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Abstract

We study the dependence of the eta invarigmton the spin structure, wher® is a twisted Dirac
operator on &4k + 3)-dimensional spin manifold. The difference between the eta invariants for two
spin structures related by a cohomology class which is the reductioHidi( &, Z)-class is shown
to be a half integer. As an application of the technique of proof the generalized Rokhlin invariant is
shown to be equal modulo 8 for two spin structures related in thiswa@02 Elsevier Science B.V.
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1. Introduction
1.1. Theetainvariant

Let M be a compact manifold of dimensiok 4 3. Let D be a self-adjoint first order
elliptic operator oM. The eta invariant oD is defined as
np = 3(n(0) + dimkerD),
where the eta function(s) is given by

n(s) = Z signa

N
resped, 1#0 | |

which converges for Relarge, and has an analytic continuation which is regular-a0,
see [5].
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Assume thatV is a spin manifold and let be a spin structure o with associated
spinor bundleS, . Let E be a vector bundle with connection @fi. We use the notation
n(o; E) for the eta invariant of the twisted Dirac operafdf on S, ® E. The set SpiaM)
of spin structures oM is an affine space modeled @' (M:; Z»), i.e., the vector space
HY(M:; Z») acts freely and transitively on Si#):

SpinM) x HY(M; Z2) > (0, 8) > o + 8 € SpinM).

Foro e Spin(M) ands, 8’ € H(M; Z,) we define the first and second difference functions
of n(o; E) by

An(o,8; E)=n(oc +6; E) —n(o; E)
and
A%n(0,8',8; E)=An(oc + 8,8, E) — An(o, §; E).

The first differenceAn is a special case of the relative eta invariant introduced by Atiyah
et al. in [2] and since studied by many authors. The ideas behind the following theorem
also go back to Atiyah, Patodi and Singer.

Theorem 1.1. Let (M, g) be a compact spin manifold of dimension 4k + 3. Let o be a
spin structureon M and let 8,8’ € HY(M; Z5). Suppose § is the reduction modulo 2 of an
integer class. Let E be a vector bundle on M with connection VZ. Then

(@) An(o.8; E) € 3,

(b) A%y(0,8',8; E) € Z.

These differences do not depend on the metric g.

1.2. The Rokhlin invariant

Let M be a compact spin manifold of dimensioh-83, k£ > 0, and suppose thaf is a
boundary. The Rokhlin invariant is a function defined on the set(@pjrof spin structures
on M and taking values in the integers modulo 16,

Ry :Spin(M) — Z1e,

see [13,3]. Given a spin structuseon M, we take a spin manifold with spin structure

7 such that(M, o) is the boundary of(N, ). Such anN exists since the forgetful
homomorphism of cobordism ring85",s — 250, 5 is injective, see [11, p. 351], and
thusM is an oriented boundary if and only if it is a spin boundary. The Rokhlin function
is defined by

Ry (o) = Sign(N) mod 16

where SigiiN) is the signature oiV. This is independent of the choice of since the
signature invariant is additive and by a theorem of Ochanine, see [6, p. 113], the signature
of a closed8k + 4)-dimensional spin manifold is a multiple of 16.
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Lee and Miller [10] showed that if we equifp/ with a Riemannian metric then the
Rokhlin function can be computed in terms of eta invariants of the signature operator and
of twisted Dirac operators,

Ry (o) = —nHirz + BmeDzi mod 16 1)

1

whereb; are integers and; are vector bundles. In dimension 3 this formula is

Ry (o) = —nHirz — 8np mod 16 2
and in dimension 11 we have

Ry (o) = —nHirz + 8npm™ — 32np mod 16 3)

Since the expression on the right-hand side of (1) is defined evdhisf not a boundary,
we take (1) as the definition a®,, for a general8k + 3)-dimensional spin manifold.
From (1) it also follows that this is independent of the Riemannian metric, but a priori this
extension of the Rokhlin function takes it valuesRnmodulo 16. A theorem by Fischer
and Kreck [4] tells us that (1) is always an integer modulo 16.

In this paper we are going to use (1) to study how the Rokhlin invariant varies with
the spin structure oM. For o € Spin(M) and o, ..., 8, € HY(M; Z>) the difference
functions of Ry, are defined inductively by

ARy (0, 80) = Ry (0 + 80) — Ry (o),
A" Ry (0,80, ..., 8m) = A" Rpr(0 + 80,81, - .., 8m) — A" Rpr (0,81, ..., ).

In [13] Turaev shows tha\*R,; = 0 for any 3-dimensional manifold/. Finashin
conjectures in [3] than*R,; = 0 holds in all dimensions.
Our main result is the following.

Theorem 1.2. If § € HY(M; Z») is the reduction modulo 2 of an integer class then
ARy (o,8) =00r 8 mod 16

This generalizes a result by Taylor, see [12, Theorem 6.2.], in dimension 3. In the case
whereM is a boundary this follows by results of Finashin in [3] but in the general case it
seems to be new.

2. Spin structuresand Dirac operators

Throughoutthis pap&iM, g) will denote a compact oriented Riemannian spin manifold
of dimensiom. For the necessary background on spin geometry we refer to [5,7].
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2.1. Spin structures and spinor bundles

Let : Spin(n) — SO(n) be the double cover of the gro®D(n). A spin structurer on
M is a Spir(n)-principal bundle oveM which is pointwise a double cover of the oriented
orthonormal frame bundI8O(M),

£:0 - SO(M),
E(pg) =&(p)m(g), peo, geSpinn).

We denote the set of (isomorphism classes of) spin structures byApifhis is an
affine space modeled oH1(M; Z5), given two spin structures, o’ there is an element
o' —o =8 € HY(M:; Zy) which is the difference of the spin structures. This difference
element can be constructed as follows. {&t, a;; } be a trivialization of the bundI8O(M)

with transition functions

a;jj:UiNUj; — SO(n)
and let

bij, bt/'j UinU; — Spin(n)
be the transition functions fer, o’. Then

T ob,'j =T obl{j = daij
and thec;; defined as

cij = bj;b; Ui N U;j — ker(r) = {1} = Zo 4)
gives € HY(M; Z5). The elemens can be viewed as @,-principal fibre bundle. By the
action ofZ, = {41} on C we get an associated flat complex line bundle which we denote
by Ls.

Let p: Spin(n) — End(S) be the spinor representation of the spin group on the vector

spaceS. We denote by5; the spinor bundle x, S associated te . In the trivialization

introduced abové,, will have transition functiong (b;;) : U; NU; — EndS) and from (4)
it follows that the transition functions fdf,, are

p ;) = p(cij) p(bij).
Sincep(—1) = —1 this translates to
Syt =Ls® Ss. )]

In this paper we will be interested in the case when the line buhglis topologically
trivial, that is whenL;s has a non-vanishing section. A smooth non-vanishing settidn
L;s defines an invertible map

lip—>1IQ¢@

which sends sections &, to sections ofS,.. If we normalizel to |/| = 1 this map is
pointwise an isometry since

(@@, 1®y) =l%p, V)
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and also a surjective isometry of the Hilbert spaces of square integrable sections
1:L%(S,) — L2(S,).

Let H1(M; Z5)o be the subspace & 1(M; Z5) consisting o8 such thatLs is topolog-
ically trivial. It can be characterized as follows, see [7, p. 84] and [1].

Proposition 2.1. § € HY(M; Z»)o if and only if thereis an integral « € H1(M; R) such
that

s(y1) =€ e,

for all closed curvesy .

Proof. Supposé is a section ofLs with |/| = 1. Such a section is the same a&-aqui-
variant function/ = €™'? on the universal covel! of M. Leta = df = %l—l dl. Thena
drops down to a closed real-valued one-formMérand

gilye — grif; 4 _ gri@(y (x0)—0(x0)

I(y (x0))I(x0) "t = 8([y1).

wherey is the lift of y to M, a path fromxg to y(xg). On the other hand, suppose
S([y]) = &1/ for some closed one-form. Then the pullback ofx to M is the

differential of some function and/ = €' is as-equivariant function o, which gives
a non-vanishing section dfs. 0O

2.2. Dirac operators

For a spin structure with associated spinor bundg the Dirac operatob is defined
by
Dy =e¢;-Ve0,
whereg; is a local orthonormal frame, the dot is Clifford multiplication, and a smooth
section ofS,. D extends to a self-adjoint operator @f(S,). As before we let and

o’ = o + 8 be spin structures oM and we assume thate H1(M; Z»)o. We let! be a unit
norm section of_; and define a connectiov by

Vie=1"1V(p)=Ve+I11dlp (6)
acting on sections af,; . This connection is metric:
X{p,v) = X{lo, 1Y)
= (Vx (o), 1)+ (lo, Vx (1Y)
= (I7'Vx ). Y1) + (@, 171 VX ()
= (Vxo, ¥)+ (e, Vx¥).
Let D’ be the operator of Dirac type defined usi¥ig
D'=¢ -V, =1"'Di=D+I "grad -.
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The following is a fundamental observation.
Proposition 2.2. D’ actingon L2(S,) isisospectral to D acting on L2(S,).

Proof. Suppose is a section ofS,, and an eigenspinor db with eigenvalue.. Then
D’(l_l(p) =1"Dp=1"1¢

sol~1¢ is an eigenspinor ob’, also with eigenvalug. If v is an eigenspinor ob’ then
[y is an eigenspinor oD with the same eigenvalue.O

This means tha)’ acting onL?(S,) has the same spectral invariants Bsacting
onL2(S,).

3. Theetainvariant

In this section we prove the theorem on the eta invariant stated in the introduction and
state some corollaries.

Theorem 3.1. Let (M, g) bea compact spin manifold of dimension 4k + 3. Let o bea spin
structureon M and let § € HY(M: Z2)o, 8' € HY(M; Z>). Let E be a vector bundle on M
with connection V£, Then

(@) An(o,8; E) € 32,

(b) A%y(0,8',8; E) € Z.

These differences do not depend on the metric g.

Proof. As before let be a normalized section d@fs and letV’' =[~1VI. LetM =M x I
wherel = [0, 1] and denote by the vectorfield% on M. The spin structure on M
induces a spin structure ad, the associated spinor bundle is equaltad S, . To shorten
the notation we will write this as.

Let x : 7 — I be a smooth function such thatr) =0, < fandx(n =1 1> 3.
Define a connectioW on sections of the trivial complex line bundlever M by

Vxf=X+xOI X)) f, Vuf=vf,

whereX e TM. This connection is metric and the induced connecko® V on'S ® 1
interpolates betweew close tor = 0 andV’ close tor = 1.

Let DF be the Dirac operator ofi® E ® 1 constructed using the connectivrne VE ®
V. Close to the boundary compone¥itx {0} of M we haveD® = v (Z + DF) and close
to M x {1} we haveD® =v - (& + D'F).

The Atiyah—Patodi—Singer index theorem [5, p. 305] tells us that

ind(D*) = / AM) A ch(VEY Ach(V) = npe + e, )

M
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where the index on the left hand side is the Fredholm indeR&facting on sections of
S ® 1® E satisfying the Atiyah—Patodi—Singer boundary condition.

Since D'E acting on sections of, ® E is isospectral taDf acting on sections of
So+s ® E we havenyz —npe =n(o +6; E) —n(o; E) = An(o,d; E) and

An(a,a;E):—ind(55)+//?(M)Ach(vE)Ach&). (8)

M

Next we compute o(ﬁ) and for this we need the curvatuReof V. For X € TM we
write

Vx =X+ x0I™tdi(X) = V + mix (Na(X),

where as in the proof of Proposition (2dl. )= %l‘l d/ is a closed integer-valued one-form.
ForX,Y € TM we have

VxVy = (X +7ix(0)a(X)) (Y +mix (e (Y))
= XY +7ix()(X(a(V)) + «(¥)X +a(X)Y) + (wix (1) *a(X)a(¥)
SO
R(X.Y) = VxVy — VyVx — Vix r]

= mix(O)(X(a(Y)) = Y(a(X)) —a([X, Y1)
=7wix(®)da(X,Y)=0

sincec is closed. Next we have

R, X)¢ = (V,Vx = VxV,)p =mix (N (X)
and we conclude that

R =i dx Aa.

Thus we find that the Chern characteofs
dx AN

ch(V) = tr R/ = g=drr/2 _ 1 ©)

and we see that the integral in (7) is

/;\\(M)/\Ch(VE)Ach(§):/;\\(M)/\Ch(vE)A (1_ dy /\a>‘
M

2

M
When we integrate over thiefactor only the term with @ will contribute and we have left

— ~ 1~
/ A(M) Ach(VE) Ach(V) = -5 / AM) Ach(VE) Aa. (10)
M M
The same calculation can now be used again to see that this integral is the index of a
twisted Dirac operator. Le§! be the circle of length 1. Then
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/Z(M)Ach(VE)Aa = / X(M)Ach(VE) Adt A«
M MxS?
= / AM) ACh(VE) A (14 df A a)
MxSt
- / A(M) Ach(VE) A g¥ne,
MxSt
Since d A o € H3M x §%;7) there is a complex line bundl& — M x S with
c1(K) = df A, curvature 2-form™ dr A o, and cliVX) = e¥"*, This means that (10) is
equal to
1 -~ E 1 ry E K
—E/A(M)/\Ch(v A = -5 / A(M) Ach(VF) Ach(VH)
M MxS?
1
= —Eind(DE@’K). (11)
From (8) and (11) we now get
— 1
An(o,8; E) = —ind(D*) — 5 ind(DE®X), (12)

which is a half integer. We have proved part (a) of the theorem. To prove part (b) note that
the last term,

ind(DE®K) = / A(M) A ch(VE) Aa,
M
in (12) does not depend on the spin struciwré&Vhen we take a second difference,

A%y(0,8',8; E)=An(oc +8,8; E) — An(o, 8; E),
these terms will cancel, and part (b) follows

In the case where the twisting bundlés flat, for example ifE is the trivial line bundle,
we get the following corollary.

Corollary 3.2. Let (M, g) be a compact spin manifold of dimension 4k + 3. Let o be a
spin structure on M and suppose § € HY(M; Z»)o. Let E be a vector bundieon M with a
flat connection VE. Then An(o,8; E) € Z,

Proof. Since ctiVf) =1 we have from (8) and (10)

An(o,8: E) = —ind(D) — %/X(M) Ach(VE) A
M
1
—Ind(D)—E/A(M)Aa.

M
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The integrand’cf(M) A« only contains terms of degreep 4- 1, p > 0, so the integral over
M which has dimensioni+ 3 vanishes, and the corollary followst

For a self-adjoint first order elliptic operator D the reduced eta invariant is defined by
np=np mod le R/Z.

We use the same notation as above for the reduced eta invariant of twisted Dirac operators,
and the for their difference functions with respect to variations of the spin structure. In
terms ofy we can formulate the following corollary.

Corollary 3.3. Under the conditionsin Theorem 3.1we have
(@) A7(0.8; E) =—13 [,, A(M) Ach(VE) A € 3Z,
(b) A%5(0,8,8; E)=0.

4. The Rokhlin function

We are now going to prove the theorem on the Rokhlin invariant stated in the
introduction. We begin by stating in more detail the formula by Lee and Miller expressing
the Rokhlin function in terms of eta invariants.

Theorem 4.1 [10,8,9].
Ry (0) = —nwirz +8)_bin(o: Z;) mod 16 (13)

1

where the b; are integers and the Z; are tensor bundles, that is the Z; are bundles
associated to the orthonormal frame bundle SO(M) through representations p; of SO(n).

This theorem is based on the following formula expressingZthgenus in terms of
twisted A-genera.

L(M)=8)"b; A(M)ch(VZ). (14)

Using Proposition 2.1 we see that Theorem 1.2 in the introduction is equivalent to the
following.

Theorem 4.2. If § € HY(M: Z2)o then ARy (o, 8) =0 mod 8

Proof. From (13) we have

ARy(0.8) =8 biAn(c.8; Z;) mod 16
i

Egs. (8) and (10) tell us that

ARy(0.8) =—8) b;ind(D%) — %2817,- f A(M) A ch(VZ) Aa mod 16
,- ,

! M
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and using (14) we see that

— 1
ARy (0,6) = —SZbi ind(DZf ) — E/L(M) Ao mod 16
‘ M

Since M has dimension 8+ 3 and L(M) A « only contains terms of degreep 4 1,
p = 0, the integral vanishes and we are left with

ARy(0,8) =—8 b;iind(D*) mod 16

which proves the theorem.o
From the relations (2) and (3) we get the following corollary.

Corollary 4.3. 1f§ € HY(M; 7)o and dim M = 3 then
ARy(o,8)=—8ind(D) mod 16

and if dimM = 11then
ARy (0,8) =8ind(D ™) mod 16

where D isthe operator on M x I introduced in the proof of Theorem 3.1
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