k = 1, . . . , n,

are also constants. Henceι(Fm(M)δ) is a subalgebra of the subalgebra ofWδ generated
by the union of the finite sets

{g1, . . . , gn} ⊂ K[Y ]δ, {b1, . . . , bn} ⊂ Mδ.

This implies thatFm(M)δ is a subalgebra of

W0 = K[Y ]δ �
n∑

bkK[U ]δK[V ]δ.

k=1
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By Corollary 3.3 the transcendence degree ofK[Y ]δ is equal tom − 1 and hence the tran
scendence degree ofK[U ]δK[V ]δ is equal to 2(m−1). Since, see, e.g., the book by Krau
and Lenagan [52], the Gelfand–Kirillov dimension of a commutative algebra is equal
transcendence degree of the algebra, we easily derive that the Gelfand–Kirillov dim
of the algebraW0 is bounded from above by 2(m− 1). On the other hand, the vector spa
ι([x1, x2])K[U,V ] is contained inι(Fm(M)) and is a freeK[U,V ]-module generated b
a1(v2 − u2) + a2(u1 − v1). Sinceι([x1, x2]) ∈ Mδ , we obtain thatι([x1, x2])K[U,V ]δ is
a freeK[U,V ]δ-module. By Corollary 3.3 the transcendence degree ofK[U,V ]δ is equal
to 2m − 1, and hence the Gelfand–Kirillov dimension of theK[U,V ]δ-module is equal to
2m − 1. This is also a lower bound for the Gelfand–Kirillov dimension ofFm(M)δ which
contradicts with the inequality GKdim(Fm(M)δ) � GKdim(W0) � 2(m − 1). �
Remark 6.3. In the notation of Proposition 6.2, ifb1, . . . , bk is a finite number of ele
ments inMδ , then the subalgebra ofK[Y ]δ � Mδ generated byK[Y ]δ and b1, . . . , bk ,
contains only a finite number of elementsι([x1, x2])(u1v2 − u2v1)

n. This can be seen i
the following way. We consider the localization of the polynomial algebraK[Y ][y−1

1 ] =
K[y1, y2, . . . , ym][y−1

1 ], and similarlyK[U ][u−1
1 ],K[V ][v−1

1 ]. Then we define

W ′ = K[Y ][y−1
1

]
� MK

[
u−1

1 , v−1
1

]
.

Sincey1, u1, v1 areδ-constants, we can extend the action ofδ as a derivation onW to a
derivation onW ′. Let δpj +1(yj ) = 0, j = 1, . . . ,m, and let us define

ỹj =
pj∑

k=0

δk(yj )

k! (−y2)
ky

pj −k

1 , j = 3,4, . . . ,m,

and similarlyỹj , ũj , ṽj . Let alsow̃2 = u1v2 − u2v1. By Proposition 3.1

(
K[Y ][y−1

1

])δ = K
[
y1, y

−1
1

][ỹ3, ỹ4, . . . , ỹm],(
K[U,V ][u−1

1 , v−1
1

])δ = K
[
u1, v1, u

−1
1 , v−1

1

][ũ3, . . . , ũm, ṽ3, . . . , ũm, w̃2].

The algebra generated byK[Y ]δ andb1, . . . , bk is a subalgebra of

(
K[Y ][y−1

1

])δ �
k∑

j=1

bj

(
K[U ][u−1

1

])δ(
K[V ][v−1

1

])δ

and hence its elements have the form

f (ỹ3, . . . , ỹm) +
m∑

j=1

bjfj (ũ3, . . . , ũm, ṽ3, . . . , ṽm),

where f and fj are polynomials with coefficients depending respectively ony1, y
−1
1

andu1, v1, u
−1, v−1. Sinceũ3, . . . , ũm, ṽ3, . . . , ũm, w̃2 are algebraically independent o
1 1



416 V. Drensky, C.K. Gupta / Journal of Algebra 292 (2005) 393–428

i-

-
nitely

rk 6.3

ge-
ht
tors
-

K[u1, v1, u
−1
1 , v−1

1 ], and the finite number of elementsb1, . . . , bk contains only a fi-
nite number of summands, we cannot present all elementsι([x1, x2])(u1v2 − u2v1)

n =
(a1(v2 − u2) + a2(u1 − v1))w̃

n
2 in the form

(
a1(v2 − u2) + a2(u1 − v1)

)
w̃n

2 =
m∑

j=1

bjfjn(ũ3, . . . , ũm, ṽ3, . . . , ṽm).

Theorem 6.4. Let W be a variety of associative algebras containing the metabelian vari-
ety M. Then for any m � 2 and for any fixed nonzero Weitzenböck derivation δ, the algebra
of constants Fm(W)δ is not finitely generated.

Proof. By Corollary 4.3 the algebraFm(M)δ is a homomorphic image ofFm(W)δ . Now
the proof follows immediately becauseFm(M)δ is not finitely generated by Propos
tion 6.2. �
Remark 6.5. Using the elementsι([x1, x2])(u1v2 − u2v1)

n, n � 0, from Remark 6.3 for
any varietyW containing the metabelian varietyM and any nontrivial Weitzenböck deriva
tion δ we can construct an infinite set of constants which is not contained in any fi
generated subalgebra ofFm(W)δ . Again, we assume thatδ(x1) = 0, δ(x2) = x1. Let lu and
ru be, respectively, the operators of left and right multiplication byu ∈ Fm(W). Consider
the elements

(lx1rx2 − lx2rx1)
n[x1, x2], n � 0.

All these elements are constants which are liftings of the constants from Rema
and hence any finitely generated subalgebra ofFm(W)δ does not contain(lx1rx2 −
lx2rx1)

n[x1, x2] for sufficiently largen.

Corollary 6.6. Let W be a variety of associative algebras containing the metabelian va-
riety M. Then for any m � 2 the algebra Fm(W)UTm of UTm(K)-invariants is not finitely
generated.

Proof. Let the algebraFm(W)UTm be finitely generated. By Remarks 4.7, the al
bra (K〈x1, . . . , xm〉)UTm , and hence alsoFm(W)UTm is spanned by all highest weig
vectors. HenceFm(W)UTm is generated by a finite system of highest weight vec
w(x1, . . . , xm) ∈ W(λ) ⊂ Fm(W)UTm . HenceFm(W)UTm is multigraded and has a fi
nite multihomogeneous set of generators. The generators which depend onx1 and x2
only, generate the subalgebra spanned by all highest weight vectorsw(x1, . . . , xm) ∈
W(λ1, λ2,0, . . . ,0). This subalgebra coincides with the algebra ofUT2-invariants of
F2(W) and hence with the algebra of constants of the Weitzenböck derivationδ of F2(W)

defined byδ(x1) = 0, δ(x2) = x1. By Theorem 6.4 form = 2 (or by Corollary 4.3 and
Example 5.2)F2(W)δ is not finitely generated. Hence the algebraFm(W)UTm cannot be
finitely generated. �
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Remark 6.7. Let W be a Lie nilpotent variety of associative algebras and letm be a fixed
positive integer. Using the approach of [19] (as in the proof of Corollary 5.9), an
fact thatFm(W) is a direct sum ofGLm-modules of the formW(λ1, . . . , λm) with λ2 �
p for somep, one can show that there exists a finite system of highest weight ve
wi(x1, . . . , xk) ∈ Fm(W), i = 1, . . . , k, such that all highest weight vectors ofFm(W) are
linear combinations ofxnwi(x1, . . . , xk). Hence the algebraFm(W)UTm of UTm-invariants
is generated byx andwi(x1, . . . , xk), i = 1, . . . , k. HenceFm(W)UTm is finitely generated

7. Generic 2 × 2 matrices

In this section we construct classes of automorphisms of the relatively free a
F2(varM2(K)). This algebra is isomorphic to the algebra generated by two generic× 2
matricesx andy. So, the results are stated in the natural setup of the trace algebra. W
with the necessary background, see Formanek [36], Alev and Le Bruyn [1], or Drensk
Gupta [26].

We consider the polynomial algebra in 8 variablesΩ = K[xij , yij | i, j = 1,2]. The
algebraR of two generic 2× 2 matrices

x =
(

x11 x12

x21 x22

)
and y =

(
y11 y12

y21 y22

)

is the subalgebra ofM2(Ω) generated byx andy. We denote byC the centre ofR and
by C̄ the algebra generated by all the traces of elements fromR. Identifying the element
of C̄ with 2× 2 scalar matrices we denote byT the generic trace algebra generated bR

andC̄. It is well known thatC̄ is generated by

tr(x), tr(y), det(x), det(y), tr(xy)

and is isomorphic to the polynomial algebra in five variables.

Proposition 7.1 (Formanek, Halpin, and Li [37]). The vector subspace of C consisting of
all polynomials without constant term is a free C̄-module generated by [x, y]2.

For our purposes it is more convenient to replace inT (as in [1]) the generic matricesx
andy by the generic traceless matrices

x0 = x − 1

2
tr(x), y0 = y − 1

2
tr(y)

and assume thatT is generated byx0, y0, tr(x), tr(y), det(x0), det(y0), tr(x0y0). A further
reduction is to use the formulas

det(x0) = −1
tr
(
x2

0

)
, det(y0) = −1

tr
(
y2

0

)
,

2 2
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and to replace the determinants by tr(x2
0) and tr(y2

0). In this way, we may assume thatC̄ is
generated by

p = tr(x), q = tr(y), u = tr
(
x2

0

)
, v = tr

(
y2

0

)
, t = tr(x0y0).

Then[x, y]2 = t2 − uv and

T = C̄ + C̄x0 + C̄y0 + C̄[x0, y0]
is a freeC̄-module generated by 1, x0, y0, [x0, y0].

The defining relations of the algebra generated by the 2×2 traceless matricesx0 andy0
are[x2

0, y0] = [y2
0, x0] = 0, see, e.g., [55] or [29] for the case of characteristic 0 and

for the case of an arbitrary infinite base field. More generally, the defining relations
algebra generated bym generic 2× 2 traceless matricesy1, . . . , ym are[v2

1, v2] = 0, where
v1, v2 run on the set of all Lie elements inK〈y1, . . . , ym〉 which is a restatement of th
theorem of Razmyslov [62] for the weak polynomial identities ofM2(K). An explicitly
written system of defining relations consists of[y2

i , yj ] = 0, [yiyj +yjyi, yk] = 0, i, j, k =
1, . . . ,m, and the standard polynomialss4(yi1, yi2, yi3, yi4) = 0, 1� i1 < i2 < i3 < i4 � m,
see [29].

Lemma 7.2. Every mapping δ : {p,q, x0, y0} → T such that

δ(p), δ(q) ∈ C̄, δ(x0), δ(y0) ∈ C̄x0 + C̄y0 + C̄[x0, y0]
can be extended to a derivation of T .

Proof. The defining relations ofT are

[p,q] = [p,x0] = [p,y0] = [q, x0] = [q, y0] = 0,

together with the defining relations of the subalgebra generated byx0, y0. It is sufficient to
see that the extension ofδ (inductively, by the ruleδ(fg) = δ(f )g +f δ(g)) to a derivation
on T is well defined, i.e., sends the defining relations to 0. For the relations involvip

andq this can be checked directly:

δ
([p,q]) = [

δ(p), q
] + [

p, δ(q)
] = 0,

analogously forδ([p,x0]), δ([p,y0]), δ([q, x0]), δ([q, y0]), becausep,q, δ(p), δ(q) are
in the centre ofT . The condition for the defining relations of the algebra gen
ated byx0, y0 can be proved using the universal properties of this algebra or dire
Sincex2

0, y2
0, x0y0 + y0x0, [x0, y0]2 are in the centre ofT , andx0[x0, y0] + [x0, y0]x0 =

y0[x0, y0] + [x0, y0]y0 = 0, if δ(x0) = ax0 + by0 + c[x0, y0], a, b, c ∈ C̄, then

(
δ(x0)

)2 = a2x2
0 + b2y2

0 + c2[x0, y0]2 + ab(x0y0 + y0x0),

δ(x0)x0 + x0δ(x0) = ax2
0 + b(x0y0 + y0x0)

are in the centre ofT andδ([x2, y ]) = 0. In the same wayδ([y2, x ]) = 0. �
0 0 0 0
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Example 7.3. Let us consider the basic Weitzenböck derivationδ defined on the relativel
free algebraF2(varM2(K)) in its realization as the generic trace algebra generate
generic 2× 2 matricesx andy by δ(x) = 0, δ(y) = x. We extendδ to the trace algebraT
by

δ(p) = δ
(
tr(x)

) = tr
(
δ(x)

)
,

δ(q) = δ
(
tr(y)

) = tr
(
δ(y)

)
,

δ(x0) = 0, δ(y0) = x0,

δ(u) = δ
(
tr
(
x2

0

)) = tr
(
δ
(
x2

0

))
,

δ(v) = δ
(
tr
(
y2

0

)) = tr
(
δ
(
y2

0

))
,

δ(t) = δ
(
tr(x0y0)

) = tr
(
δ(x0y0)

)
.

By Lemma 7.2 this is possible. Direct calculations give that

δ(p) = 0, δ(q) = p, δ(u) = 0, δ(t) = u, δ(v) = 2t.

Replacingv with 2v1, we obtain that the action ofδ on C̄ = K[p,q,u, t, v1] is as in
Examples 3.4. Hence

(C̄)δ = K
[
p,u,pt − qu, t2 − 2uv1,2p2v1 − 2pqt + q2u

]
= K

[
p,u,pt − qu, t2 − uv,q2u − 2pqt + p2v

]
.

The generators of(C̄)δ satisfy the relation

u
(
q2u − 2pqt + p2v

) + p2(t2 − uv
) = (pt − qu)2.

If w ∈ (C̄)δ , then exp(wδ) is an automorphism ofT . If t2 − uv dividesw, then exp(wδ) is
an automorphism also ofR. This automorphism acts onR as

exp(wδ) :x → x, exp(wδ) :y → y + wx,

wherew = (t2 − uv)w1(p,u,pt − qu, t2 − uv,q2u − 2pqt + p2v) for some polyno-
mial w1. Such automorphisms (fixingx) were studied in the PhD thesis of Chang [11].

Example 7.4. Now we shall modify Example 7.3 in the following way. We use Lemma
and define the derivationδ of T by

δ(p) = α1u + β1t + γ1v, δ(q) = p + α2u + β2t + γ2v,

αi, βi, γi ∈ C̄, i = 1,2,

δ(u) = 0, δ(t) = u, δ(v) = 2t.
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This derivation is locally nilpotent and acts on the generic matricesx = 1
2tr(x) + x0 and

y = 1
2tr(y) + y0 by

δ(x) = 1

2
(α1u + β1t + γ1v), δ(y) = x + 1

2
(α2u + β2t + γ2v).

The matrix of the linear operatorδ acting on the vector spaceKp + Kq + Ku + Kt + Kv

(with respect to the basis{p,q,u, t, v}) is




0 1 0 0 0

0 0 0 0 0

α1 α2 0 1 0

β1 β2 0 0 2

γ1 γ2 0 0 0




and has rank 3 or 4 depending on whetherγ1 = 0 orγ1 �= 0. Hence its Jordan normal for
is one of the following matrices:




0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

0


 ,




0 1 0
0 0 1
0 0 0

0 1
0 0


 ,




0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0


 .

Examples 3.4 give concrete systems of generators of the algebras of constants of(C̄)δ and
hence automorphisms of the algebrasT andR.

For example, if we fixδ(p) = v, δ(q) = p, thenδ is a basic derivation with

δ(q) = p, δ(p) = v, δ(v) = 2t, δ(t) = u, δ(u) = 0.

ConsideringC̄ = K[q/2,p/2, v/2, t, u], we obtain after some easy calculations that
algebra of constants is generated by

u, t2 − uv, tp − qu − v2

4
,

t3 − 3

2
utv + 3

2
u2p, 3t2q − 3

2
tvp + v3

4
− 3uvq + 9

4
up2.

In this caseδ acts onx andy by

δ(x) = 1

2
tr
(
y2

0

) = 1

2
v, δ(y) = x.

If w is in (C̄)δ , then
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exp(wδ) :x → x + wv

2.1! + w2t

2! + w3u

3! ,

exp(wδ) :y → y + wx

1! + w2v

2.2! + w3t

3! + w4u

4! .

If w is divisible byt2 −uv, then exp(wδ) is also an automorphism ofR. Since all these au
tomorphisms exp(wδ) are obtained by the construction of Martha Smith [67], they ind
stably tame automorphisms ofC̄ = K[p,q,u, t, v].

8. Relatively free Lie algebras

We start with few examples for the algebras of constants of relatively free algebra
the well-known dichotomy a variety of Lie algebras either satisfies the Engel con
(and by the theorem of Zelmanov [76] is nilpotent) or contains the metabelian varieA2

(which consists of all solvable of class 2 Lie algebras and is defined by the id
[[x1, x2], [x3, x4]] = 0). Since the finitely generated nilpotent Lie algebras are finite
mensional, the problem for the finite generation of the algebras of constants of rela
free nilpotent Lie algebras is solved trivially.

The bases of the free polynilpotent Lie algebras were described by Shmelkin [65]
sidering relatively free algebras of rank 2, we assume that the algebra is generatex

andy and the basic Weitzenböck derivationδ is defined byδ(x) = 0, δ(y) = x.

Example 8.1. Let L2(A
2) = L2/L

′′
2 be the free metabelian Lie algebra of rank 2. It ha

basis {
x, y, [y, x, x, . . . , x︸ ︷︷ ︸

a times

, y, . . . , y︸ ︷︷ ︸
b times

] ∣∣ a, b � 0
}
.

It is well known (and can be also obtained by simple arguments from the Hilbert ser
Lm(A2)) that thenth cocharacter of the varietyA2 is

χ1
(
A2) = χ(1), χn

(
A2) = χ(n−1,1), n � 2.

The corresponding highest weight vectors are

w(1) = x, w(n−1,1) = [y, x, x, . . . , x︸ ︷︷ ︸
n−2 times

], n � 2.

Hence the algebra of constantsL2(A
2)δ is generated byx and[x, y].

Example 8.2. The free abelian-by-{nilpotent of class 2} Lie algebraL2(AN2) =
L2/[L2,L2,L2]′ satisfies the identity[[x1, x2, x3], [x4, x5, x6]

] = 0
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and has a basis{
x, y, [x, y], [y, x, x, . . . , x︸ ︷︷ ︸

a times

, y, . . . , y︸ ︷︷ ︸
b times

, [x, y], . . . , [x, y]︸ ︷︷ ︸
c times

] ∣∣ a + b > 0, c � 0
}
.

Its Hilbert series is

H
(
L2(AN2), t1, t2

) = t1 + t2 + t1t2 + t1t2(t1 + t2)

(1− t1)(1− t2)(1− t1t2)

= S(1)(t1, t2) + S(12)(t1, t2) +
∑

λ1>λ2�1

S(λ1,λ2)(t1, t2)

and the highest weight vectors ofL2(AN2) are

x, [x, y], [
y, x, x, . . . , x︸ ︷︷ ︸

a times

, [x, y], . . . , [x, y]︸ ︷︷ ︸
c times

]
, a > 0, c � 0.

Hence the algebraL2(AN2)
δ is generated byx and[x, y].

Example 8.3. We consider the relatively free algebraL2(varsl2(K)) of the variety of Lie
algebras generated by the algebra of 2× 2 traceless matrices. This algebra is isomorp
to the Lie algebra generated by the generic 2× 2 traceless matricesx0, y0 considered in
Section 7. By Drensky [18], as aGL2-moduleL2(varsl2(K)) has the decomposition

L2
(
varsl2(K)

) ∼= W(1) ⊕
∑

W(λ1, λ2),

where the summation runs on allλ = (λ1, λ2) such thatλ2 > 0 and at least one of th
integersλ1, λ2 is odd. The highest weight vectors ofW(λ1, λ2) are given in [18] but we do
not need their concrete form for our purposes. The algebra of constantsL2(varsl2(K))δ is
bigraded. Assuming that the degree ofx corresponds tot and the degree ofy is u = v/t ,
the Hilbert series ofL2(varsl2(K))δ is

H
(
L2

(
varsl2(K)

)δ
, t, v

) = t + v

( ∑
p,q�0

tpvq −
∑

p,q�0

t2pv2q+1
)

= t + v

(1− t)(1− v)
− v2

(1− t)2(1− v)2
.

If L2(varsl2(K))δ is finitely generated, we may fix a finite system of bigraded genera
For every homogeneousf ∈ L2(varsl2(K))δ we have degxf � degyf . Hence the subal
gebra spanned on the homogeneous components of bidegree(n,n), n odd, is also finitely
generated. This subalgebra is infinite dimensional and its Hilbert series is obtained
the Hilbert seriesH(L2(varsl2(K))δ, t, v) by the substitutiont = 0, i.e.,

H
(
L2

(
varsl2(K)

)δ
,0, v

) = v − v2

2
.

1− v (1− v)



V. Drensky, C.K. Gupta / Journal of Algebra 292 (2005) 393–428 423

ght vec-

d
s that

ors
tants

ber of

th

e

c
as
e
e

lian
Besides, the subalgebra is abelian because the commutator of any two highest wei
torsw(2p+1,2p+1) andw(2q+1,2q+1) is a highest weight vectorw(2(p+q+1),2(p+q+1)) which
does not participate in the decomposition ofL2(varsl2(K))δ . Since the finitely generate
abelian Lie algebras are finite dimensional, we obtain a contradiction which give
L2(varsl2(K))δ cannot be finitely generated.

Example 8.4. The free abelian-by-{nilpotent of class 3} Lie algebraL2(AN3) =
L2/[L2,L2,L2,L2]′ has a basis consisting ofx, y and commutators of the form[
y, x, x, . . . , x︸ ︷︷ ︸

a times

, y, . . . , y︸ ︷︷ ︸
b times

, [x, y], . . . , [x, y]︸ ︷︷ ︸
c times

, [y, x, x], . . . , [y, x, x]︸ ︷︷ ︸
d times

, [y, x, y], . . . , [y, x, y]︸ ︷︷ ︸
e times

]
,

with some natural restrictions ofa, b, c, d, e � 0 which guarantee that these commutat
are different from zero and, up to a sign, pairwise different. If the algebra of cons
L2(AN3)

δ is finitely generated, then it has a generating set consisting of a finite num
bihomogeneous elementsw1, . . . ,wk of degree� 4 (and bidegree(n1, n2), wheren1 � n2)
and constants of degree� 3 (i.e., x, [x, y], [y, x, x]). Since the commutators of leng
� 4 commute, we derive thatL2(AN3)

δ is a sum of the Lie subalgebraN generated by
x, [x, y], [y, x, x] and theN -module generated byw1, . . . ,wk . The following elements ar
constants:

un =
∑

ρ,σ,...,τ∈S2

sign(ρσ · · · τ)
[
y, x, x, zρ(1), zσ(1), . . . , zτ(1), [x, y, zρ(1)],

[x, y, zσ(1)], . . . , [x, y, zτ(1)]
]
,

where{z1, z2} = {x, y} and, in the summation,ρ,σ, . . . , τ run onn copies of the symmetri
groupS2. They are homogeneous of bidegree(2n+ 2,2n+ 1) and hence can be written
linear combinations of commutators involving awi , several[x, y] and not more than on
x or [y, x, x]. But this is impossible because for sufficiently largen one cannot obtain th
summands ofun [

y, x, x, x, . . . , x︸ ︷︷ ︸
n times

, [x, y, y], . . . , [x, y, y]︸ ︷︷ ︸
n times

]
.

Hence the algebraL2(AN3)
δ is not finitely generated.

Example 8.5. Let m > 2 and letδ be the Weitzenböck derivation of the free metabe
Lie algebraLm(A2) defined byδ(x2) = x1, δ(xj ) = 0 for j �= 2. Then, sinceLm(A2)

has a basis consisting ofxj and all commutators[xi1, xi2, . . . , xin] with i1 > i2 � i3 �
· · · � in, then the free generatorsxj , j �= 2, and the commutators which do not includex2
are constants. It is easy to see that the commutators withx2 are of the form

u′ = [x2, x1, . . . , x1︸ ︷︷ ︸, x2, . . . , x2︸ ︷︷ ︸, xik , . . . , xin], a > 0, b � 0, ik > 2,
a times b times
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u′′ = [xi, x1, . . . , x1︸ ︷︷ ︸
a times

, x2, . . . , x2︸ ︷︷ ︸
b times

, xik , . . . , xin], a � 0, b > 0, i, ik > 2.

It is easy to see that a linear combination ofu′ andu′′ is a constant if and only if it con
tains as summands onlyu′ with b = 0 and does not contain anyu′′. Hence the algebra o
constantsLm(A2)δ is generated byx1, xj , j > 2, and[x1, x2].

Example 8.6. Let m > 2 and letδ be the Weitzenböck derivation of the free abelia
by-{nilpotent of class 2} Lie algebraLm(AN2) defined, as in the previous example,
δ(x2) = x1, δ(xj ) = 0 for j �= 2. We define aGL2-action onLm(AN2) assuming tha
GL2 fixesx3, . . . , xm and acts canonically on the linear combinations ofx1, x2. Then the
subspaces ofLm(AN2) which are homogeneous in each variablex3, . . . , xm are GL2-
invariant. This easily implies that the algebra of constantsLm(AN2)

δ is multigraded and
degx1

f � degx2
f for each multihomogeneous constantf . If the algebraLm(AN2)

δ is
finitely generated, then as in Example 8.4, it is generated byx1, [x1, x2], x3, x4, . . . , xm

and a finite systemw1, . . . ,wk of homogeneous elements of degree� 3. ThenLm(AN2)
δ

is a sum of the subalgebraN generated byx1, [x1, x2], x3, x4, . . . , xm and theN -module
generated byw1, . . . ,wk . The constants

∑
ρ,σ,...,τ∈S2

sign(ρσ · · · τ)un = [
x1, x2, xρ(1), xσ(1), . . . , xτ(1), [x3, xρ(1)],

[x3, xσ(1)], . . . , [x3, xτ(1)]
]
,

where in the summationρ,σ, . . . , τ run onn copies of the symmetric groupS2, are homo-
geneous of degree(n + 1, n + 1, n,0, . . . ,0) and arguments as in Example 8.4 show t
this is impossible. Hence the algebraLm(AN2)

δ cannot be finitely generated.

In the above examples, the matrix of the Weitzenböck derivationδ (as a linear operato
acting on the vector space with basis{x1, . . . , xm}) is of rank 1. This gives rise to th
following natural problem.

Problem 8.7. If the matrix of the Weitzenböck derivation δ is of rank 1, find the exact
frontier where the algebra of constants Lm(W)δ becomes finitely generated, i.e., describe
all varieties of Lie algebras W and all integers m > 1 such that the algebra Lm(W)δ is
finitely generated.

Finally, we shall give the solution of this problem in the case of rank� 2.

Theorem 8.8. Let W be a nonnilpotent variety of Lie algebras and let δ be a Weitzenböck
derivation of the relatively free algebra Lm(W), m � 3. If the rank of the matrix of δ is
� 2, then the algebra of constants Lm(W)δ is not finitely generated.
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Proof. As in the associative case, it is sufficient to establish the theorem for the meta
variety of Lie algebras only. We consider the abelian wreath product of Lie algebras

Wm = (Ky1 ⊕ · · · ⊕ Kym) �
m∑

j=1

ajK[y1, . . . , ym],

where[yi, yj ] = [aifi, ajfj ] = 0 and[aifi, yj ] = aifiyj (fi, fj ∈ K[y1, . . . , ym]). Then
by the theorem of Shmelkin [66] the mappingι : xj → aj + yj , j = 1, . . . ,m, defines
an embedding of the free metabelian Lie algebraLm(A2) into Wm. We assume thatδ is
in its normal Jordan form (andδ(x2) = x1, δ(x1) = 0). Hence the fixed part ofKy1 ⊕
· · · ⊕ Kym is of dimensionm − rank(δ) � m − 2 and is spanned on some free genera
xj1 = x1, xj2, . . . , xjp , p � m − 2. If the algebraLm(A2)δ is finitely generated, then it is
sum ofKx1 ⊕ Kxj2 ⊕ · · · ⊕ Kxjp and a finitely generatedK[x1, xj2, . . . , xjp ]-submodule
of the commutator idealLm(A2)′. But, as in the associative case, this is impossible bec
the image of this module underι should contain, for example,ι([x2, x1])K[y1, . . . , ym]δ
and the transcendence degree ofK[y1, . . . , ym]δ is equal tom − 1.

One can see directly, that ifδ(x3) = x2, then a finitely generated subalgebra
ι(Lm(A2)δ) cannot contain all constants

ι
([x2, x1]

)(
x2

2 − 2x1x3
)n

, n � 0.

Similarly, if δ(x4) = x3, δ(x3) = 0, thenι(Lm(A2)δ) cannot contain all

ι
([x2, x1]

)
(x1x4 − x2x3)

n, n � 0. �
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