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Applying the continuous selection theorem given by K. Przestawski and
L. Rybinski (Michael selection theorem under weak lower semicontinuity assump-
tion, (Proc. Amer. Math. Soc., in press), we state the result on continuous
dependence of the fixed points of set-valued contractions and the Krasnoselski type
fixed-point theorem for multivalued mappings. € 1990 Academic Press, Inc.

1. INTRODUCTION

Let Y be a nonempty closed subset of a Banach space (Z, ||-]|). Let
B={yeZ:|y| <1} denote the closed unit ball and B®={ye Z: ||y <1}
denote the open unit ball in Z. Denote

N(Y)={CcY:C#F},
ENY)={Ce A (Y): Cisclosed},
EC€NY)={Ce%lY): Cisconvex}.

For yeZ, C,De A (Y) set dist(y, D)=inf{||y—v|:veD}, 6(C,D)=
sup{dist(y, D): y € C}, 2(C, D) = max{é(C, D), (D, C)}, y + C =
{y+vi0+C}, rC={rv:veC} for reR. Assume that X is a topological
space. Let us consider a multivalued contraction mapping with the
parameter xe€ X and closed convex values, ie., the mapping H: X x ¥ —
FLIY) satisfying

D(H(x, y,), Hx, ;)< K ||y, — y,l for xeX, Y1, y2€¥, (©)

where K < 1. From [1] it follows that for every xe X the fixed-point set
Py(x)={yeY:yeH(x, y)} is nonempty and closed. The properties of
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related fixed-point set-valued mappings P: X — €I(Y) have been studied
recently, in various settings, in [2, 5-8]. In [8] we have shown that if X
is paracompact and perfectly normal and the functions x — dist(v, H(x, y)),
v, y€ Y, are continuous, then P, has a retractive representation; i.c., there
exists a continuous mapping 4: X x ¥ — Y such that A(x, y)e P,(x), and
h(x, y)=y iff yePy(x) for every (x, y). The basic tool in proving
that relation was the Michael Selection Theorem [3]. Now, using the
continuous selection theorem from [9] we give a similar result under
considerably weaker continuity assumptions for the maps H(-, y), ye Y.

Recall that a multivalued mapping F: X — A°(Y) is called lower semi-
continuous (1s.c.) at x,e X iff for every ¢ >0 and ze F(x,) there exists a
neighborhood U, of x, such that

ze() {F(x)+eB’: xe U.}.
We say that F is weakly lower semicontinuous at x,€ X (wls.c.) iff for every

¢ >0 and every neighborhood V of x, there is a point x, € ¥ such that for
every z € F(x,) there is a neighborhood U, of x, such that

ze() {F(x)+eB%: xeU.}.

We say that F is Ls.c. (w.ls.c.) iff Fis Ls.c. (wls.c.) at every xe X. It is
known that F is ls.c. iff the functions x — dist(v, F(x)), ve Y, are upper
semicontinuous in the usual sense. Straightforward checking shows that if
F is ls.c, then F is w.Ls.c.,, but not conversely (see [9]).

2. FIxeD-POINT RESULTS
Our main result reads as follows.

THEOREM 1. Let X be a paracompact and perfectly normal topological
space and Y be a closed subset of a Banach space (Z, ||-||). Assume that
H:Xx Y- €€IY) satisfies (C) and is such that for every ye Y the multi-
valued mapping H(-, y) is w.ls.c. Then there exists a continuous mapping
h: Xx Y- Y such that h(x, y)€ P y(x) for every (x, y)e X x Y.

First we will prove two auxiliary lemmas.

LEMMA 1. For every continuous mapping [ XxY > Y the mapping
(x, y)—> H(x, f(x, y)) is wils.c.

Proof. Denote w=(x, y)e X x Y and

H(w, v)= H(pry(w), v)= H(x, v)
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for we Xx Y, ve Y. We need to show that the mapping w — 3 (w, f(w)) is
wlsc. Note that #(-,v) is wlsc. for every ve Y, by virtue of [9,
Lemma 3]. Clearly by (C), we have also

D(H(w, v,), H(w, 0,)) S K [0, — v, (1)

Fix ¢>0, a point woe X x ¥, and a neighborhood W of w,. Choose a
neighborhood V' = W of w, such that | f(w)— f(we)|l <3 '¢ for each we V.
In V choose a point w, such that for every ze #(w, f(w,)) there exists a
neighborhood U, of w, such that

ze(V{H(w, fwe))+3 'eB® weU.}. 2)

Now let z, be an arbitrary point in #(w,, f(w,)). By (1), there exists
ze #(w,, f(wy)) such that

2= 21l /K 17000 = flwo)ll <376,
For such z choose a neighborhood U, such that (2) holds. Since
H(w, f(we))+3 'eB°c #(w, f(w))+3'eB°+3 1B,
for every we V, we have
ze(){#(w, f(W)+2-37 B welU.nV}.
Then, consequently
e[V {H#w, f(w)+eB:welU.nV}. Q.E.D.

From the above lemma it follows, in particular, that H is w.ls.c. with
respect to both variables jointly (set f(x, y)= y).

Lemma 2. For every L>1, M>K, and continuous mappings
Si, f[2: Xx Y > Y such that f, is a selection of the multivalued mapping
(x, yy—= H(x, fi(x, y)), there exists a continuous selection f; of the multi-
valued mapping (x, y) - H(x, f5(x, y)) such that

/3G, ») = fole, IS LM | fo(x, y) = filx, y)

and

diSt(f3(X, y)s H(X’ f3(x’ }’)))SM ”f}(xs y)"f2(x’ y)”

Jor every (x, y)e X x Y.

409/153/2-7
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Proof. Since f,(x, y)e H(x, fi(x, y)), then

diSt(f2(x’ y)’ H(x’ f2(x’ y)))g-@(H(x’ fl(x9 y))a H(x’ fz(x’ J’)))
<K | folx, y)—filx pi

for (x, y)e X x Y.
Thus

H(x, fo(x, y)) 0 (folx, p) + M L%, y) = filx, p)I) # &

for every {x, y). By Lemma 1 and [9, Lemma 2], the multivalued mapping

G:(x, y) > H(x, fr(x, )~ (fox, )+ LM || f>(x, y)— fi(x, p)I| B) is wls.c.
Since the product X x Y is paracompact (see [4]), G has a continuous
selection, say f3, by virtue of [9, Theorem 1]. Obviously f; satisfies the first
inequality, the second inequality follows as for f,. Q.ED.

Proof of Theorem 1. We will construct a sequence of continuous
mappings #,: X x Y - Y such that

(1°) Mha(x, ) = hy s, P < LM by, _ (X, y) — h,_o(x, y)l, for
n=2,3, ..,

(2°) dist(h,(x, p), H(x, h(x, y))) < M [[h,(x, y) — h,_(x, y)|l, for
n=12,..,

for every (x, y), where Me (K, 1) and Le (1, M '), If such a sequence is
defined, then the rest of the proof is routine. Indeed, we have

(#,(, ¥) = By (3, )] (LMY [ Ay(x, ¥) = ho(x, p)II.
Therefore (h,(x, y)) is a Cauchy sequence for every (x, y), hence
convergent. Set A(x, y)=lim A,(x, y). It is easily seen that

Ia(x, y) = h.(x, Y)II < Z " hi(x, y) = holx, p)I-

Since the sets H(x, y) are closed and for arbitrary large » we have
dist(h(x, y), H(x, h(x, y)))
< h(x, yY—h,(x, y)I +dist(h,(x, ), H(x, h(x, y)))
S (1 + K) ”h(xs y) - hn(x’ ,V)” + M ”hn(xa J’) - hn— 1(x7 y)“a

then h(x, y)e H(x, h(x, y)), ie., h(x, y)e Py(x), for every (x, y)eX x Y.
Since for arbitrary large n the mapping 4,, is continuous and the function
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(x, y) = | h1(x, y) = ho(x, y)|| is continuous, then taking into account the
inequality

1h(x, ¥) = h(Xo, Yol S h(x, y) = hu(x, )+ (%, ) = hu(xo, Vo)l
+ 11, (x0, Yo) = AlXq, o)l

o0

<Y (LMY hy(x, )= holx, )]

m=n

+ 1ha(x, p) = ha(X0, Vo)l

+ Y (LMY \h(x0, o) — holX0, ¥o)ll,

we conclude that /4 is continuous at every (x,, yy)€ X' x Y. The sequence
(h,) is constructed by induction. Set hy(x, y)=y, and applying [9,
Theorem 1], choose a continuous selection /4, of the multivalued mapping
H. Assume that the mappings h,, .., &, satisfying (1°), (2°) are defined.
Applying Lemma 2 with fy=h,,_,, f,=h,,, we get the mapping f; =4,
satisfying (1°) and (2°). Q.E.D.

Remark. 1If we assume additionally that there exists a continuous
mapping m: X x ¥— [0, 00) such that dist(y, H(x, y))<m(x, y) and
dist( y, H{x, y))=0 implies m(x, y)=0 (this implies actually that (x, y) -
dist( v, H(x, y)) is continuous at every (x, y)e Graph P;), then we can
take in the above proof as #, a continuous selection of the multivalued
mapping (x, y)— H(x, y)n (y+ Lm(x, y) B). Then for y e P,(x) we have
hx, y)=y for n=1, 2, .., and consequently A(x, y)= y. In this case 4 1s
a retractive representation for P,,.

Using Theorem 1 we get the following improvement of the Krasnoselskii
type fixed-point theorem given in [7, Theorem 2].

THEOREM 2. Let the assumptions of Theorem 1 be satisfied. Assume
additionally that the set Y is convex bounded and I': Y — X is a continuous
mapping such that I'(Y) is a relatively compact subset of X. Then there exists
a point we Y such that we H(I'(w), w).

Proof. Choose a mapping h satisfying the assertion of Theorem 1. Fix
yeY and define the continuous mapping g: Y- Y by g(v)=h(I(v), ).
Since g maps the closed convex bounded subset of a Banach space into its
relatively compact subset, then g has a fixed point by virtue of the
Schauder Theorem. Thus there exists a point we Y such that

w=g(w)=h(I"(w), y)e H(I'(w), h(I"(w), y))=H(I'(w),w). Q.E.D.
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