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SUMMARY

The transition from transcription initiation into elon-
gation is controlled by transcription factors, which
recruit positive transcription elongation factor b
(P-TEFb) to promoters to phosphorylate RNA poly-
merase II. A fraction of P-TEFb is recruited as part
of the inhibitory 7SK small nuclear ribonucleoprotein
particle (snRNP), which inactivates the kinase and
prevents elongation. However, it is unclear how
P-TEFb is captured from the promoter-bound 7SK
snRNP to activate elongation. Here, we describe a
mechanism by which transcription factors mediate
the enzymatic release of P-TEFb from the 7SK
snRNP at promoters to trigger activation in a gene-
specific manner. We demonstrate that Tat recruits
PPM1G/PP2Cg to locally disassemble P-TEFb from
the 7SK snRNP at the HIV promoter via dephosphor-
ylation of the kinase T loop. Similar to Tat, nuclear
factor (NF)-kB recruits PPM1G in a stimulus-
dependent manner to activate elongation at inflam-
matory-responsive genes. Recruitment of PPM1G
to promoter-assembled 7SK snRNP provides a para-
digm for rapid gene activation through transcrip-
tional pause release.
INTRODUCTION

The transition from transcription initiation into productive elonga-

tion is a key, rate-limiting step essential for gene activation (Core

and Lis, 2008; Smith and Shilatifard, 2013; Zhou et al., 2012).

This major restriction point occurs when Pol II pauses a few

nucleotides downstream the transcription start site by the action

of negative elongation factors, such as negative elongation

factor (NELF) and the 5,6-dichloro-1-beta-D-ribofuranosylbenzi-

midazole sensitivity-inducing factor (DSIF) (Marshall and Price,

1992; Yamaguchi et al., 1999). Conversion into the elongating

form requires the recruitment of the positive transcription elon-
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gation factor b (P-TEFb) kinase (Cdk9 and cyclin T1/T2) by tran-

scription factors, which hyperphosphorylates the C-terminal

domain (CTD) of Pol II in addition to NELF and DSIF at promoters

(Mancebo et al., 1997; Yamaguchi et al., 1999; Zhou et al., 2012).

Several transcription factors, such as c-Myc, p53, nuclear factor

(NF)-kB, and HIV Tat, utilize P-TEFb to activate the transition into

elongation at their target genes (Barboric et al., 2001; Gomes

et al., 2006; Lis et al., 2000; Mancebo et al., 1997; Rahl et al.,

2010; Wei et al., 1998).

While unengaged in transcription, P-TEFb is held in a catalyt-

ically inactive state assembled into the 7SK small nuclear ribonu-

cleoprotein particle (snRNP) through the kinase inhibitor Hexim1

and 7SK RNA. Whereas P-TEFb and Hexim1 are reversibly

bound, the La-related protein-7 (Larp7) and the methylphos-

phate-capping enzyme (MePCE) are constitutively bound to

the 7SK snRNP by directly binding and stabilizing 7SK RNA

(Chen et al., 2004; Jeronimo et al., 2007; Krueger et al., 2008).

Two pools of P-TEFb (free and 7SK-bound) exist in a reversible

equilibrium to accommodate the transcriptional demands of

the cell (Peterlin and Price, 2006; Zhou et al., 2012). Previous

works have shown that bulk nuclear levels of free P-TEFb in-

crease upon disruption of the 7SK snRNP during activation of

signaling cascades in response to environmental cues (Chen

et al., 2008; Kim et al., 2011). However, it appears to be an

inefficient mechanism for released P-TEFb to first diffuse around

in the nucleoplasm before being attracted to promoters by tran-

scription factors (Ji et al., 2013). We have previously shown that

the 7SK snRNP is recruited to the HIV promoter where the viral

transcription factor Tat stimulates its disassembly to transfer

P-TEFb to the transactivation response element (TAR) stem

loop formed at the 50 end of viral nascent transcripts (D’Orso

and Frankel, 2010). Extending this discovery, recent work has

demonstrated that the inhibitory 7SK snRNP complex occupies

cellular promoters to directly prevent the transcriptional pause

release (Ji et al., 2013). Thus, the presence of the 7SK snRNP

at gene promoters appears to play a critical role in gene activa-

tion. To that end, we sought to characterize how transcription

factors mediate the release of P-TEFb from 7SK snRNP to stim-

ulate elongation in a gene-specific manner.

Here, we report the unexpected findings that Tat and

NF-kB recruit the PPM1G/PP2Cg phosphatase to their target
hors
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Figure 1. Identification of an HIV Host Tat-

7SK Protein-RNA Complex Implicated in

Transcriptional Control

(A)Model of HIV transcription activation by Tat. Tat

promotes the disassembly of the promoter-bound

7SK snRNP to transfer P-TEFb (CycT1:Cdk9) to

the nascent viral RNA (TAR), allowing for Pol II CTD

hyperphosphorylation (P-CTD) and the transition

into elongation.

(B) Tandem affinity purification (TAP) of the

Tat-7SK ribonucleoprotein (RNP) complex by

sequential Strep-tagged Tat (Tat:S) and FLAG-

tagged Larp7 (Larp7:F) purifications from HEK

293T cells. High-confidence Tat-7SK RNP inter-

actors were identified by mass spectrometry

analysis (see also Table S1) and indicated by

arrows on a silver-stained gel. The bottom panel

shows a 7SK RNA northern blot.

(C) Validation of the interactors identified. Tat:S

was coexpressed into HEK 293T cells along with

the identified FLAG-tagged factors. Strep AP fol-

lowed by western blot reveals proteins coimmu-

noprecipitating with Tat.

(D) A network representation of the protein-protein

and protein-RNA interactions within the Tat-7SK

RNP complex. The thickness of the edges corre-

sponds to the semiquantitative score of the

interactions among nodes. Solid and dashed

edges correspond to direct or RNA-mediated in-

teractions (according to the results of Figures 1C

and S1; data not shown). Light-blue nodes repre-

sent interactors identified by mass spectrometry,

but not validated by protein-protein interaction

assays.

See also Figure S1.
promoters to locally activate the P-TEFb kinase. PPM1G de-

phosphorylates the T loop of Cdk9, releasing P-TEFb from the

7SK snRNP and activating the switch from initiation into elonga-

tion. This enzymatic step occurs at the promoter, which in-

creases the local concentration of the kinase before it is captured

by transcription factors to activate elongation. Thus, recruitment

of PPM1G to the promoter-assembled 7SK snRNP by transcrip-

tion factors provides a paradigm for rapid gene activation

through transcriptional pause release.

RESULTS

7SK RNA Cofactors Assemble with Tat into a
Ribonucleoprotein Complex to Control HIV
Transcription
To investigate the mechanisms by which transcription factors

recruit P-TEFb from the 7SK snRNP during selective activation

of transcriptional programs, we used HIV as a model system.
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Tat promotes the disassembly of the

7SK snRNP at the viral promoter and

transfers P-TEFb to TAR, stimulating Pol

II phosphorylation and transcription elon-

gation (Figure 1A). Because Tat directly

binds 7SK RNA in cells (Figure S1A) and

complexes with the 7SK snRNP (D’Orso
and Frankel, 2010; Krueger et al., 2010; Muniz et al., 2010; Sob-

hian et al., 2010; Faust et al., 2012), we hypothesized that Tat

assembles a Tat-7SK ribonucleoprotein (RNP) complex to regu-

late the release of P-TEFb from the 7SK snRNP at the HIV pro-

moter during the transition into elongation.

To identify Tat cofactors involved in the release of P-TEFb from

the 7SK snRNP, we isolated the Tat-7SK RNP complex through

tandem affinity purification (TAP) of Tat and Larp7 (Figure 1B).

Larp7 was used to select for 7SK-associated fractions of Tat

because it is constitutively bound to the RNA (Jeronimo et al.,

2007; Krueger et al., 2008). Silver staining and northern blot of

the final eluate revealed the presence of Tat, Larp7, 7SK RNA,

as well as several bands that were not present upon copurifica-

tion of Larp7 without Tat (Figure 1B) or a K41A nonfunctional Tat

(data not shown). To reveal the identity of the additional bands,

we subjected gel slices and an in-solution complex mixture to

mass spectrometry analysis. In addition to Tat and Larp7, we

identified eight high-confidence interactors (Table S1). Despite
cember 12, 2013 ª2013 The Authors 1257



repeated attempts, however, P-TEFb and Hexim1 were not

detected in the Tat-7SK RNP complex through western blot

and mass spectrometry (data not shown), suggesting they are

released upon binding of Tat along with the cofactors identified.

The proteomics data set was validated by protein-protein

interaction assays by cotransfecting cells with Tat along with

each of the identified interactors or negative (GFP) and positive

(Larp7, CycT1, and Cdk9) controls. We observed that MePCE,

Sart3, nucleophosmin 1 (NPM1), PPM1G, and heterogeneous

nuclear RNP-F (hnRNP-F) copurified with Tat, whereas SET

and DDX21 did not under the conditions tested (Figure 1C).

Among the interactors, only Larp7 demonstrates a ribonuclease

(RNase)-sensitive interaction pattern with Tat (data not shown),

suggesting that Tatmakes direct protein contacts in the absence

of 7SK RNA. To identify whether the Tat interactors associate

with the 7SK snRNP in cells independently of Tat, we performed

RNA-immunoprecipitation (RIP) assays followed by northern

blot, as well as RNA gel shift assays, and observed variable

association with 7SK RNA, except for NPM1 and SET (Figures

S1B–S1D). By compiling the protein-protein and protein-RNA

interaction data sets, we defined a network of interactions within

the Tat-7SK RNP complex (Figure 1D). We reasoned that factors

associated with this RNP complex dictate the release of P-TEFb

from the 7SK snRNP assembled at the HIV promoter (Figure 1A).

Here, we focus on the PPM1G phosphatase because of the

possible enzymatic disassembly of the snRNP during HIV tran-

scription activation (see below).

Tat Recruits PPM1G to Dephosphorylate the T Loop of
Cdk9 and Release P-TEFb from the 7SK snRNP Complex
Previous studies have demonstrated that phosphorylation of

Thr186 (Phos-T186) at the activating T loop of Cdk9 (P-Cdk9)

promotes the assembly of P-TEFb with Hexim1 and 7SK RNA

(Chen et al., 2004; Li et al., 2005). Because the Tat-7SK RNP

lacks P-TEFb but contains PPM1G (a member of the PPM/

PP2C family of nuclear, metal-dependent Ser/Thr phosphatases

[Allemand et al., 2007]), we hypothesized that Cdk9 dephosphor-

ylation at Thr186 by PPM1G is a major determinant by which Tat

induces the disassembly of P-TEFb from the 7SK snRNP. To test

this, we purified wild-type PPM1G and a catalytically inactive

D496A mutant (Allemand et al., 2007) and observed that

PPM1G (but not D496A) dephosphorylates Cdk9 at Thr186

in vitro (Figure 2A). To study if Cdk9 dephosphorylation triggers

P-TEFb release from the snRNP, we incubated 7SK-bound

P-TEFb with PPM1G under dephosphorylation conditions and

subsequently purified P-TEFb to monitor its assembly into the

7SK snRNP (Figure 2B). Remarkably, we found that Cdk9

dephosphorylation by PPM1G (but not D496A) at Thr186

releases P-TEFb from the 7SK snRNP, as shown by the pres-

ence of the inhibitory 7SK snRNP components (devoid of

P-TEFb) in the supernatant of a P-TEFb purification. Collectively,

our data strongly support a functional link between Cdk9 T loop

dephosphorylation by PPM1G and the release of P-TEFb from

the 7SK snRNP in vitro.

Because PPM1G and P-TEFb do not stably associate in vitro

or in cells (data not shown), we reasoned that Tat mediates the

recruitment of PPM1G to the 7SK snRNP to dephosphorylate

the T loop of Cdk9, thereby releasing P-TEFb for gene activation.
1258 Cell Reports 5, 1256–1268, December 12, 2013 ª2013 The Aut
To test this hypothesis, we cotransfected Tat along with PPM1G

or PPM1A (another family member shown to dephosphorylate

P-TEFb in vitro [Wang et al., 2008]) and observed that Tat selec-

tively associates with PPM1G, but not PPM1A (Figure 2C).

Through studies with bacterially expressed Tat and PPM1G, as

well as tandem affinity purification of the Tat-PPM1G complex

frommammalian cells, we confirmed that Tat and PPM1G phys-

ically interact (Figures S2A and S2B).

The structure of PPM1G is currently unknown, but PPM1A

folds with a catalytic domain composed of a central beta sand-

wich that binds two Mn2+ ions surrounded by a helices (Das

et al., 1996; Figure 2D). The phosphatase domains of PPM1A

and the structure prediction of PPM1G contain the four Asp

residues required for metal coordination and catalysis (Figures

2D and 2E), but PPM1G distinguishes itself from the other

PPM family members with an internal acidic domain (Figure 2C).

Cotransfection of Tat along with several PPM1G domains

demonstrated that the acidic domain in PPM1G is necessary

and sufficient for Tat binding (Figure 2F), explaining Tat’s speci-

ficity for PPM1G over PPM1A.

To further define how Tat binds the enzyme, we cotransfected

PPM1Gwith several Tat fragments and determined that the acti-

vation domain (residues 1–48) is necessary and sufficient for

PPM1G recognition (Figure 2G). In agreement, mutations in the

activation domain that eliminate Tat transactivation (such as

K41A; D’Orso et al., 2012) abolish the Tat-PPM1G interaction

(Figure 2H).

Recruitment of PPM1G by Tat Activates the Transition
into Elongation by Disassembling the HIV-Promoter-
Bound 7SK snRNP Complex
The finding that PPM1G associates with the Tat activation

domain suggests that Tat may recruit the enzyme to the 7SK

snRNP complex during HIV transcription. To determine if

PPM1G is required for Tat activation, we utilized a genetic inter-

action approach. HeLa cells were transfected with short inter-

fering RNAs (siRNAs) to knockdown PPM1G, Cdk9 (used as a

positive control), or a nontarget control siRNA, and wemeasured

Tat-mediated transcriptional activity on an HIV long terminal

repeat (LTR) luciferase reporter (Figure 3A). Interestingly, knock-

down of PPM1G and Cdk9 reduced the Tat activation step (�4-

to 5-fold) without affecting Tat levels (Figures 3A and S3A).

Because PPM1G appears to be implicated in transcription, we

examined if the other components of the Tat-7SK RNP complex

identified by mass spectrometry (Figure 1) also play a similar

role. Interestingly, knockdown of Sart3, NPM1, and hnRNP-F

affect the Tat activation step in a reporter assay, thus implicating

these factors, like PPM1G, in HIV transcription (Figure S3B).

To put our findings in the context of HIV, we assayed the

amount of infectious particles produced from human embryonic

kidney (HEK) 293T cells transfected with a provirus DNA after

knockdown of PPM1G or Cdk9. Similar to Cdk9 knockdown,

which affects proviral transcription (Ott et al., 2011), loss of

PPM1G resulted in a sharp decrease in the production of viral

particles, as revealed by a reduction in the levels of the p24

capsid (CA) protein (Figure 3B). The processing of the Gag pre-

cursor into the smaller products CA and matrix (MA) is required

for viral assembly and egress from the infected cell. To evaluate
hors



Figure 2. Tat Selectively Recruits the

PPM1G Phosphatase to Disassemble the

7SK snRNP and Release P-TEFb through

Cdk9 T Loop Dephosphorylation

(A) Top, P-TEFb and wild-type PPM1G or cata-

lytically inactive mutant (D496A) were purified and

visualized by silver stain. Bottom, P-TEFb was

incubated with PPM1G or D496A under dephos-

phorylation conditions, and Cdk9 T loop phos-

phorylation at Thr186 (P-Cdk9) was monitored by

western blot. WT, wild-type.

(B) Enzymatic release assay of P-TEFb from the

7SK snRNP. 7SK-bound P-TEFb (CycT1:S-

Cdk9:F) complexes were purified from mamma-

lian cells and incubated with PPM1G or D496A

under dephosphorylation conditions. Subsequent

purification of P-TEFb using FLAG beads was

done to monitor released (supernatant) and re-

tained (pellet) components by western blot.

(C) Tat selectively binds PPM1G, but not PPM1A.

Top, PPM1G possesses an acidic region inter-

vening the N- and C-terminal phosphatase

domain. The position of the four Asp (D) residues

required for metal coordination and catalysis are

shown above the schemes. Bottom, Strep-tagged

Tat and FLAG-tagged PPM1G or PPM1A were

cotransfected into HEK 293T cells, affinity purified

using Strep beads, and analyzed by western blot.

CA, capsid; MA, matrix.

(D) Superimposition of the PPM1A structure (Das

et al., 1996) and structure prediction of PPM1G

lacking its acidic region.

(E) Close-up view of the PPM1A-PPM1G super-

imposition showing the catalytic core in the

PPM1A structure (red) and structure prediction of

PPM1G (light blue). The two Mn+ ions (violet) and

the phosphate group (orange) are shown. In

PPM1A, Arg33 (R33) side chains form H bonds

with the phosphate ion (orange).

(F) Tat binds to the PPM1G acidic domain. Strep-

tagged Tat and FLAG-tagged PPM1G (full-length

[FL] or domains) were cotransfected into HEK

293T cells, affinity purified using Strep beads, and

analyzed by western blot.

(G) Tat domain mapping. Strep-tagged Tat full-

length (Tat86) or domains (AD, activation domain;

RBD, RNA-binding domain; NLS, SV40 T-Ag

nuclear localization signal) and FLAG-tagged

PPM1G were cotransfected into HEK 293T cells,

affinity purified using Strep beads, and analyzed

by western blot.

(H) Strep-tagged wild-type (WT) Tat or a non-

functional K41Amutant and FLAG-tagged PPM1G

were cotransfected into HEK 293T cells, affinity

purified using Strep beads, and analyzed by

western blot.

See also Figure S2.
whether the reduction of extracellular p24 is due to improper Gag

processing, we monitored intracellular Gag levels by western

blot and observed that the ratio of processed to unprocessed

Gag is not affected by the loss of PPM1G (Figure 3B). Collec-

tively, these results support a transcriptional, but not a post-

translational, role for PPM1G in the viral life cycle.
Cell Re
Because PPM1G is involved in HIV transcription and Tat func-

tions to relieve the block at the elongation step, we asked if

PPM1G promotes the initiation-to-elongation switch at the viral

promoter. To test this, we used a quantitative elongation assay

to monitor levels of promoter-proximal and -distal transcripts,

which approximate the extent of initiation and elongation,
ports 5, 1256–1268, December 12, 2013 ª2013 The Authors 1259



Figure 3. Recruitment of PPM1G by Tat

Mediates Disassembly of the Promoter-

Bound 7SK snRNP and Activates the Transi-

tion into Elongation

(A) Knockdown of PPM1G antagonizes Tat-medi-

ated HIV transcription activation. Top, HeLa cells

were cotransfected with an HIV LTR-Firefly lucif-

erase and FLAG-tagged Tat plasmid after siRNA

knockdown. HIV luciferase activity was normal-

ized to CMV Renilla luciferase (mean ± SEM are

shown; n = 3). Bottom, HeLa samples were used

for western blots with the indicated antibodies;

b-actin was used as an internal loading control.

(B) Production of viral particles from cells. HEK

293T cells were sequentially transfected with

three different siRNAs and a full-length HIV proviral

DNA (NL4-3). Only Gag is shown in the scheme.

Viral particles released to the supernatant were

quantified by p24 ELISA (mean ± SEM are

shown; n = 4), and the levels of intracellular Cdk9,

PPM1G, b-actin, and HIV Gag were detected by

western blot.

(C) Transcription elongation assay with the sche-

matic of RT-PCR products. The gel shows the

products resulting from transfection of a HeLa

LTR-FFL cell line with three different siRNAs or

pretreated with DRB in the presence of an empty

(�) or Tat plasmid (+). The graph indicates the

calculated elongation efficiencies expressed in

arbitrary units (a.u.) standardized to b-actin

(mean ± SEM are shown; n = 3).

(D) ChIP assay to analyze the distribution of Tat

and cofactors at the HIV locus in a HeLa LTR-FFL

cell line transfected with a control or PPM1G

siRNA along with a mock (gray bars) or FLAG-

tagged Tat (black bars) plasmid. The position of

the amplicons used in ChIP-qPCR is shown

with the schematic of the HIV locus. Values

represent the average of three independent ex-

periments. The SEM is less than 10% and not

shown for simplicity. IP, immunoprecipitation.

(E) ChIP assay to analyze the distribution of Tat

and PPM1G at the HIV locus in a HeLa LTR-FFL

cell line transfected with a mock (gray bars) or Tat

(black bars) plasmid. Values represent the average

of three independent experiments. The SEM is

less than 10% and not shown for simplicity.

See also Figure S3.
respectively (Figure 3C). Even in the presence of Tat, PPM1G

knockdown markedly decreased (�5-fold) the production of

promoter-distal transcripts, thus negatively affecting the tran-

scription elongation step. This elongation blockage by PPM1G

knockdown phenocopies the effect of Cdk9 knockdown or

kinase inactivation with the Pol II transcription elongation inhibi-

tor 5,6-dichloro-1-b-D-ribofuranosylbenzimidazole (DRB) (Kim

et al., 2002; Marshall and Price, 1992). These results functionally

link the release of P-TEFb from the 7SK snRNP by Tat and

PPM1G with activation of the elongation step.

We then asked whether decreased elongation due to PPM1G

knockdown correlated with reduced P-TEFb recruitment and Pol

II phosphorylation at the HIV promoter during Tat activation. To

assess this, we performed a chromatin immunoprecipitation
1260 Cell Reports 5, 1256–1268, December 12, 2013 ª2013 The Aut
(ChIP) assay on the HeLa-LTR cell line by depleting PPM1G in

the absence or presence of a functional Tat (Figure 3D). Assem-

bly of HIV transcription preinitiation complexes at the promoter

(demonstrated by Sp1 occupancy and levels of the initiating

Ser-5 CTD-phosphorylated Pol II [S5P-CTD]) were minimally

affected by PPM1G knockdown. However, PPM1G knockdown

markedly reduced the Tat-mediated increase in Pol II S2P-CTD

levels and P-TEFb occupancy in downstream regions (lowered

by a factor of �2.5–9-fold), consistent with a role of PPM1G in

elongation. Strikingly, this finding correlates well with the inability

of Tat to disassemble the 7SK snRNP (Hexim1 and Larp7) at the

promoter. We noticed that levels of the 7SK snRNP are reduced

nonstoichiometrically with Tat probably because not all the cells

express Tat after transfection.
hors



Figure 4. Tat Binds Dephosphorylated

P-TEFb and Stimulates Cdk9 T Loop Phos-

phorylation to Activate the Transition into

Elongation

(A) P-TEFb containing a phosphorylated (Phos) or

dephosphorylated (Dephos) Cdk9 T loop (T186)

was incubated with Tat. Cdk9 was subsequently

purified using FLAG beads to monitor for Tat

binding by western blot.

(B) Dephosphorylated P-TEFb was incubated with

or without ATP or with ATP along with wild-type

(WT) Tat or a nonfunctional C22Gmutant in kinase

conditions and analyzed by western blot.

(C) Kinetics of Cdk9 T loop autophosphorylation.

Left, dephosphorylated P-TEFb was incubated

with or without Tat in kinase conditions. Fractions

were removed and assayed for Cdk9 T loop

phosphorylation (P-Cdk9). Right, levels of P-Cdk9

standardized to total Cdk9 were expressed in

arbitrary units (a.u.).

(D) Model of Tat-mediated enzymatic release of

P-TEFb from the 7SK snRNP. Tat recruits PPM1G

to the HIV promoter-bound 7SK snRNP. PPM1G

dephosphorylates the T loop of Cdk9 (Phos-T186)

to disassemble the 7SK snRNP and release

P-TEFb. Released P-TEFb is captured by Tat,

which stimulates Cdk9 T loop autophosphor-

ylation to form transcription elongation competent

complexes on TAR.

See also Figure S4.
To test if Tat mediates recruitment of PPM1G to the HIV

promoter, we performed a ChIP assay on the HeLa-LTR cell

line in the absence or presence of Tat (Figure 3E). Whereas in

the absence of Tat there is no detectable PPM1G, Tat recruits

PPM1G to the promoter (�4-fold over no Tat). Together, Tat

mediates the enzymatic disassembly of the 7SK snRNP from

the viral promoter in vivo to release P-TEFb for transcription

elongation.

Tat Binds Released Dephosphorylated P-TEFb and
Stimulates Phosphorylation of the Cdk9 T Loop to
Activate the Transition into Elongation
The release of P-TEFb from the promoter-assembled 7SK

snRNP, upon dephosphorylation of the Cdk9 T loop, indicates

that Tat might capture dephosphorylated P-TEFb prior to the

assembly of Tat:TAR:P-TEFb elongation complexes (Figure 1A).

To test whether the phosphorylation state of the Cdk9 T loop

plays any role in Tat binding, we purified P-TEFb and obtained
Cell Reports 5, 1256–1268, De
homogeneous T loop phosphorylated

and unphosphorylated kinase prepara-

tions that were incubated with Tat in an

in vitro binding assay. We observed that

Tat binds both P-TEFb forms in vitro (Fig-

ure 4A), demonstrating that Tat can cap-

ture dephosphorylated P-TEFb upon its

release from the promoter-bound 7SK

snRNP.

Because Cdk9 T loop dephosphoryla-

tion renders an inactive kinase, we hy-
pothesized that, by binding dephosphorylated P-TEFb, Tat can

stimulate autophosphorylation of the Cdk9 T loop. To test this

possibility, we incubated dephosphorylated P-TEFb in kinase

buffer with ATP: (1) alone, (2) with Tat, or (3) with a nonfunctional

C22Gmutant andmeasured levels of Cdk9 autophosphorylation

at Thr186. Interestingly, Tat, but not the C22Gmutant, stimulates

(�5-fold) Cdk9 autophosphorylation in vitro in conditions where

the kinase activity is in the linear range (Figures 4B and 4C).

Collectively, we propose an enzymatic model of P-TEFb trans-

fer from the promoter-assembled 7SK snRNP to TAR during HIV

transcription activation (Figure 4D). In a first step, Tat recruits

PPM1G to the promoter to dephosphorylate the T loop of

Cdk9 and release P-TEFb from the 7SK snRNP. In a second

step, Tat binds dephosphorylated P-TEFb to stimulate auto-

phosphorylation of the Cdk9 T loop and transfers the locally

released kinase to TAR to assemble transcription elongation

complexes. This enzymatic mechanism of 7SK snRNP disas-

sembly takes into consideration the low levels of Tat during
cember 12, 2013 ª2013 The Authors 1261



infection and is favored over the previously proposed competi-

tion model where excess Tat physically captures P-TEFb from

the 7SK snRNP (Barboric et al., 2007; D’Orso and Frankel,

2010; Krueger et al., 2010; Sedore et al., 2007). In fact, we found

that the competitive release of P-TEFb by Tat occurs primarily

due to protein reassortment in vitro, but not in cells, because

Tat and P-TEFb ectopically expressed in separate plates can

efficiently associate leading to Hexim1 displacement (Figure S4).

PPM1G Is a Transcriptional Coactivator of NF-kB in the
Inflammatory Pathway
Because P-TEFb is a general elongation factor, we asked

whether PPM1G is required in the context of transcriptional pro-

grams activated during cellular responses. We examined the in-

flammatory pathway where the proinflammatory cytokine tumor

necrosis factor-alpha (TNF-a) triggers signaling cascades that

converge on the activation of the transcription factor NF-kB

(Ghosh and Karin, 2002). Upon TNF-a stimulation, NF-kB

(RelA) rapidly translocates from the cytoplasm into the nucleus

to activate a set of inflammatory-responsive genes in a

P-TEFb-dependent manner (Barboric et al., 2001; Nissen and

Yamamoto, 2000). Interestingly, PPM1G knockdown sharply

downregulates (�7–15-fold) the induction of two RelA target

genes (interleukin [IL]-8 and IkBa) upon TNF-a treatment without

affecting several nonresponsive genes (Figure 5A). Although

PPM1G knockdown virtually abolishes the activation of inflam-

matory-responsive genes, it does not alter RelA translocation

to the nucleus upon TNF-a treatment (Figure 5B), implying that

PPM1G functions as a nuclear regulator of NF-kB activity. To

rule out possible RNAi off-target effects, we used two siRNAs

to target a noncoding region in PPM1G and observed that sub-

sequent transfection of a siRNA-resistant PPM1G construct

restored the stimulus-dependent activation of inflammatory-

responsive genes (Figure S5). These results suggest that

PPM1G is an essential nuclear cofactor of NF-kB for the normal

activation of the inflammatory transcriptional program.

Upon stimulation with proinflammatory cytokines, NF-kB in-

duces the transcription of a number of antiapoptotic genes (Bar-

kett and Gilmore, 1999; Ghosh and Karin, 2002; Sidoti-de

Fraisse et al., 1998). To investigate the biological significance

of PPM1G in these processes, we analyzed its involvement in

the apoptotic response regulated by NF-kB (Figure 5C). To this

end, we transfected HeLa cells with control and PPM1G

siRNAs, and 2 days later, the cells were treated with or without

TNF-a. We assayed for cell death at different time intervals post-

treatment and then computed a cumulative cell death index by

plotting the effect of TNF-a on cell viability. Treatment with

TNF-a was not toxic to cells transfected with control siRNA;

however, PPM1G knockdown drastically sensitized cells to

TNF-a-induced apoptosis (Figure 5C). This suggests that

NF-kB requires PPM1G, in addition to P-TEFb (Barboric et al.,

2001), to stimulate transcription elongation of prosurvival genes

to prevent apoptosis induced by proinflammatory cytokines.

Given the fact that Tat physically recruits PPM1G to stimulate

HIV transcription and that PPM1G is required for activation of in-

flammatory-responsive genes, we asked whether RelA binds

PPM1G. To test this, we crosslinked cells after TNF-a treatment

to eliminate any possible in vitro protein reassortment during the
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affinity purification step. Interestingly, we found that transfected

PPM1G stably associates with endogenous RelA in a stimulus-

dependent manner (Figure 5D). Supporting this result, endoge-

nous PPM1G and RelA proteins colocalize in the nucleus upon

TNF-a treatment (Figure 5E) and bacterially synthesized RelA

directly binds PPM1G in vitro (Figure 5F). Taken together, these

results functionally link PPM1G and NF-kB during activation of

the inflammatory transcriptional program.

Recruitment of PPM1G by NF-kB to the Promoter-
Assembled 7SK snRNP Mediates the Activation of
Inflammatory-Responsive Genes
The idea that PPM1G copurifies with the 7SK snRNP prompted

us to characterize the interaction of the enzymewith the RNA and

core snRNP components. To examine the interaction with 7SK

RNA, we performed a RIP assay from cells transfected with

Strep-tagged PPM1G and PPM1A (Figure 6A). Notably, we

found that PPM1G, but not PPM1A, associates with 7SK in cells,

but not with U6 snRNA (data not shown), demonstrating binding

specificity. To test whether PPM1G directly associates with 7SK

RNA, we purified recombinant PPM1G and PPM1A proteins

from bacteria and incubated them with a radiolabeled 7SK

RNA. Interestingly, PPM1G, but not PPM1A, directly binds 7SK

RNA in in vitro gel shift assays (Figure 6B). In addition to binding

7SK RNA, we observed that PPM1G, but not PPM1A, directly in-

teracts (in the absence of 7SK RNA) with MePCE and Larp7 core

snRNP components in vitro (Figure 6C), demonstrating that

PPM1G can make multiple contacts with the 7SK snRNP com-

plex. In support of the physical interaction data, we observed

that knockdown of PPM1G, but not PPM1A, affects transcription

of inflammatory-responsive genes by NF-kB (Figure 5A; data not

shown).

All aspects of transcription and its regulation involve dynamic

events where regulatory components are recruited to their target

genes (Hager et al., 2009). Thus, although PPM1G has RNA-

binding activity per se, we examined the possibility of a stim-

ulus-dependent PPM1G-7SK RNA interaction upon activation

of the inflammatory transcriptional program. Using a RIP assay,

we observed that treatment of HeLa cells with TNF-a induces the

recruitment of endogenous PPM1G to 7SK RNA (Figure 6D).

To test whether there is a functional link between RelA and

the recruitment of PPM1G to the 7SK RNA, we used RNAi to

knockdown RelA and compared the levels of PPM1G-7SK

RNA association with and without TNF-a using a RIP assay (Fig-

ure 6E). Intriguingly, knockdown of RelA reduced (by a factor

of �2-fold) the PPM1G-7SK RNA association in the presence

of TNF-a, which correlates with the decreased expression of

RelA target genes (data not shown). Thus, RelA, in addition to

binding its target genes, plays a key role in the stimulus-depen-

dent recruitment of PPM1G to the 7SK RNA to activate

transcription.

To further define the role of PPM1G during activation of the

inflammatory transcriptional program, we knocked down

PPM1G from cells treated with or without TNF-a and examined

Pol II and cofactor recruitment by ChIP at the IL-8 locus (Fig-

ure 6F). PPM1G knockdown reduces (�2–4-fold) the TNF-

a-mediated increase of Pol II and P-TEFb occupancy in the

gene body, which correlates with reduced gene expression
hors



Figure 5. PPM1G Is a Nuclear Transcriptional Coactivator of NF-kB in the Inflammatory Pathway
(A) HeLa cells were transfected with the indicated siRNAs and treated with or without TNF-a. Left, the expression of TNF-a-responsive and -nonresponsive genes

(normalized to Rpl19) wasmeasured by qRT-PCR and plotted as fold change ± TNF-a (mean ±SEM are shown; n = 3). Right, western blots showing the validation

of the knockdown.

(B) Knockdown of PPM1G in HeLa cells does not alter RelA translocation to the nucleus upon TNF-a treatment.

(C) PPM1G knockdown sensitizes cells to TNF-a-induced apoptosis. HeLa cells were transfected with the indicated siRNAs. At 48 hr posttransfection, cells were

treated with or without TNF-a and incubated for the indicated time points. The plot shows percentage of viable cells and is expressed as fold difference ± TNF-a

(mean ± SEM are shown; n = 3).

(D) PPM1G and RelA interact in cells. HEK 293T cells were transfected with a Strep-tagged PPM1G plasmid and cells were treated with or without TNF-a,

crosslinked with formaldehyde, and lysed under denaturing conditions. Strep AP was performed to analyze the interaction between PPM1G and RelA.

(E) RelA and PPM1G colocalize in a stimulus-dependent manner in the cell nuclei. HeLa cells were treated with or without TNF-a, and confocal images are shown.

A single cross-sectional image was acquired (line), and emission intensities were quantified to analyze the relative colocalization along the path indicated

(histograms).

(F) RelA and PPM1G directly bind. Bacterially synthesized RelA was incubated with Strep-tagged PPM1G, and the final elution was analyzed by western blot.

See also Figure S5.
(Figure 5A). Interestingly, similar to the HIV promoter, we ob-

served that the inhibitory 7SK snRNP components (Larp7 and

Hexim1) are recruited to the promoter and TNF-a treatment pro-

motes their eviction. This TNF-a-mediated ejection of the 7SK

snRNP relies on PPM1G because knockdown of the enzyme

resulted in retention of both Hexim1 and Larp7 at the IL-8

promoter.
Cell Re
To test the model that PPM1G is required to directly activate

transcriptional pause release through eviction of the 7SK snRNP

at the IL-8 locus, we examined PPM1G recruitment by ChIP (Fig-

ure 6G). Interestingly, we observed that PPM1G is recruited to

the IL-8 promoter, but not to the gene body, upon TNF-a stimu-

lation, mirroring the occupancy profile of RelA. This result dem-

onstrates that the recruitment of PPM1G by RelA to the IL-8
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promoter is inducible and argues a role for PPM1G in activating

the transition into elongation.

Because P-TEFb is a general elongation factor, we examined

the requirement of PPM1G for several Pol II-transcribed genes.

As has been previously reported, Cdk9 knockdown antagonized

the activation of heat-shock-responsive genes (Lis et al., 2000);

however, knockdown of PPM1G had no significant impact on

activation of Hsp70 and Hsp90 upon heat shock stress (Fig-

ure S6), thus demonstrating that PPM1G is a regulator of selec-

tive cellular transcriptional programs.

DISCUSSION

The compartmentalization of factors enables rapid coordination

of molecular reactions (Francastel et al., 2000; Hager et al.,

2009). Transcription is one example of molecular crowding

where a paused Pol II, negative elongation factors, and coactiva-

tors are collectively assembled at gene promoters to facilitate

rapid gene expression. P-TEFb is a pleiotropic coactivator of

gene expression initially thought to be recruited to promoters

upon gene activation. Recent studies, however, revealed a close

association between P-TEFb as part of the inhibitory 7SK snRNP

at gene promoters, and this association is positively correlated

with the degree to which Pol II pauses to prevent spurious tran-

scription elongation (Barboric and Lenasi, 2010; D’Orso and

Frankel, 2010; Ji et al., 2013). Thus, the 7SK snRNP complex is

not simply a reservoir of inactive P-TEFb that roams the nucleus

but rather keeps a primed P-TEFb kinase at promoters of induc-

ible genes.

Our findings elucidate a functional link between the recruit-

ment of PPM1G by transcription factors and the release of

P-TEFb from the promoter-assembled 7SK snRNP during gene

activation. PPM1G dephosphorylates the Cdk9 T loop to

enzymatically disassemble the snRNP during activation of the

HIV and cellular transcriptional programs by Tat and NF-kB,

respectively. Other cellular phosphatases have been previously

described to dephosphorylate P-TEFb in vitro and to dissociate

Hexim1 from P-TEFb in response to signal-dependent activation

(Ammosova et al., 2005; Chen et al., 2008; Wang et al., 2008);

however, the mechanisms of transcription activation in vivo are

poorly understood. Here, we demonstrate that Tat and NF-kB

recruit PPM1G to the promoter-assembled 7SK snRNP to

release P-TEFb from the snRNP providing a functional link

between Cdk9 dephosphorylation and activation of specific

elongation programs.

At the HIV promoter, the Tat-TAR interaction plays a key role

in the disassembly of the 7SK snRNP in vivo, and thus, the

nascent RNA might coordinate the recruitment of the Tat-

PPM1G complex to the HIV promoter to release P-TEFb from

the 7SK snRNP. This could explain why TAR deletion impairs

the eviction of the 7SK snRNP even in the presence of Tat

(D’Orso and Frankel, 2010). Our results are consistent with a

model whereby, upon disassembly of the 7SK snRNP, Tat

captures released P-TEFb in an unphosphorylated state and

enhances the rate of Cdk9 T loop autophosphorylation to

induce a permissive kinase state for TAR binding. Several pre-

vious observations are consistent with this model of activation:

(1) Tat contacts the Cdk9 T loop in the Tat-P-TEFb structure
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(Tahirov et al., 2010) and (2) phosphorylation of the T loop is

critical for the folding and autophosphorylation of its CTD, a

prerequisite for the assembly of Tat:TAR:P-TEFb (Baumli

et al., 2012; Garber et al., 2000). Thus, our results suggest

that the local transfer of P-TEFb from 7SK to TAR at the viral

promoter follows a stepwise Cdk9 dephosphorylation and re-

phosphorylation process.

Similar to Tat, we show that NF-kB utilizes P-TEFb (Barboric

et al., 2001; Hargreaves et al., 2009; Luecke and Yamamoto,

2005) and PPM1G during activation of the inflammatory tran-

scriptional program. The inducible recruitment of PPM1G by

NF-kB to promoters of inflammatory-responsive genes disas-

sembles the 7SK snRNP and releases P-TEFb for transcription

elongation. We provide evidence that knockdown of PPM1G

impairs disassembly of the snRNP, thereby decreasing the

transcription of inflammatory-responsive genes and sensitizing

cells to cytokine-induced apoptosis. Interestingly, the inducible

disassembly of the 7SK snRNP at the IL-8 gene mimics the

Tat-mediated snRNP eviction at the HIV promoter during the

switch to elongation (D’Orso and Frankel, 2010). Although

NF-kB operates in a TAR-independent manner, binding of

NF-kB to its responsive elements and cooperation with RNA-

processing factors that bind the nascent RNA (Ji et al., 2013)

might play an analogous role to Tat. At difference to the IL-8

gene, which requires P-TEFb to be induced during TNF-a

signaling, the IkBa gene appears to be activated in a P-TEFb-

independent manner in lung- and kidney-derived cell lines

(Amir-Zilberstein et al., 2007; Luecke and Yamamoto, 2005).

Because our assay was performed in HeLa, it is unclear whether

the discrepancy in the requirement of P-TEFb is due to cell-type-

specific differences.

Interestingly, PPM1G assembles into the 7SK snRNP in a

reversible- and stimulus-dependent manner through direct

contacts with both the RNA and core snRNP components.

Because PPM1G binds the snRNP tightly, in the absence of

P-TEFb and Hexim1, the enzyme might also block the

reassociation of P-TEFb-Hexim1 onto the 7SK RNA, thereby

maintaining a local pool of free P-TEFb (Barboric et al., 2007)

to sustain multiple rounds of elongation. When Tat levels or

the inflammatory stimuli are decreased, PPM1G could disso-

ciate from the 7SK snRNP, thereby allowing for the recruit-

ment of P-TEFb and Hexim1 into the snRNP to reset the

system to the basal, repressed state. Thus, we propose that

the reversible nature of the PPM1G-7SK snRNP interaction

facilitates both the initiation and termination of the elongation

programs.

In summary, we report that the primary function of the pro-

moter-assembled 7SK snRNP is to keep a primed P-TEFb

kinase. We thus argue that the 7SK snRNP, along with paused

Pol II, should be viewed as a mechanism for rapid and inducible

gene expression through transcriptional pause release. The

regulation of transcription elongation by the P-TEFb kinase has

been extensively studied over the past decade (Zhou et al.,

2012), with much of our current understanding owed to the HIV

system (Ott et al., 2011). Once again, using Tat, we discovered

a role for PPM1G as a transcriptional regulator of P-TEFb during

cellular responses, a pathway that HIV exploits for infection of

the host cell.
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Figure 6. PPM1G Binds the 7SK snRNP and

Participates in the NF-kB-Mediated Disas-

sembly of the Promoter-Assembled snRNP at

Inflammatory Responsive Genes

(A) HeLa cells were transfected with an empty vector

(Mock) or Strep-tagged PPM1A or PPM1G plasmids,

and levels of 7SK RNA coimmunoprecipitating were

quantified by qRT-PCR (mean ± SEM are shown; n =

3).

(B) PPM1G binds 7SK RNA. Gel shift assay between

in-vitro-synthesized 7SK RNA and His-tagged, bac-

terial PPM1A or PPM1G. Mock denotes incubation of

7SK RNA in binding buffer with a purification from

bacterial cells transformed with an empty vector.

(C) PPM1G binds 7SK snRNP core components. Left,

a silver-stained gel of input proteins purified from HEK

293T in the presence of RNase A. The FLAG-tagged

proteins were incubated with GFP, PPM1G, or PPM1A

bound to Strep beads. Right, western blots of the

Strep AP.

(D) Stimulus-dependent recruitment of PPM1G to the

7SK RNA. HeLa cells were treated with or without

TNF-a, endogenous PPM1G was immunoprecipitated

using a specific serum, and levels of PPM1G-bound

7SK RNA were quantified by qRT-PCR. Normal

immunoglobulin G (IgG) was used as negative control

(mean ± SEM are shown; n = 4).

(E) PPM1G-7SK RIP. Left, HeLa cells were transfected

with control or RelA siRNAs and treatedwith or without

TNF-a, and a RIP assay was performed to quantify the

amount of endogenous PPM1G-bound 7SK RNA by

qRT-PCR (mean ± SEM are shown; n = 3). Right,

western blots to validate the knockdown.

(F) ChIP assay to analyze the distribution of Pol II and

P-TEFb-7SK snRNP subunits at the IL-8 locus. HeLa

cells were transfected with a control or PPM1G siRNA

and treated with (black bars) or without (gray bars)

TNF-a. Values represent the average of three inde-

pendent experiments. The SEM is less than 5% and

not shown for simplicity.

(G) ChIP assay to analyze the distribution of RelA and

PPM1G at the IL-8 locus in HeLa cells treated with

(black bars) or without (gray bars) TNF-a. Values

represent the average of four independent experi-

ments. The SEM is less than 5% and not shown for

simplicity.

See also Figure S6.
EXPERIMENTAL PROCEDURES

Cell Culture

HeLa, HeLa-LTR (D’Orso and Frankel, 2010), and HEK 293T cells were

cultured in Dulbecco’s modified Eagle’s medium with 10% fetal bovine serum

at 37�C with 5% CO2.

Plasmids

The plasmids used in this study are listed in Table S2. Site-directed mutants

were made using 100 ng of the indicated plasmid, 50-phosphorylated oligonu-

cleotides, and Phusion High-Fidelity PCR master mix (New England Biolabs).

Transcription Reporter Assays

For the reporter assays, HeLa cells were transfected using Polyjet (SignaGen)

with 25 ng of a firefly luciferase (FFL) reporter plasmid, 1 ng of a cytomegalo-

virus (CMV)-Renilla (RL) luciferase plasmid, and 1 ng of a Tat-expressing

plasmid as described (D’Orso et al., 2012). Reporter activities are presented

as fold activation relative to reporter alone and normalized to RL. For the
Cell Re
RNAi assays, 24 hr after siRNA transfection, cells were retransfected with a

Tat plasmid and luciferase levels were measured using the Dual-Luciferase

Reporter Assay (Promega) on a FLUOStar Optima 96-well plate reader

(BMG Labtech).
RNAi Assays

HeLa cells were transfected with the indicated siRNAs (Table S3) at a final

concentration of 100 mM using Lipofectamine 2000 (Invitrogen). Knockdown

efficiency was evaluated by quantitative RT-PCR (qRT-PCR) (Table S4) and

western blot (Table S5).
RNA Extraction and Quantitative RT-PCR

Total RNA was isolated using TRIzol (Invitrogen) and RNeasy plus spin col-

umns (QIAGEN). First-strand cDNA was synthesized using M-MuLV Reverse

Transcriptase (New England Biolabs), and quantitative PCR was performed

with a SybrGreen master mix on an ABI7500 instrument. Ct values and fold

change were calculated as described (Schmittgen and Livak, 2008).
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Elongation Assay

Total RNA was extracted from the HeLa-LTR cell line transfected with the indi-

cated siRNAs. Transcripts were analyzed by RT-PCR as described (D’Orso

et al., 2012).

ChIP Assays

ChIP assays were performed as previously described (D’Orso and Frankel,

2010). The HeLa-LTR cell line was sequentially transfected with siRNAs

(day 1) and a Tat:FLAG plasmid (day 2), and proteins lysates were prepared

(day 3). For ChIP at the IL-8 locus, HeLa cells were treated with or without

TNF-a.

Tandem Affinity Purification and Mass Spectrometry

HEK 293T cells were transfected with Tat:Strep and Larp7:FLAG plasmids. Tat

complexes were sequentially purified using Strep-tactin resin (IBA Life

Sciences) and FLAG beads (Sigma-Aldrich). Gel slices and in-solution samples

were analyzed by liquid chromatography-tandem mass spectrometry in the

University of Texas Southwestern Proteomics Core.

Immunoprecipitations

Endogenous proteins were immunoprecipitated with the indicated antibodies

conjugated to Protein G dynabeads (Invitrogen) from a HeLawhole-cell extract

as previously described (D’Orso et al., 2012). Isolation of copurifying RNAs

from immunoprecipitation material was performed as described (D’Orso

et al., 2012).

In Vitro Phosphatase Assay

In vitro dephosphorylation of P-TEFb (0.5 mg) was carried out in dephosphor-

ylation buffer (20 mM Tris-HCl [pH 7.4], 150 mMNaCl, 5 mM imidazole, 10 mM

MnCl2, and 1 mM dithiothreitol [DTT]) at 30�C for 2 hr with 1 mg of the indicated

phosphatase. Reactions were stopped by the addition of 2.5 mM EDTA and

boiled at 90�C for 5 min in laemmli buffer. For the release assay, dephosphor-

ylation reactions were diluted in half in buffer (20mMTris-HCl [pH 7.4], 150mM

NaCl, and 0.05% NP-40) and incubated with FLAG beads overnight. The

reaction products were electrophoresed on a SDS-PAGE gel and analyzed

by western blot.

P-TEFb Dephosphorylation and Cdk9 T Loop Phosphorylation Assay

P-TEFb (CycT1:Strep + Cdk9:FLAG) was purified using Strep-tactin resin from

HEK 293T cells. Cdk9 was dephosphorylated with PPM1G, and P-TEFb was

subsequently purified using FLAG beads. Dephosphorylated P-TEFb was

then incubated with bacterially synthesized Strep-tagged Tat or a C22G

mutant in kinase buffer (10 mM Tris-HCl [pH 7.0], 150 mM KCl, 0.1 mg/ml

BSA, 1.5 mM MgCl2, and 0.5 mM ATP) at 30�C for the indicated time points.

Kinase reactions were stopped with the addition of laemmli buffer and boiled

for 10 min at 90�C. Quantification of relative phosphorylation intensities was

done using Image J.

Protein Expression and Purification from Bacterial Cells

PPM1A, PPM1G, and RelA were cloned into the pET30a vector (Novagen).

BL21 DE3 cells were grown in Luria Broth medium and induced for protein

expression with 1 mM isopropyl b-D1-thiogalactopyranoside at 30�C for

4 hr. Cells were harvested by centrifugation and resuspended in lysis buffer

(20 mM Tris-HCl [pH 7.5], 150 mM NaCl, 20 mM imidazole, 0.2 mM EDTA,

1 mM phenylmethanesulfonylfluoride, 2 mM MnCl2, 1 mM DTT, 5% glycerol,

and 1% NP-40). Lysis was carried out by sonication and clarified by centrifu-

gation at 10,000g. The clarified supernatant was loaded onto a Ni-nitrilotriace-

tic acid affinity column (Qiagen), washed in buffer (20 mM Tris-HCl [pH 7.5],

250 mM NaCl, 20 mM imidazole, 0.2 mM EDTA, 2 mM MnCl2, 1 mM DTT,

5% glycerol, and 0.1% NP-40), and eluted with imidazole. Recombinant HIV

Tat was expressed as an N-terminal glutathione S-transferase (D’Orso and

Frankel, 2010), or C-terminal Strep, fusion.

In Vitro Transcription and RNA-Binding Gel Shift Assays

7SK RNA was produced by in vitro run-off transcription with T7 RNA poly-

merase (NEB). The transcription reaction mixture contained 0.35 mmol of

[a-32P]-uridine triphosphate (UTP) 3000Ci/mmol (PerkinElmer) along with non-
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radiolabelled nucleotides (500 mM ATP/cytidine triphosphatase/guanosine

triphosphate and 100 mM UTP). RNAs were purified on a 5% polyacryl-

amide/1X Tris-Glycine gel and eluted overnight at 4�C in elution buffer

(0.6 M NaOAc [pH 6.0], 1 mM EDTA, and 0.01% SDS), ethanol precipitated,

and resuspended in water. Protein and RNA were incubated for 20 min at

4�C in 10 ml binding buffer (10 mM 4-(2-hydroxyethyl)-1-piperazineethanesul-

fonic acid-KOH [pH 7.5], 100 mMKCl, 1 mMMgCl2, 0.5 mM EDTA, 1mMDTT,

10% glycerol, and 50 mg/ml yeast tRNA). Protein-RNA complexes were

resolved on a 5% polyacrylamide/1X Tris-Glycine gel at 4�C.
Immunofluorescence

Cells were fixed in 4% paraformaldehyde and permeabilized in 0.5% Triton

X-100. Coverslips were blocked at 4�C for 1 hr in 1X PBS buffer containing

4% BSA and 5% normal goat serum. Primary antibodies used were: rabbit

anti-RelA and mouse anti-PPM1G. Secondary antibodies were: goat anti-

mouse Alexa Fluor 546 and goat anti-rabbit Alexa Fluor 488 (Invitrogen).

Images were acquired on a Zeiss LSM 5 Pascal confocal microscope and

analyzed on Image J.
Quantitation of TNF-a-Induced Apoptosis

HeLa cells were seeded in 6-well plates and transfected with the indicated

siRNAs. At 48 hr posttransfection, cells were treatedwith TNF-a and apoptosis

wasmonitored over time through picture images (n = 3). The graph was plotted

by counting the cells within a defined area (three images per time point [cell

counts were averaged]). The percent of viable cells expressed as fold

change ± TNF-a was calculated.
De Novo Modeling and Structure Alignment

PPM1G structure prediction was done using the Robetta server (Kim et al.,

2004). Structural similarities were identified after superimposition of the model

into the crystal structures using MAMMOTH. Three PPM1G domains (N-termi-

nal, acidic, and C-terminal) were modeled using four different structures. The

N-terminal (residues 1–140) was modeled using the Ser/Thr phosphatase 2C

(Protein Data Bank [PDB] ID code 2I0O; chain A). Two regions in the acidic

domain (residues 141–231 and 232–324) were modeled with hemagglutinin

esterase fusion protein (PDB 1FLC; chain B) and contractile protein (PDB

1C1G; chain A) structures. The C-terminal (residues 325–546) was modeled

using PPM1A structure (PDB 1A6Q; chain A). The fourmodels were assembled

into a full-length model packed using the Monte-Carlo algorithm with a back-

bone-dependent side-chain rotamer library. The predicted PPM1G structure

(without the acidic domain) and PPM1A structure (PDB 1A6Q; Das et al.,

1996) were aligned and superimposed using the Matchmaker option within

the University of California, San Francisco Chimera molecular modeling pack-

age (Pettersen et al., 2004).
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