
Information and Computation 178, 279–293 (2002)
doi:10.1006/inco.2002.3175

The Small Model Property: How Small Can It Be?1

Amir Pnueli, Yoav Rodeh, Ofer Strichman, and Michael Siegel

Department of Applied Mathematics and Computer Science, the Weizmann Institute of Science, Rehovot, Israel,
E-mail: amir-yrodeh-ofers-mis@wisdom.weizmann.ac.il

Received July 15, 2001; revised July 6, 2002

Efficient decision procedures for equality logic (quantifier-free predicate calculus + the equality
sign) are of major importance when proving logical equivalence between systems. We introduce an
efficient decision procedure for the theory of equality based on finite instantiations. The main idea is
to analyze the structure of the formula and compute accordingly a small domain to each variable such
that the formula is satisfiable iff it can be satisfied over these domains. We show how the problem of
finding these small domains can be reduced to an interesting graph theoretic problem. This method
enabled us to verify formulas containing hundreds of integer and floating point variables that could not
be efficiently handled with previously known techniques. C© 2002 Elsevier Science (USA)

Key Words: finite instantiation; equality logic; uninterpreted functions; compiler verification;
translation validation; range allocation.

1. INTRODUCTION

Proving logical equivalence between systems is of major interest in the formal methods arena. Prov-
ing such equivalence between two versions of a hardware design or proving that an implementation
corresponds to some specification or another, more abstract implementation are typical examples of such
comparisons. In some cases there is a need to prove a weaker claim, namely that each computation of the
implementation system S1 corresponds to a computation allowed by the specification system S2. In this
case we say that S1 refines S2. In our case, we tried to prove such a refinement relation between source
and target code serving as the input and output of a compiler, and thus to verify that the compilation
process was correct (see [7, 10, 11] for more details about this project). The advantages of this approach,
to which we refer as translation validation (TV), over simply verifying the compiler itself, are that in
general the TV process is simpler, and it is semantics-dependent rather than product dependent. Hence,
as long as the semantics of the input and output languages are unchanged, this approach is insensitive
to changes in the compiler.

Equivalence/refinement proofs are roughly divided into two major steps. In the first step, one needs
to construct a verification condition ϕ, which is simply a logical formula that is valid if and only if the
two compared systems are equivalent. As a second step, the verification condition is validated via a
decision procedure.

For obvious reasons, it is essential that the decision procedure used in the second step be fully
automatic. The most prevalent decision procedures currently in use are based on the representation of
formulas by the special data structure of ordered binary decision diagrams (OBDDs) [3]. OBDDs are
directly applicable only to Boolean formulas. Formulas with variables ranging over a small finite domain
can be encoded as Boolean formulas and thus enjoy the advantages of OBDDs. In our application we have
many variables ranging over very large domains such as the integers or reals; thus special abstraction
techniques are called for.

In addition to symbolic representation by OBDDs, there are other methods for proving equivalence
efficiently. Theorem-provers such as PVS [12] typically solve this problem by computing the congruence
closure over ground terms and uninterpreted functions (see below) [8]. However, this method is not very
efficient in the presence of many disjunctions or If-Then-Else constructs, due to its tendency to split on

1 This research was supported in part by the John von Neuman Minerva Center for Verification of Reactive Systems, a gift
from Intel, a grant from the U.S.-Israel bi-national science foundation, and an Infrastructure grant from the Israeli Ministry of
Science and the Arts. Parts of this paper appeared before in [PRSS99].

279

0890-5401/02 $35.00
C© 2002 Elsevier Science (USA)

All rights reserved.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82502334?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

280 PNUELI ET AL.

each such branch. OBDDs are more efficient dealing with disjunctions due to their canonical structure.
The verification condition associated with the correct compilation problem has a large number of these
branching constructs, and therefore we chose an OBDD-based decision procedure.

When proving equivalence, or refinement, it is often possible to abstract away all functions, except the
equality sign and Boolean operators, by replacing them with uninterpreted functions (UIFs) (If-Then-
Else constructs are left interpreted). The abstracted formula holds less information and therefore can be
represented by a significantly smaller OBDD. It was Ackerman [1] who first showed the reduction of
such abstracted formulas to function-free formulas of the theory of equality (i.e., Boolean combination
of atomic equality formulas), while preserving validity. He suggested doing so by replacing each
occurrence of a function with a new variable and adding constraints that preserve their functionality as
an antecedent of the formula, rewriting the formula (z = F(x, y) ∧ u = y) → z = F(x, u) into

((x = x ∧ y = u) → f1 = f2) → ((z = f1 ∧ u = y) → z = f2).

The abstraction process itself does not preserve validity and may transform a valid formula such as
x + y = y + x into the invalid formula F(x, y) = F(y, x) which does not hold for all functions F .
However, in many useful contexts, such as the verification of compilers that do not perform extensive
arithmetical optimizations, the process of abstraction is often justified. At least we can rely on the fact
that the process of abstraction into UIFs is conservative: it cannot generate false positives, and therefore
if the abstract version is found valid, this is also the case with the concrete formulas it abstracts.

After performing such an abstraction followed by Ackerman’s reduction, the resulting formula is an
equality formula and enjoys the finite model property (i.e., it is satisfiable iff it is satisfiable over a finite
domain). Therefore, the next step is the calculation of a finite domain such that the formula is valid
iff it is valid over all interpretations of this finite domain. The latter can be checked with a finite-state
decision procedure.

A known folk theorem is that it is enough to give each variable the range [1 . . n] (where n is the
number of non-Boolean input variables), resulting in a state-space of nn . It is not difficult to see that this
range is sufficient for preserving the validity or invalidity of the formula. If a formula is not valid, there
is at least one assignment that makes the formula false. Any assignment that partitions the variables into
the same equivalence classes with respect to equality will also falsify the formula. Since there cannot
be more than n classes, the [1 . . n] range is sufficient regardless of the formula’s structure. We will later
show that a smaller state space of n! can be achieved by first ordering the variables and then allocating
the ranger 1 . . i to the i th variable. We will also show that analyzing the formula’s structure can lead to
significantly smaller domains.

There were several attempts to cope with this problem before. Here we will mention two of them.
Bryant et al. [4, 6] proposed two distinct approaches to this problem. In the first approach they suggest

examining the structure of the formula and distinguishing a class of terms, called “p-terms” (positive
terms), which can be replaced by constants while preserving validity. These terms can only appear in
equalities that do not appear under a logical negation or in the input cone of function applications.
By replacing these terms with unique constants, the tested state-space is reduced immensely, which
makes the decision procedure highly efficient. Other variables are given an increasing range of values,
which leads in the worst case (when there are no p-terms) to a state space of n!. Practically, however,
a significant part of many typical hardware designs can be expressed by p-terms, which implies that
most variables are replaced by constants. Since our method reduces the domain of all variables, the two
methods are complementary and can be combined: p-terms can be replaced by unique constants, while
the domain of the other terms can be calculated by our method.

In the second approach, they encode each equality xi = x j with a new Boolean variable ei j and
maintain the transitivity of equality by adding appropriate constraints to the formula. The additional
transitivity constraints should prevent an assignment to a cycle of size n s.t. exactly n − 1 edges are
assigned true. For example, given the cycle of size 3, x1 = x2, x2 = x3, x3 = x1, the constraints should
prevent an assignment such that e12 = e23 = TRUE and e13 = FALSE. Explicit enumeration of all chord-
free cycles in the formula can be exponential, and they therefore suggest a preprocessing stage: they
add edges s.t. the resulting graph is chordal (i.e., every cycle of size 4 or more has a chord). Since
all chord-free cycles in such a graph are triangles, the number of cycles to be enumerated is bounded
by (n

3). Experiments have showed that this sparse enumeration method is more efficient than the first

SMALL MODEL PROPERTY 281

method. It also outperforms an earlier method suggested in [9], which also encodes equalities with
Boolean variables, but preserves transitivity in a different way. Rather than adding constraints, they
construct a BDD based on the encoded Boolean formula and then restrict their search over this BDD
to paths that are consistent with transitivity of equality. For example, a path with ei, j = e j,k = TRUE and
ei,k = FALSE is inconsistent. A comparative study showed that this method cannot scale up [6].

There are two reasons why in spite of this success we believe that finite instantiation can perform
better in many cases. First, in the worst case, where all variables are compared to each other, Boolean
encoding results in a state space of O(2n2

). For the same formula, allocating an increasing range of values
results in a state space of n!, which is exponentially smaller. Second, the Boolean encoding method of
[6] increases the formula itself by adding transitivity constraints. This is in contrast to our method that
checks the original formula; hence transitivity is preserved implicitly without adding constraints.

The verification conditions we considered had the form of an implication between two conjuncts
(
∧n

i=1 ϕi → ∧m
j=1 ψ j), typically with several thousand clauses on each side (the left- and right-hand

side corresponded to the transition relations of the target and source code, respectively) and more than
a thousand variables. The abstraction process added several hundred more variables and thousands of
constraints. Several hundreds of these variables were integer and floating-point, while the rest were
Boolean. Although we decomposed the formula, we still had many verification conditions with 150
integer variables or more. Since the size of the domain is crucial to the time required to complete the
proof with an OBDD-based tool, the nn state-space (where n > 150 in our case) was naturally far too
large to handle.

In the next section we present a precise definition of the problem we consider, deciding validity
(satisfiability) of equality formulas, and explain how it naturally arises in many useful contexts. In
Section 3 we outline our general solution strategy, which is a computation of a small set of domains
(ranges) R such that the formula is satisfiable iff it is satisfiable over R, followed by a test for R-
satisfiability performed by a standard BDD package. The remaining question is how to find such a set of
small domains. To answer this question, we show how this problem can be reduced to a graph-theoretic
problem. The rest of the paper focuses on algorithms, which, in most cases, produce extremely small
domains. In Section 4, we describe the basic algorithm. The soundness proof of the algorithm is given in
Section 5. In Section 6, we present several improvements to the basic algorithm and analyze their effect
on the upper bound of the resulting state-space. We describe experimental results from an industrial
case study in Section 7 and conclude in Section 8 by considering possible directions for future research.

2. THE PROBLEM: DECIDING EQUALITY FORMULAS

Our interest in the problem of deciding equality formulas arose while constructing CVT [10, 11], a
verification tool that proves refinement between source and target code of a compiler. Although the same
problem was mentioned in the past, usually in the context of proving equivalence between hardware
designs, our running example will follow a typical formula from the former domain.

Assume that a source program contained the statement z := (x1 + y1) · (x2 + y2) which the translator
we wish to verify compiled into the following sequence of three assignments,

u1 := x1 + y1; u2 := x2 + y2; z := u1 · u2,

introducing the two auxiliary variables u1 and u2.
For this translation, CVT first constructs the verification condition

u1 = x1 + y1 ∧ u2 = x2 + y2 ∧ z = u1 · u2 → z = (x1 + y1) · (x2 + y2),

whose validity we wish to check.
The second step performed by CVT in handling such a formula is to abstract the concrete functions

appearing in the formula, such as addition and multiplication, by abstract (uninterpreted) function
symbols. The abstracted version of the above implication is

u1 = F(x1, y1) ∧ u2 = F(x2, y2) ∧ z = G(u1, u2) → z = G(F(x1, y1), F(x2, y2)),

where “+” and “∗” have been abstracted into F and G, respectively. Clearly, if the abstracted version
is valid then so is the original concrete one.

282 PNUELI ET AL.

Next, we perform the Ackerman reduction [1], replacing each functional term by a fresh variable but
adding, for each pair of terms with the same function symbol, an extra antecedent which guarantees the
functionality of these terms. Namely, if the two arguments of the original terms were equal, then the
terms should be equal. It is not difficult to see that this transformation preserves validity.

Applying the Ackerman reduction to the abstracted formula, we obtain the following equality formula:

ϕ :

(x1 = x2 ∧ y1 = y2 → f1 = f2) ∧
(u1 = f1 ∧ u2 = f2 → g1 = g2) ∧

u1 = f1 ∧ u2 = f2 ∧ z = g1

→ z = g2. (1)

Note the extra antecedent ensuring the functionality of F by identifying the conditions under which f1

should equal f2 and the similar requirement for G.

Equality Formulas. Even though the variables appearing in an equality formula such as ϕ are
assumed to be completely uninterpreted, it is not difficult to see that a formula such as ϕ is generally
valid (satisfiable) iff it is valid (respectively, satisfiable) when the variables appearing in the formula
range over the integers. This leads to the following definition of the syntax of equality formulas that the
method presented in this paper can handle.

Let x1, x2, . . . be a set of integer variables, and b1, b2, . . . be a set of Boolean variables. We define
the set of terms T by

T ::= integer constant | xi | if � then T1 else T2.

The set of equality formulas � is defined by

� ::= b j | ¬� | �1 ∨ �2 | T1 = T2 | if �0 then �1 else �2.

Additional Boolean operators such as ∧ , → and ↔, can be defined in terms of ¬, ∨.

3. THE SOLUTION: INSTANTIATIONS OVER SMALL DOMAINS

Our solution strategy for checking whether a given equality formula ϕ is satisfiable can be summarized
as follows:

1. Determine, in polynomial time, a range allocation R : Vars(ϕ) �→ 2N, by mapping each
integer variable xi ∈ Vars(ϕ) into a small finite set of integers R(xi), such that ϕ is satisfiable
(valid) iff it is satisfiable (respectively, valid) over some R-interpretation (i.e., an interpretation
in which each variable xi is assigned an integer from R(xi)).

2. Encode each variable xi as an enumerated type over its finite domain R(xi), and use a standard
BDD package to construct a BDD Bϕ . Formula ϕ is satisfiable iff Bϕ is not identical to 0.

We define the complexity of a range allocation R to be the size of the state-space spanned by R; that is, if
Vars(ϕ) = {x1, . . . , xn}, then the complexity of R is |R| = |R(x1)|×|R(x2)|×· · ·×|R(xn)|. Obviously,
the success of our method depends on our ability to find range allocations with small complexity.

3.1. Some Simple Bounds

In theory, there always exists a singleton range allocation R∗ satisfying the above requirements such
that R∗ allocates each variable a domain consisting of a single natural; i.e., |R∗| = 1. This is supported
by the following trivial argument. If ϕ is satisfiable, then there exists an assignment (x1, . . . , xn) =
(z1, . . . , zn) satisfying ϕ. It is sufficient to take R∗ : x1 �→ {z1}, . . . xn �→ {zn} as the singleton allocation.
If ϕ is unsatisfiable, it is sufficient to take R∗ : x1, . . . , xn �→ {0}.

Thus, the answer to the question posed in our title is 1. However, finding the singleton allocation
R∗ amounts to a head-on attack on the primary NP-complete problem. Instead, we generalize the

SMALL MODEL PROPERTY 283

problem and attempt to find a small range allocation which is adequate for a set of formulas � which
are “structurally similar” to the formula ϕ and includes ϕ itself. Consequently, we say that the range
allocation R is adequate for the formula set � if, for every equality formula in the set ϕ ∈ �, ϕ is
satisfiable iff ϕ is satisfiable over R.

First, let us consider �n , the set of all equality formulas with at most n variables.

CLAIM 1 (Folk theorem). The uniform range allocation R : {x1, . . . , xn} �→ [1 . . n] with complexity
nn is adequate for �n.

We can do better if we do not insist on a uniform range allocation which allocates the same domain
to all variables. Thus the range allocation R : xi �→ [1 . . i] is also adequate for �n and has the better
complexity of n!. In fact, we conjecture that n! is also a lower bound on the size of range allocations
adequate for �n .2

The formula set �n utilizes only a simple structural characteristic common to all of its members,
namely, the number of variables. As a result �n groups together many formulas of radically different
nature. No wonder the best size of adequate range allocations for the whole set is so high.

By paying attention to additional structural similarities of formulas, we were able to form smaller
sets of formulas and managed to obtain much smaller adequate range allocations, which we proceed to
describe in the rest of this paper.

3.2. An Approach Based on the Set of Atomic Formulas

We assume that ϕ is given in a positive form (sometimes called negation normal form); i.e., negations
are only allowed within atomic formulas of the form xi �= x j . An important property of formulas in
positive form is that they are monotonically satisfied. This means that if S1 and S2 are two consistent
subsets of atomic formulas of ϕ (where ϕ is given in positive form), such that S1 ⊆ S2 and Ŝ = ∧

ψ∈Si
ψ ,

then Ŝ1 |= ϕ implies Ŝ2 |= ϕ. Any equality formula can be brought into a positive form by expressing
all Boolean operations such as →, ↔, and the if-then-else construct in terms of the basic Boolean
operations ¬, ∨, and ∧ , and pushing all negations inside.

Let At(ϕ) be the set of all atomic formulas of the form xi = x j or xi �= x j appearing in ϕ, and let
�(ϕ) be the family of all equality formulas which have the same set of atomic formulas as ϕ. Obviously
ϕ ∈ �(ϕ). Note that the family defined by the atomic formula set {x1 = x2, x1 �= x2} includes both the
satisfiable formula x1 = x2 ∨ x1 �= x2 and the unsatisfiable formula x1 = x2 ∧ x1 �= x2.

The following lemma constitutes the monotonicity of adequacy with respect to sets of atomic
formulas.

LEMMA 1. Let �(A) be the set of formulas ϕ such that At(ϕ) = A. If R is adequate for �(A) and
B ⊆ A, then R is adequate for �(B).

Proof. Let � = A − B and let ψ be an an arbitrary formula such that ψ ∈ �(B). Construct ψ ′ =
ψ ∧ ∧

δ∈�(δ ∨ ¬δ). Clearly ψ is satisfiable iff ψ ′ is satisfiable. Since ψ ′ ∈ �(A) and R is adequate
for �(A), then ψ ′ is satisfiable iff it is R-satisfiable. By construction, if ψ ′ is R-satisfiable, then ψ is
also R-satisfiable. So our chain is: ψ is satisfiable ↔ ψ ′ is satisfiable ↔ ψ ′ is R-satisfiable → ψ is
R-satisfiable. Thus, since ψ is an arbitrary formula belonging to �(B), R is adequate for �(B).

For a set of atomic formulas A, we say that the subset B = {ψ1, . . . , ψk} ⊆ A is consistent if the
conjunction ψ1 ∧ · · · ∧ ψk is satisfiable. Note that a set B is consistent iff it does not contain one of
the following two patterns:

1. A chain of the form x1 = x2, x2 = x3, . . . , xr−1 = xr together with the formula x1 �= xr .

2. A chain of the form x1 = x2, x2 = x3, . . . , xr−1 = xr where x1 and xr represent different
constants.

Given a set of atomic formulas A, a range allocation R is defined to be satisfactory for A if every
consistent subset B ⊆ A is R-satisfiable.

2 It can easily be shown that if in addition there are k constants in �n , and cmax is the largest constant, then the range allocation
R : xi �→ [c1 . . ck , cmax + 1 . . cmax + 1 + i] is adequate and results in a complexity of (k + n)!/k!.

284 PNUELI ET AL.

For example, the range allocation R: x1, x2, x3 �→ {0} is satisfactory for the atomic formula set
{x1 = x2, x2 = x3}, while the allocation R: x1 �→ {1}, x2 �→ {2}, x3 �→ {3} is satisfactory for the
formula set {x1 �= x2, x2 �= x3}. On the other hand, no singleton allocation is satisfactory for the set
{x1 = x2, x1 �= x2}. A minimal satisfactory allocation for this set can be given by R: x1 �→ {1}, x2 �→
{1, 2}.

CLAIM 2. The range allocation R is satisfactory for the atomic formula set A iff R is adequate for
�(A).

Proof. (⇒) Falsely assume that there exists ϕ ∈ �(A) such that ϕ is satisfiable but not R-satisfiable.
Let B be the subset of atomic formulas in ϕ that are evaluated to TRUE in a satisfying assignment of ϕ.
Clearly B is consistent and B ⊆ A. Therefore since R is satisfactory for A, then B is R-satisfiable. But
if B is R-satisfiable then ϕ is also R-satisfiable, a contradiction.

(⇐) Falsely assume that R is adequate for �(A) but there exists a consistent subset B, B ⊆ A, such
that B is not R-satisfiable. According to Lemma 1, since R is adequate for �(A) then it is also adequate
for �(B). Let ϕ = ∧

ψ∈B ψ . Since B is consistent then ϕ is satisfiable. From the fact that ϕ ∈ �(B)
and that R is adequate for �(B), we conclude that ϕ is also R-satisfiable, which, by the construction of
ϕ, contradicts our assumption that B is not R-satisfiable.

Thus, we concentrate our efforts on finding a small range allocation which is satisfactory for A =
At(ϕ) for a given equality formula ϕ. In view of the claim, we will continue to use the terms satisfactory
and adequate synonymously.

We partition the set A into the two sets A = A= ∪ A �=, where A= contains all the equality formulas
in A, while A �= contains the disequalities. Variable xi is called a mixed variable iff (xi , x j) ∈ A= and
(xi , xk) ∈ A �= for some x j , xk ∈ Vars(ϕ).

Note that the sets A=(ϕ) and A �=(ϕ) for a given formula ϕ can be computed without actually carrying
out the transformation to positive form. All that is required is to check whether a given atomic formula
has a positive or negative polarity within ϕ, where the polarity of a subformula p is determined according
to whether the number of negations enclosing p is even (positive polarity) or odd (negative polarity).
Other considerations apply to subformulas involving the if-then-else construct.

EXAMPLE 1. Let us illustrate these concepts on the formula ϕ of Eq. (1), whose validity we wished
to check. Since our main algorithm checks for satisfiability, we proceed to form the positive form of
¬ϕ, which is given by

¬ϕ :

(x1 �= x2 ∨ y1 �= y2 ∨ f1 = f2) ∧
(u1 �= f1 ∨ u2 �= f2 ∨ g1 = g2) ∧
u1 = f1 ∧ u2 = f2 ∧ z = g1

∧ z �= g2,

and therefore

A= : {(f1 = f2), (g1 = g2), (u1 = f1), (u2 = f2), (z = g1)}
A �= : {(x1 �= x2), (y1 �= y2), (u1 �= f1), (u2 �= f2), (z �= g2)}.

Note that u1, u2, f1, f2, g2, and z in this example are mixed variables.
As explained above, the sets A= and A �= can be computed directly by counting the number of negations

enclosing the atomic formulas in ϕ without transforming to positive form or even explicitly negating
ϕ. For example, the comparison x1 = x2 in ϕ is contained within two negations implied by appearing
on the left-hand side of two (nested) implications. Since we are considering ¬ϕ, this amounts to three
negations. Since three is odd, we add x1 �= x2 to A �=. In a similar way, the comparison f1 = f2, being
under two negations, is added to A=.

This example would require a state-space of 11! if we used the upper bound without further calculations
(and a state-space of 1111 if we used the [1 . . n] range). We will later show that this example possesses
an adequate range allocation of size 16.

SMALL MODEL PROPERTY 285

FIG. 1. The graph G : G �= ∪ G= representing ¬ϕ.

3.3. A Graph-Theoretic Representation of the Sets A=, A �=

The sets A= and A �= can be represented by two graphs, G= and G �=, defined as follows:

(xi , x j) is an edge on G=, the equalities graph, iff (xi = x j) ∈ A=.

(xi , x j) is an edge on G �=, the disequalities graph, iff (xi �= x j) ∈ A �=.

We refer to the joint graph as G. Each vertex in G represents a variable. Vertices representing mixed
variables are called mixed vertices. We will use dashed edges to represent G=-edges and solid ones to
represent G �=-edges.

An inconsistent subset B ⊆ A will either contain a dashed path between two constants or appear as a
contradictory cycle, i.e., a cycle consisting of a single G �= edge and any positive number of G= edges.

In Fig. 1, we present the graph G corresponding to the formula ¬ϕ. Note that there are three contra-
dictory cycles in this graph: (g2 − g1 − z), (u1 − f1), and (u2 − f2).

Let us now give a self-contained definition of the range-allocation graph-theoretic problem. In the
next section we will suggest a heuristic for solving it.

The Range-Allocation Problem. We are given a graph G(V, E, D) with two types of edges, E and
D, where the vertices represent either variables or constants. If (xi , x j) ∈ E , we say that there is an
equality constraint between xi and x j . Similarly, if (xi , x j) ∈ D, we say that there is a disequality
constraint between these variables. We mark E edges with dashed lines and D edges with solid lines.

We say that a subset of edges B ∈ E ∪ D is consistent if it does not contain a cycle of size k > 1,
consisting of one solid edge (xi , x j) ∈ D and k − 1 edges from E , and it does not contain a dashed path
between two constants. We denote the vertices connected by the edges in B by B̄.

Given G, we wish to associate for each vertex xi a set of integers R(xi), such that for all consistent
subsets B ∈ E ∪ D, there is a possible assignment of values from R(xi) to xi for all xi ∈ B̄, that
preserves all the constraints imposed by the edges in B.

The problem is to find in polynomial time the sets R(xi) such that their state-space |R| is minimal
(|R| = ∏

i=1..|V | |R(xi)|).
Note that if all subsets B are consistent, it is immediate to find an allocation R s.t. |R| = 1: first,

allocate a unique value to each connected component in G=, and assign this value to all the variables
in this component. Then, assign a unique value to each node in G �= − G=.

4. THE BASIC RANGE ALLOCATION ALGORITHM

Following is a two-step heuristic for computing an economic range allocation R for the variables in
a given formula ϕ.

I. Eliminating constants and Preprocessing

Initially, R(xi) = ∅, for all vertices xi ∈ G.

A. For each constant-vertex ci in G do:

1. Assign R(ci) := ci .
3

2. Assign R(x j) := R(x j) ∪ {ci } for each vertex x j , s.t. there is a G=-path from ci to x j not
through any other constant-vertex.

3. Remove ci from the graph.

3 Obviously there is no need to allocate a range for constants. This step is presented for the sake of symmetry with step II.A.1.

286 PNUELI ET AL.

B. Remove all G �= edges which do not lie on a contradictory cycle.

C. For every singleton vertex (a vertex comprising a connected component by itself) xi , add to
R(xi) a fresh value ui . Remove xi from the graph.

II. Value allocation

A. While there are mixed vertices in G do:

1. Choose a mixed vertex xi . Add ui , a fresh value, to R(xi).

2. Assign R(x j) := R(x j) ∪ {ui } for each vertex x j , s.t. there is a G=-path from xi to x j .

3. Remove xi from the graph.

B. For each (remaining) connected G= component C=, add a common fresh value uC= to R(xk),
for every xk ∈ C=.

We refer to the values that were added in steps I.A.1, I.C, II.A.1, and II.B, as the characteristic values
of these vertices. We write char(xi) = ui and char(xk) = uC= . Note that every vertex is assigned a single
characteristic value. Vertices that are assigned their characteristic values in steps I.A.1, I.C, and II.A.1
are called individually assigned vertices, while the vertices assigned characteristic values in step II.B are
called communally assigned vertices. We assume that fresh values are assigned in ascending order, so
that char(xi) < char(x j) implies that xi was assigned its characteristic value before x j . Consequently,
we require that all fresh values are larger than the largest constant Cmax . This assumption is necessary
only for simplifying the proof in later sections.

The presented description of the algorithm leaves open the order in which vertices are chosen in
step II.A, which has a strong impact on the size of the resulting state-space. Since the values given in
this step are distributed on the G= graph in step II.A.2, we would like to keep this set as small as possible.
Furthermore, we would like to partition the graph fast, in order to limit this distribution. A rather simple,
yet effective heuristic for this purpose is to choose vertices according to a “greedy” criterion, where
mixed vertices are chosen in the order of their (descending) degree in G �=. Among vertices with equal
degrees in G �=, we choose the one with the highest degree on G=. We expect that further research will
reveal other, more efficient ordering methods.

Note that, excluding some special cases, the set of vertices that are removed in this step can be seen
as a vertex cover of the G �= edges, i.e., a set of vertices V such that every G �= edge has at least one of
its ends in V . Consequently, minimizing this set corresponds to the well-known minimal vertex cover
problem, and we therefore choose to denote this set from now on by mvc.

EXAMPLE 2. The following trace represents the application of the Basic Range Allocation algorithm
to the formula ¬ϕ, where each step is represented by a single line:

Step/var x1 x2 y1 y2 u1 f1 f2 u2 g2 z g1 Remarks
Step I.B Removed edges

(x1 − x2), (y1 − y2)
Step I.C 0 1 2 3 Removed x1, x2, y1, y2

Step II.A (f1) 4 4 4 4 Removed f1

Step II.A (f2) 5 5 Removed f2

Step II.A (g2) 6 6 6 Removed g2

Step II.B 7
Step II.B 8
Step II.B 9 9
Final R-sets 0 1 2 3 4, 7 4 4, 5 4, 5, 8 6 6, 9 6, 9 State-space = 48

For demonstration purposes, consider ϕ where g1 is replaced by the constant “3”. In this case the
component z − g1 − g2 will be handled as follows: in step I.A “3” will be added to R(g2) and R(z). The
edge z − g2 will then be removed in step I.B and a distinct fresh value will be added to each of these
variables in step I.C.

SMALL MODEL PROPERTY 287

5. THE ALGORITHM IS SOUND

In this section we argue for the soundness of the basic algorithm. We begin by describing a procedure
which, given the allocation R produced by the basic algorithm and a consistent subset B, assigns to
each variable xi ∈ G an integer value aB(xi) ∈ R(xi). We then continue by proving that this assignment
satisfies B.

5.1. An Assignment Procedure

Given a consistent subset B and its representative graph G(B), assign to each vertex xi ∈ G(B) a
value aB(xi) ∈ R(xi), according to the following rules:

R1 If xi is connected by a (possibly empty) G=(B)-path to an individually allocated vertex x j ,
assign to xi the minimal value of char(x j) among such x j ’s.

R2 Otherwise, assign to xi its communally assigned value char(xi).

To show that all vertices are assigned a value by this procedure, we observe that every vertex is allocated
a characteristic value before it is removed. It can be an individual characteristic value in steps I.A.1,
I.C, and II.A.1, or a communal value allocated in step II.B. Every vertex xi which has an individual
characteristic value can be assigned a value aB(xi) by R1, because it has at least the empty G=-path
leading to an individually allocated vertex, namely itself. All other vertices are allocated a communal
value that makes them eligible to a value assignment by R2.

EXAMPLE 3. Consider the R-sets that were computed in Example 2. Let us apply the assignment
procedure to a subset B that contains all edges excluding both edges between u1 and f1, the dashed
edge between g1 and g2, and the solid edge between f2 and u2. The assignment will be as follows:

—By R1, f1, f2, and u2 are assigned the value char(f1) = “4”, because f1 was the first mixed
vertex in the subgraph { f1, f2, u2} that was removed in step II.A, and consequently it has the minimal
characteristic value.

—By R1, x1, x2, y1, and y2 are assigned the characteristic values “0”, “1”, “2”, “3”, respectively,
which they received in step I.C.

—By R1, g2 is assigned the value char(g2) = “6” which it received in step II.A.

—By R2, z and g1 are assigned the value “9” which they received in step II.B.

CLAIM 3. The assignment procedure is feasible (i.e., the value assigned to a node by the procedure
belongs to its R-set).

Proof. Consider first the two classes of vertices that are assigned a value by R1. The first class
includes vertices that are removed in step I.B. These vertices have only one (empty) G=(B) path to
themselves and are therefore assigned the characteristic value they received in this step. The second
class includes vertices that have a (possibly empty) G=(B) path to a vertex from mvc. Let xi denote
such a vertex, and let x j be the vertex with the minimal characteristic value that xi can reach on G=(B).
Since xi and all the vertices on this path were still part of the graph when x j was removed in step II.A,
then according to step II.A.2, char(x j) was added to R(xi). Thus, the assignment of char(x j) to xi is
feasible.

Next, consider the vertices that are assigned a value by R2. Every vertex that is removed in step I.C
or II.A is clearly assigned a value by R1. All the other vertices are communally assigned a value in step
II.B. In particular, the vertices that do not have a path to an individually assigned vertex are assigned
such a value. Thus, the two steps of the assignment procedure are feasible.

CLAIM 4. If B is a consistent set then the assignment aB satisfies B.

Proof. We have to show that all constraints implied by the set B are satisfied by the assignment aB .
Consider first the case of two variables xi and x j which are connected by a G=(B)-edge. We have

to show that aB(xi) = aB(x j). Since xi and x j are G=(B)-connected, they belong to the same G=(B)-
connected component. If they were both assigned a value in R1, then they were assigned the minimal

288 PNUELI ET AL.

value of an individually assigned vertex to which they are both G=(B)-connected. If, on the other hand,
they were both assigned a value in R2, then they were assigned the communal value assigned to the G=
component to which they both belong. Thus, in both cases they are assigned the same value.

Next, consider the case of two variables xi and x j which are connected by a G �=(B) edge. To show
that aB(xi) �= aB(x j), we distinguish between three cases:

— If both xi and x j were assigned values by R1, they must have inherited their values from two
distinct individually allocated vertices. Because, otherwise, they are both connected by a G=(B) path to
a common vertex, which together with the (xi , x j) G �=(B)-edge closes a contradictory cycle, excluded
by the assumption that B is consistent.

— If one of xi , x j was assigned a value by R1 while the other acquired its value by R2, then since
any communal value is distinct from any individually allocated value, aB(xi) must differ from aB(x j).

—The remaining case is when both xi and x j were assigned values by R2. The fact that they were
not assigned values in R1 implies that their characteristic values are not individually but communally
allocated. Falsely assume that aB(xi) = aB(x j). This means that xi and x j were allocated their communal
values in the same step II.B of the allocation algorithm, which implies that they had a G=-path between
them (moreover, this path was still part of the graph in the beginning of step II.B). Hence, xi and x j

belong to a contradictory cycle, and the solid edge (xi , x j) was therefore still part of G in the beginning
of step II.A. According to the loop condition of this step, in the end of this step there are no mixed
vertices left, which rules out the possibility that (xi , x j) was still part of the graph at this stage. Thus, at
least one of these vertices was individually allocated in step II.A.1, and consequently, the component it
belongs to is assigned a value by R1, in contrast to our assumption.

CLAIM 5. ϕ is satisfiable iff ϕ is satisfiable over R.

Proof. By Claims 3 and 4, R is satisfactory for A=∪ A �=. Consequently, by Claim 2 R is adequate for
�(At(ϕ)), and in particular R is adequate for �(ϕ). Thus, by the definition of adequacy, ϕ is satisfiable
iff ϕ is satisfiable over R.

6. IMPROVEMENTS OF THE BASIC ALGORITHM

In this section we present several improvements to the basic algorithm, which can significantly
decrease the size of the resulting state-space.

6.1. Coloring

Step II.A.1 of the basic algorithm calls for allocation of distinct characteristic values to the mixed
vertices. This is not always necessary, as we demonstrate in the following small example.

EXAMPLE 4. Consider the subgraph {u1, f1, f2, u2} from the graph of Fig. 1. Application of the basic
algorithm to this subgraph may yield the following allocation, where the assigned characteristic values
are underlined: R1 : u1 �→ {0, 2}, f1 �→ {0}, f2 �→ {0, 1}, u2 �→ {0, 1, 3}. This allocation leads to a state-
space complexity of 12. By relaxing the requirement that all individually assigned characteristic values
should be distinct, we can obtain the allocation R2 : u1 �→ {0, 2}, f1 �→ {0}, f2 �→ {0}, u2 �→ {0, 1} with
a state-space complexity of 4. This reduces the state-space of the entire graph from 48 to 16.

It is not difficult to see that R2 is adequate for the considered subgraph.

We will now explore some conditions under which the requirement of distinct individually assigned
values can be relaxed while maintaining adequacy of the allocation.

Assume that the mixed vertices are assigned their individual characteristic values in the order
x1, . . . , xm . Also assume that we have already assigned individual char values to x1, . . . , xr−1 and
are about to assign a char value to xr . What may be the reasons for not assigning to xr the value
of char(xi) for some i < r? Examining our assignment procedure, such an assignment may lead to
violation of the constraints imposed by the subset B, only if there exists a path of the form

xi - - - · · · - - - x j ——— xk - - - · · · - - - xr

SMALL MODEL PROPERTY 289

where for every individually assigned vertex x p on the G=-path from xi to x j (including x j),
i ≤ p, and equivalently for every vertex xq on the G=-path from xr to xk (including xk),
r ≤ q.

This observation is based on the way the assignment procedure works: it assigns to all vertices in a
connected G=(B) component the characteristic value of the mixed vertex with the lowest index. Thus,
if there exists a vertex x p on the path from xi to x j s.t. p < i , then x j will not be assigned the value
char(xi). Consequently, there is no risk that the assignment procedure will assign x j and xk the same
value, even if the characteristic values of xi and xr are equal.

We refer to vertices that have such a path between them as being incompatible and assign them
different characteristic values.

6.2. Assigning Values to Mixed Vertices with Possible Duplication

To allow duplicate characteristic values, we add the following as step I.D of the algorithm.

1. Predetermine the order x1, . . . , xm , by which individually assigned variables will be allocated
their characteristic values.

2. Construct an incompatibility graph Ginc whose vertices are the constants and the variables
x1, . . . , xm . Add an edge between xi and xr iff xi and xr are incompatible.

3. Find a minimal coloring for Ginc (refer to the constants as vertices with predetermined color);
i.e., assign values (“colors”) to the vertices of Ginc s.t. no two neighboring vertices receive the
same value. Due to the preprocessing step, we require that each connected component is
colored with a unique “pallet” of colors.

Step II.A.1 should be changed as follows:

1. Choose a mixed vertex xi . Add to R(xi) the color ci that was determined in step I.D.3 as the
characteristic value of xi .

Like the case of minimal vertex covering, step I.D.3 calls for the solution of the NP-hard problem
of minimal coloring. In a similar way, we resolve this difficulty by applying one of the polynomial
approximation algorithms for solving this problem.

EXAMPLE 5. Once more, let us consider the subgraph {u1, f1, f2, u2} of Fig. 1. The modified version
of the algorithm identifies the order of choosing the mixed vertices as f1, f2. The incompatibility graph
Ginc for this ordering simply consists of the two vertices f1 and f2 with no edges. This means that
we can color them by the same color, leading to the allocation R2 : u1 �→ {0, 2}, f1 �→ {0}, f2 �→
{0}, u2 �→ {0, 1}, presented in Example 4. For demonstration purposes, assume that all four vertices
in this component were connected by additional edges to other vertices and that the removal order
of step II.A was determined to be f1, f2, u2, u1. The resulting Ginc is depicted in Fig. 2(a). By the
definition of Ginc, every two vertices connected on this graph must have different characteristic values.
For example f1 and u2 cannot have the same characteristic value because G(B) can consist of both
the solid edge (f2, u2) and the dashed edge (f1, f2) (in the original graph). Since according to the
assignment procedure the value we assign to f1 and f2 is determined by char(f1), it must be different
than char(u2).

Since this graph can be colored by two colors, say, f1 and f2 are colored by 0, while u1 and u2 are
colored by 1, we obtain the allocation R3 : u1 �→ {0, 1}, f1 �→ {0}, f2 �→ {0}, u2 �→ {0, 1}.

FIG. 2. (a) The graph Ginc contains an edge between every pair of incompatible vertices. (b) Illustrating selective assignments.

290 PNUELI ET AL.

6.3. Selective Assignments of Characteristic Values in Step II.B

Step II.B of the basic algorithm requires an unconditional assignment of a fresh characteristic value
to each remaining connected G= component. This is not always necessary, as shown by the following
example.

EXAMPLE 6. Consider the graph G presented in Fig. 2(b). Applying the range allocation algorithm
to this graph can yield the ordering f1, f2 and consequently the allocation R4 : u1 �→ {0, 3}, f1 �→
{0}, f2 �→ {0, 1}, u2 �→ {0, 1, 2} with complexity 12 (although by the coloring procedure suggested in
the previous section u1 and f2 can have the same characteristic value, it will not reduce the state-space
in this case).

Our suggestion for improvement will identify that, while it is necessary to add the characteristic value
“3” to R(u1), the addition of “2” to R(u2) is unnecessary, and the allocation R5 : u1 �→ {0, 3}, f1 �→
{0}, f2 �→ {0, 1}, u2 �→ {0, 1} with complexity 8 is adequate for the graph of Fig. 2(b).

Assume that C= is a remaining connected G= component with no mixed vertices. It is not hard to see
that the range allocated for all variables in C= is the same before the application of step II.B. We denote
this common range by R(C=). Let y1 . . . yk �∈ C= be all the vertices that are G �=-neighbors of vertices in
C=. The following condition is sufficient for not assigning the vertices of C= a fresh characteristic value:

Condition Con : k < |R(C=)|, or R(C=) −
k⋃

i=1

R(yi) �= ∅.

When condition Con holds, we can always assign in R2 a common value to the vertices in C= that are
different than the values assigned to y1, . . . , yk .

EXAMPLE 7. Consider the component {u2} in the graph of Fig. 2(b). R(u2) = {0, 1} with |R(u2)| = 2,
while {u2} has only one G �=-neighbor: f2. Consequently, we can skip the assignment of the fresh value
“2” to u2.

Let us now generalize this analysis. For this purpose we define the restricted set-cover problem:

Given a multiset of sets S and a set U , does there exist a cover that assigns to each u ∈ U a
unique Su ∈ S, such that u ∈ Su and for every v �= u ∈ U , Su �= Sv?

Note that Su and Sv may be identical sets, but it is required that they are distinct members of the
multiset S. Clearly if |U | > |S| or if ∃v ∈ U s.t. ∀i. v /∈ Si , then the answer is negative. These are two
easy preliminary tests for this problem. If we associate S with the multiset {R(y1), . . . , R(yk)}, and U
with the set R(C=), then condition Con reflects exactly this preliminary test. However, if this test fails,
a more exhaustive search is called for. Since the number of solid neighbors of each dashed component
and their associated R-sets is relatively small, this does not present a serious computational problem.

To incorporate selective assignments into the algorithm, we modify step II.B of the basic algorithm
to read as follows:

B. For each (remaining) connected G= component C=, if there is a restricted set cover of R(C=)
by {R(y1), . . . , R(yk)}, where y1, . . . , yk are the G �= neighbors of C=, add a common fresh value uC=
to R(xk), for every xk ∈ C=.

Experimental results have shown that due to this analysis, in most cases step II.B is not activated.
Furthermore, condition Con alone identifies almost all of these cases without further analysis.

Finally, as a result of this change, we also modify the assignment procedure as follows:
Given a consistent subset B and its representative graph G(B), assign values to the vertices in G(B)
according to the following two (ordered) rules:

R1’ For all xi ∈ G(B) s.t. xi is connected by a (possibly empty) G=(B)-path to an individually
allocated vertex x j , assign to xi the minimal value of char(x j) among such x j ’s.

R2’ For each G=(B) component C= whose vertices have not been assigned a value, choose a
value z, such that z �= aB(yi) for all vertices yi �= C= that are G �= neighbors of C=, and assign z to all
xi ∈ C=.

SMALL MODEL PROPERTY 291

We now make the following claim:

CLAIM 6. The revised procedure is sound.

Proof. Assume that C= is a remaining connected G= component with no mixed vertices. As stated
before, the range allocated for all variables in C= is the same before the application of step II.B. Let x
be a vertex in C= and let y1 . . . yk �∈ C= be all the vertices that are G �=-neighbors of vertices in C=. By
definition, if there is no restricted set cover of R(x) by {R(y1), . . . , R(yk)}, then the following holds:
under every assignment α to y1 . . . yk , there exists a value in R(x) that is different than α(y1) . . . α(yk).
More formally:

∀α(y1), . . . , α(yk). ∃v ∈ R(x). v �= α(y1) ∧ · · · ∧ v �= α(yk).

Since all vertices in C= have the value v in their range, then any consistent component B that contains
vertices from C= and a subset of y1 . . . yk can be satisfied. Hence, the algorithm remains sound.

6.4. An Upper Bound

We present an upper bound for the size of the state-space computed by our algorithm, which is better,
in most cases, than the naive bounds presented in Section 3.1. For a dashed connected component Gk

=,
let nk = |Gk

=| and let mk = |mvck | (the number of individually assigned vertices in Gk
=). Also, let yk

denote the number of colors needed for coloring these mk vertices (obviously, yk ≤ mk), and let ck

denote the number of constants in Gk
=.

When calculating the maximum state-space for the component Gk
=, there are three classes of vertices

to consider:

1. Vertices x1, . . . , xyk , such that xi is the first vertex to be individually assigned color i . For these
vertices, |R(xi)| ≤ ck + i and together they contribute (ck + yk)!/ck! or less to the state-space.

2. The rest of the individually assigned vertices xyk+1, . . . , xmk . For these vertices, |R(xi)| ≤ ck+
yk , and together they contribute (ck + yk)(mk−yk) or less to the state-space.

3. The remaining vertices xmk+1, . . . , xnk that, in the worst case, will be assigned an additional
common value. For these vertices, |R(xi)| ≤ ck + yk + 1 and together they contribute (ck+
yk + 1)nk−mk or less to the state-space.

Combining these three groups, the new upper bound for the state-space is:

|R| ≤
∏

k

(ck + yk)!

ck!
· (ck + yk)mk−yk · (ck + yk + 1)nk−mk . (2)

The worst case, according to formula (2), is when all vertices are mixed (G= ≡ G �=), there is one
connected component (nk = n), the minimal vertex cover is mk = m = n − 1, and the chromatic
number yk is equal to mk . Graphically, this is a “double clique” (a clique where G= ≡ G �=) that results
in a state space of (c + n)!/c!. If c = 0, the state space is n!, which is the upper bound that was previously
derived in Section 3.

7. EXPERIMENTAL RESULTS

As was mentioned in the Introduction, we started investigating this problem due to our inability to use
an OBDD-based tool in order to validate formulas containing several hundred integer and floating-point
variables.

The range allocation algorithm proved to be very effective in our case. One of the reasons for this
has to do with a module called auto-decomposition (described in [11]) that our tool invokes before the
range allocation is performed. If the right-hand side of the implication we try to prove is a conjunction
of m clauses, then this module decomposes the implication up to m separate formulas. Each of these
formulas consists of one clause in the right-hand side, and the cone of influence on the left (this is the
portion of the formula in the left-hand side that is needed for proving the chosen clause on the right.

292 PNUELI ET AL.

Instance Range Allocation Uclid#1 Uclid#2
22 0.16 * *
25 0.2 * *
27 1.7 170 20.4
32 0.1 1074 1020
37 0.15 2.5 1
38 0.18 0.5 0.5
43 * * *
44 0.1 * *
46 0.13 * *
49 * * *

FIG. 3. Results in seconds, comparing range allocation to two alternative decision procedures. Asterisks (∗) represent run
times exceeding two hours.

In the formulas we considered it typically consisted of several hundred clauses). This kind of formula,
when described in terms of the range allocation algorithm, represent very unbalanced graphs: G= is
relatively large (all the comparisons on the left-hand side with positive polarity belong to this graph) and
G �= is very small, resulting in a relatively small number of mixed vertices. This type of graph results in
very small ranges, and many times a large number of variables receive a single value in their range and
thus become constants. We have many examples of formulas with 150 integer variables or more, which
after performing the range allocation algorithm can be proved in less than a second with a state-space
of less than 100. In most cases, these graphs consist of many disconnected G= components with a very
small number of G �= edges.

We also solved these instances with the methods described in [4, 6], which are implemented in the
tool Uclid [2]. Figure 3 summarizes our experiments. Uclid lets the user combine these methods in
different ways. As default, it combines the positive equality reduction of [4] and the Boolean encoding
of [6]. More specifically, it replaces all p-terms (see Section 1) with unique constants and encodes all
other equalities, namely the g-terms, with Boolean variables. This combination, empirically, is faster on
average than each of these methods by itself. The column titled UCLID#2 describes the results achieved
by this combination with our benchmark files. The column UCLID#1 describes results achieved by using
the Boolean encoding method of [6] alone, without the positive equality reduction.

As can be seen in Fig. 3, range allocation is generally more efficient than both Uclid#1 and Uclid#2.
We should mention, however, that the above methods cannot handle the integer constants that are present
in our formulas. We defined constants in Uclid by declaring a variable Zero and then declaring each
constant c as c applications of the successor function over Zero. Uclid has special simplification rules
for terms with successor expressions, but their description is beyond the scope of this article. In any case
we believe that this could not skew the results significantly because there is a relatively small number
of such terms in our formulas.

It is always hard to determine the superiority of one method over another when both have the same
theoretical complexity. We mentioned in the Introduction some of the reasons that encouraged us to try
this approach (it does not impose additional constraints on the formula, and it has a smaller state-space
in the worst case). Although the experimental results support this view, we do not claim that it proves
that range allocation is better in general. We developed and optimized range allocation for solving this
type of formula, so it is perhaps not surprising that this method was more efficient than others in solving
them. Only a small number of terms in these formulas are p-terms, and hence Uclid could not benefit
much from its main source of efficiency. A separate series of experiments [5] indicated that formulas
derived from symbolically simulating hardware circuits tend to have a much larger portion of p-terms,
which makes them much easier to solve with the method of [4]. It seems that the best strategy is to
combine these methods, i.e., to use positive equality reduction on p-terms and range allocation on the
others. This is a typical conclusion when estimating decision procedures for formal verification.

Some of the problems we were working on are now available on a web site [13] for benchmarking
purposes. We hope that future research in this field will relate to this set, and additional hard problems
will be added.

SMALL MODEL PROPERTY 293

8. CONCLUSIONS AND DIRECTIONS FOR FUTURE RESEARCH

We presented the range allocation method, which can be used as the first stage of a decision procedure
based on finite instantiations, when validating formulas of the theory of equality. This method proved to
be highly effective for validating formulas with a large number of integer and floating point variables.
The method is relatively simple and easy to implement and apply. There is no need to rewrite the verified
formula, and any satisfiability checker can be used as a decision procedure. The experiments show that
it is more effective than competing methods, at least for the type of formulas that we experimented with.

The range allocation algorithm can be improved in various ways, either based on the G= and G �=
graphs or not. For example, the mvc set is not unique, and the problem of choosing among mvc sets
that have an equal size is still an open question. Furthermore, given an mvc set, the ordering in which
the vertices in this set are removed in stage II/a should also be further investigated. It is easy to find
examples where the heuristic suggested for this purpose (sorting the vertices by descending degree on
G �=) is not optimal. It should also be noted that although the mvc set is helpful in restricting the upper
bound of the state-space, it cannot guarantee an optimal ordering. Another possible improvement is the
identification of special kind of graphs. For example, two known results in graph theory can be applied
in the case of planar graphs: every planar graph can be colored with four colors, and planar graphs
are closed under contraction. Without proving it, we claim that these two results imply that the range
[1 . . 4] is adequate for any planar graph, regardless of the types of edges. It should be rather interesting
to investigate whether real-life formulas have any special structure that can then be solved by utilizing
various results from graph theory.

Another possibility for future research is to extend the algorithm to formulas with less abstraction,
and more specifically to formulas including order constraints, such as xi > x j . The > relation can
be represented as directed edges on the graph, while the weak ordering ≥ can be represented by a
combination of a > edge together with a G= edge. The definition of consistent subsets should be changed
accordingly. For example, directed cycles are also inconsistent subsets (e.g., {x > y, y > z, z > x}). It
seems that adjusting the other parts of the heuristic should not be difficult as well.

REFERENCES

1. Ackermann, W. (1954), “Solvable Cases of the Decision Problem,” Studies in Logic and the Foundations of Mathematics,
North-Holland, Amsterdam.

2. Bryant, R. E., Lahiri, S. K., and Seshia, S. A. (2002), Modeling and verifying systems using a logic of counter arithmetic
with lambda expressions and uninterpreted functions, in “Proc. Computer-Aided Verification (CAV’02)” (E. Brinksma and
K. G. Larsen, Eds.), Lecture Notes in Computer Science, Vol. 2404, pp. 78–91, Springer-Verlag, Copenhagen.

3. Bryant, R. E. (1986), Graph-based algorithms for Boolean function manipulation, IEEE Trans. Comput. 35, 1035–1044.
4. Bryant, R. E., German, S., and Velev, M. (1999), Exploiting positive equality in a logic of equality with uninterpreted

functions, in “Proc. 11th Intl. Conference on Computer Aided Verification (CAV’99).”
5. Bryant, R. E., German, S., and Velev, M. (2001), Processor verification using efficient reductions of the logic of uninterpreted

functions to propositional logic, ACM Trans. Comput. Logic 2, 1–41.
6. Bryant, R. E., and Velev, M. (2000), Boolean satisfiability with transitivity constraints, in “Proc. 12th Intl. Conference

on Computer Aided Verification (CAV’00)” (E. A. Emerson and A. P. Sistla, Eds.), Lecture Notes in Computer Science,
Vol. 1855, Springer-Verlag, Berlin.

7. The Sacres Consortium (1995), “Safety Critical Embedded Systems: From Requirements to System Architecture,” Esprit
Project Description EP 20.897, available at http://www.tni.fr/sacres.

8. Cyrluk, D., Lincoln, P., and Shankar, N. (1996), On Shostak’s decision procedure for combinations of theories, in “Auto-
mated Deduction—CADE-13, New Brunswick, NJ” (M. A. McRobbie and J. K. Slaney, Eds.), Lecture Notes in Artificial
Intelligence, Vol. 1104, pp. 463–477, Springer-Verlag, Berlin.

9. Goel, A., Sajid, K., Zhou, H., Aziz, A., and Singhal, V. (1998), BDD based procedures for a theory of equality with uninter-
preted functions, in “CAV98” (A. J. Hu and M. Y. Vardi, Eds.), Lecture Notes in Computer Science, Vol. 1427, Springer-Verlag,
Berlin.

10. Pnueli, A., Siegel, M., and Shtrichman., O. (1998), Translation validation for synchronous languages, in “Proc. 25th Int.
Colloq. Aut. Lang. Prog.” (K. G. Larsen, S. Skyum, and G. Winskel, Eds.), Lecture Notes in Computer Science, Vol. 1443,
pp. 235–246. Springer-Verlag, Berlin.

11. Pnueli, A., Siegel, M., and Shtrichman, O. (1998), The code validation tool (CVT)-automatic verification of a compilation
process, Int. J. Software Tools Technol. Transfer (STTT) 2(2), 192–201.

12. Shankar, N., Owre, S., and Rushby, J. M. (1993), “The PVS Proof Checker: A Reference Manual (Draft),” Technical report,
Comp. Sci., Laboratory, SRI International, Menlo Park, CA.

13. Strichman, O., Benchmarks for satisfiability checking in the theory of equality with uninterpreted functions, available at
www.cs.cmu.edu/∼ofers/sat/bench.htm.

	1. INTRODUCTION
	2. THE PROBLEM: DECIDING EQUALITY FORMULAS
	3. THE SOLUTION: INSTANTIATIONS OVER SMALL DOMAINS
	FIG. 1.

	4. THE BASIC RANGE ALLOCATION ALGORITHM
	5. THE ALGORITHM IS SOUND
	6. IMPROVEMENTS OF THE BASIC ALGORITHM
	FIG. 2.

	7. EXPERIMENTAL RESULTS
	FIG. 3.

	8. CONCLUSIONS AND DIRECTIONS FOR FUTURE RESEARCH
	REFERENCES

