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Applying the continuous selection theorem given by K. Przeslawski and 
L. Rybinski (Michael selection theorem under weak lower semicontinuity assump- 
tion, (Proc. Amer. Math. SW., in press), we state the result on continuous 
dependence of the fixed points of set-valued contractions and the Krasnoselski type 
fixed-point theorem for multivalued mappings. C‘ 1990 Academic Press, Inc. 

1. INTR~DU~TION 

Let Y be a nonempty closed subset of a Banach space (Z, II.II). Let 
B= {ysZ: /lyll < l} denote the closed unit ball and B”= {ycZ: llyll < 1) 
denote the open unit ball in Z. Denote 

N(Y)= (Cc Y: C#0}, 

%?l( Y) = { C E A<( Y) : C is closed }, 

%?%Tl( Y) = { C E %l( Y) : C is convex}. 

For y E Z, C, DEN(Y) set dist(y, D) = inf{ lly - u/I : v E D}, 6(C, D) = 
sup(dist(y, D): y E C}, 9(C, D) = max{G(C, D), 6(D, C)}, y + C = 
(y+o.v+C), rC=( . rv’ VE C) for rE R. Assume that X is a topological 
space. Let us consider a multivalued contraction mapping with the 
parameter x E X and closed convex values, i.e., the mapping H: Xx Y + 
%%?l( Y) satisfying 

SW-T ~1). H(x, y,))bK Ily, -~zll for xeX, .~I, Y2E y, (Cl 

where K < 1. From [ 1 ] it follows that for every x E X the fixed-point set 
PAX)= (YE Y: y~H(x, Y,} is nonempty and closed. The properties of 
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related fixed-point set-valued mappings P,: X -+ %I( Y) have been studied 
recently, in various settings, in [2, 5-81. In [8] we have shown that if X 
is paracompact and perfectly normal and the functions x + dist(v, H(x, y)), 
v, y E Y, are continuous, then P, has a retractive representation; i.e., there 
exists a continuous mapping h: Xx Y -+ Y such that h(x, y) E Pn(x), and 
h(x, y) = y iff YE Pn(x) for every (x, y). The basic tool in proving 
that relation was the Michael Selection Theorem [3]. Now, using the 
continuous selection theorem from [9] we give a similar result under 
considerably weaker continuity assumptions for the maps H( ., y), y E Y. 

Recall that a multivalued mapping F: X+ Jr/-( Y) is called lower semi- 
continuous (1.s.c.) at x0 EX iff for every E > 0 and ZE F(x,) there exists a 
neighborhood Uz of x0 such that 

ZEN (F(x)+EB’:xE U;}. 

We say that F is weakly lower semicontinuous at x0 E X (w.1.s.c.) iff for every 
E > 0 and every neighborhood V of x0 there is a point x, E V such that for 
every z E F(x,) there is a neighborhood U, of x0 such that 

We say that F is 1.s.c. (w.1.s.c.) iff F is 1.s.c. (w.1.s.c.) at every XE X. It is 
known that F is 1.s.c. iff the functions x + dist(v, F(x)), v E Y, are upper 
semicontinuous in the usual sense. Straightforward checking shows that if 
F is I.s.c., then F is w.l.s.c., but not conversely (see [9]). 

2. FIXED-POINT RESULTS 

Our main result reads as follows. 

THEOREM 1. Let X be a paracompact and perfectly normal topological 
space and Y be a closed subset of a Banach space (2, II .[I ). Assume that 
H: Xx Y -+ $%?I( Y) satisfies (C) and is such that for every y E Y the multi- 
valued mapping H( ., y) is w.1.s.c. Then there exists a continuous mapping 
h: Xx Y + Y such that h(x, y) E P&x) for every (x, y) E Xx Y. 

First we will prove two auxiliary lemmas. 

LEMMA 1. For every continuous mapping f: Xx Y + Y the mapping 
(x, y) -+ H(x, f(x, y)) is w.1.s.c. 

Proof: Denote w = (x, y) E Xx Y and 

Ww, v) = H(prAw), v) = ff(x, v) 
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for u’ E Xx Y, u E Y. We need to show that the mapping w + X( w, f(w)) is 
w.1.s.c. Note that X( ., v) is w.1.s.c. for every UE Y, by virtue of [9, 
Lemma 31. Clearly by (C), we have also 

Wx(w, u,), =@(w, uz)) G K llu, - uzll. (1) 

Fix E > 0, a point w0 E Xx Y, and a neighborhood W of wO. Choose a 
neighborhood Vc W of w0 such that IIf -f(wo)ll < 3 ~ ‘E for each w E I’. 
In V choose a point w, such that for every z E X(w,, f(wO)) there exists a 
neighborhood lJz of w0 such that 

ZE (-) (&?qw, f(w0))+3-‘&P: WE U,}. 

Now let z, be an arbitrary point in H(w,, f(w,)). By 
ZE%‘(M:~, f(wo)) such that 

(2) 

(l), there exists 

lb--z,II Ga IIf(f(wo)ll < 3 -le. 

For such z choose a neighborhood U; such that (2) holds. Since 

A?( w, f( wo)) + 3 ~ l&B0 c S( w, f(w)) + 3 - l&B0 + 3 ~ ‘&BO, 

for every ~1 E V, we have 

ZEN {sP(w,f(w))+2.3-‘dl”:wEUznVV). 

Then, consequently 

z,E(~ (Af(w,f(w))+~B~:w~U~nV}. Q.E.D. 

From the above lemma it follows, in particular, that Z-Z is w.1.s.c. with 
respect to both variables jointly (set f(x, y) = y). 

LEMMA 2. For euery L > 1, M > K, and continuous mappings 
f,, fi: XX Y + Y such that fi is a selection of the multivalued mapping 
(x, y) -+ H(x, fi(x, y)), there exists a continuous selection f3 of the multi- 
valued mapping (x, y) + H(x, fi(x, y)) such that 

and 

Ilm, Y)-fib> YJII GLM Ilfih Y) -fit-? Y)ll 

Wfjk YL Hb, fh Y))) G ~4 IIf&, Y) -fib, y)II 

for every (x, y) E Xx Y. 

409!153!2-1 
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Proof: Since f2(x, y) E H(x, j-,(x, y)), then 

diStK(x, Y), fh f2(x, Y))) G WWx, fib, Y)), Wx, f2by ~1)) 

d K Ilf*k Y) -f1c? Y)ll 

for (x, y)EXx Y. 
Thus 

w, f*(x, Y)) n (f*(x, Y) + M Ilfdx, Y) -f1(x, Y)ll) f 52 

for every (x, y). By Lemma 1 and [9, Lemma 21, the multivalued mapping 
G: (x2 ~)~H(x,f,(x,y))n(f,(x,y)+~MIlf~(x,~)-f~(x,~)ll~) is w.1.s.c. 
Since the product Xx Y is paracompact (see [4]), G has a continuous 
selection, say f3, by virtue of [9, Theorem 11. Obviouslyf, satisfies the first 
inequality, the second inequality follows as for fz. Q.E.D. 

Proof of Theorem 1. We will construct a sequence of continuous 
mappings h, : Xx Y + Y such that 

(1”) IlMx~ y) - Ll(x, YJII 6 LM Ilh,-I(x, Y) - k-Ax, y)II, for 
n = 2, 3, . . . . 

(2”) diW,(x, Y), ff(x, &Ax, ~1)) G ~4 IMx, y) - L ,(x, y)ll, for 
n = 1, 2, . ..) 

for every (x, y), where ME (K, 1) and L E (1, M - ‘). If such a sequence is 
defined, then the rest of the proof is routine. Indeed, we have 

IlUx, y)-L,(x, YIII d(LW”-’ Ilhl(x, y)-h,(x, ~111. 

Therefore (h,(x, y)) is a Cauchy sequence for every (x, y), hence 
convergent. Set h(x, y) = lim h,(x, y). It is easily seen that 

IlNx, y) - h,(x, YNI 6 f (LWrn Ilh,(x, y) - 4,(x, y)ll. 
m=n 

Since the sets H(x, y) are closed and for arbitrary large n we have 

dWh(x, Y), H(x, 0, ~1)) 

d Ilh(x, y) - h,(x, y)li + dist(h,(x, y), H(x, h(x, y))) 

<(l +K) IIW, Y)-Mx, v)ll +M IlUx, y)-L,(x, y)ll> 

then h(x, y)~H(x, h(x, y)), i.e., h(x, y)~ P”(x), for every (x, y)~Xx Y. 
Since for arbitrary large n the mapping h, is continuous and the function 
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(X> Y) -+ Ilh,k Y) - M-c Y)ll is continuous, then taking into account the 
inequality 

we conclude that h is continuous at every (x,, y,) E Xx Y. The sequence 
(h,) is constructed by induction. Set h,(x, y) = y, and applying [9, 
Theorem 11, choose a continuous selection h, of the multivalued mapping 
H. Assume that the mappings h,, . . . . h, satisfying (lo), (2”) are defined. 
Applying Lemma 2 with f, = h, ~, , f2 = h,, we get the mapping f3 = h, + , 
satisfying (1”) and (2”). Q.E.D. 

Remark. If we assume additionally that there exists a continuous 
mapping m : Xx Y + [0, co) such that dist(y, H(x, y)) d m(x, y) and 
dist(y, H(x, y)) = 0 implies m(x, y) = 0 (this implies actually that (x, y) + 
dist(y, H(x, y)) is continuous at every (x, y) E Graph PH), then we can 
take in the above proof as h, a continuous selection of the multivalued 
mapping (x, y) -+ H(x, y) n (y + Lm(x, y) B). Then for y E PH(x) we have 
h,(x, y) = y for n = 1, 2, . . . . and consequently h(x, y) = y. In this case h is 
a retractive representation for P,. 

Using Theorem 1 we get the following improvement of the Krasnoselskii 
type fixed-point theorem given in [7, Theorem 23. 

THEOREM 2. Let the assumptions of Theorem 1 be satisfied. Assume 
additionally that the set Y is convex bounded and F: Y -+ X is a continuous 
mapping such that r(Y) is a relatively compact subset of X. Then there exists 
a point w E Y such that w E H(T( w), w). 

Proof Choose a mapping h satisfying the assertion of Theorem 1. Fix 
y E Y and define the continuous mapping g : Y + Y by g(v) = h(T(u), y). 
Since g maps the closed convex bounded subset of a Banach space into its 
relatively compact subset, then g has a fixed point by virtue of the 
Schauder Theorem. Thus there exists a point WE Y such that 

M’= g(w)=h(I-(w), y)~ H(T(w), h(T(w), y))= H(f(w), w). Q.E.D. 
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