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Abstract

This paper is concerned with a Monge–Kantorovich mass transport problem in which in the transport cost
we replace the Euclidean distance with a discrete distance. We fix the length of a step and the distance that
measures the cost of the transport depends of the number of steps that is needed to transport the involved
mass from its origin to its destination. For this problem we construct special Kantorovich potentials, and
optimal transport plans via a nonlocal version of the PDE formulation given by Evans and Gangbo for
the classical case with the Euclidean distance. We also study how these problems, when rescaling the step
distance, approximate the classical problem. In particular we obtain, taking limits in the rescaled nonlocal
formulation, the PDE formulation given by Evans–Gangbo for the classical problem.
© 2011 Elsevier Inc. All rights reserved.
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1. Introduction and preliminaries

The Monge mass transport problem, as proposed by Monge in 1781, deals with the optimal
way of moving points from one mass distribution to another so that the total work done is min-
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imized. In general, the total work is proportional to some cost function. In the classical Monge
problem the cost function is the Euclidean distance, and this problem has been intensively stud-
ied and generalized in different directions that correspond to different classes of cost functions.
We refer to the surveys and books [1,3,10,17,19,20] for further discussion of Monge’s problem,
its history, and applications.

However, even being the case of discontinuous cost functions very interesting for concrete
situations and applications, it seems not to be well covered in the literature, maybe for the lack
of convexity of the associated cost functions, which, nevertheless, enhance the interest of the
problem. For instance, assume that you want to transport an amount of sand located somewhere
to a hole at other place, then you count the number of steps that you have to move each part
of sand to its final destination in the hole and try to move the total amount of sand making as
less as possible steps. This amounts to the classical Monge–Kantorovich problem for the discrete
distance:

d1(x, y) =

⎧⎪⎪⎨
⎪⎪⎩

0 if x = y,

1 if 0 < |x − y| � 1,

2 if 1 < |x − y| � 2,
...

that count the number of steps. This transport problem also appears naturally when one considers,
in a simplified way, a transport problem between cities in which the cost is measured by the toll
in the road (that is a discrete function of the number of kilometers). We want to mention that our
first motivation for the study of this problem comes from an interpretation of a nonlocal model
for sandpiles studied in [5] (which is a nonlocal version of the sandpile model of Aronsson–
Evans–Wu [6], see also [14]); in this model the height u of a sandpile evolves following the
equation:

{
f (t, ·) − ut (t, ·) ∈ ∂IKd1 (RN)

(
u(t, ·)) a.e. t ∈ (0, T ),

u(x,0) = u0(x),

where Kd1(R
N) is the set of 1-Lipschitz L2-functions w.r.t. d1 and f is a source. The in-

terpretation reads as follows (it is similar to the one given in [10] for the sandpile model of
Aronsson–Evans–Wu with the Euclidean distance): at each moment of time, the height function
u(t, ·) of the sandpile is deemed also to be the potential generating the Monge–Kantorovich real-
location of μ+ = f (t, ·) dx to μ− = ut (t, ·) dy when the cost distance considered is d1. In other
words, the mass μ+ is instantly and optimally transported downhill by the potential u(t, ·) into
the mass μ−.

The aim of this paper is a detailed study of the mass transport problem for the discrete cost
function d1. It is clear that our problem falls into the scope of lower semi-continuous metric cost
functions, so that standard results, like the existence of a solution for the relaxed problem, the
so called Monge–Kantorovich problem, or the Kantorovich duality, stated in terms of the Kan-
torovich potentials, remain true for d1. Nevertheless the above standard results rely on a general
theory and our interest resides in giving concrete characterizations: since d1 is discrete, the char-
acterization of the potentials, the Evans–Gangbo approach [11], as well as concrete computations
of optimal transport plans and/or maps are not covered in the literature; in particular, the poten-
tials cannot be characterized in a standard way, i.e., by using standard differentiation. It is also
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worth to mention that, adapting an example of [16], it is easy to see that the Monge infimum and
the Monge–Kantorovich minimum does not coincide in general.

We find a special class of Kantorovich potentials and perform a detailed study of the one-
dimensional case with concrete examples that illustrate the obstructions to the existence of
optimal transport maps; we show that the Monge problem is, in fact, ill-posed. In any dimen-
sion, we give an equation for the Kantorovich potentials, in the way of Evans–Gangbo, obtained
as a limit of nonlocal p-Laplacian problems, and, what is quite important, we use it to construct
optimal transport plans. We want to remark that all these developments can be done in the same
way for the discrete distance with steps of size ε,

dε(x, y) =

⎧⎪⎪⎨
⎪⎪⎩

0 if x = y,

ε if 0 < |x − y| � ε,

2ε if ε < |x − y| � 2ε,
...

Then, finally, we give the connection between the Monge–Kantorovich problem with the dis-
crete distance dε and the classical Monge–Kantorovich problem with the Euclidean distance,
proving that, when the length of the step tends to zero, these discrete/nonlocal problems give
an approximation to the classical one; in particular, we recover the PDE formulation given by
Evans–Gangbo in [11].

Whenever T is a map from a measure space (X,μ) to an arbitrary space Y , we denote by
T # μ the pushforward measure of μ by T . Explicitly, (T # μ)[B] = μ[T −1(B)]. When we write
T #f = g, where f and g are non-negative functions, this means that the measure having density
f is pushed-forward to the measure having density g.

The general framework in which we will move is in a bounded convex domain Ω in R
N .

The Monge problem for the cost function d1. Take two non-negative Borel function f +, f − ∈
L1(Ω) satisfying the mass balance condition

∫
Ω

f +(x) dx =
∫
Ω

f −(y) dy. (1.1)

Let A(f +, f −) be the set of transport maps pushing f + to f −, that is, the set of Borel
maps T : Ω → Ω such that T # f + = f −. The Monge problem consists in finding a map
T ∗ ∈ A(f +, f −) which minimizes the cost functional

Fd1(T ) :=
∫
Ω

d1
(
x,T (x)

)
f +(x) dx

in the set A(f +, f −). T ∗ is called an optimal transport map pushing f + to f −.

The original problem studied by Monge corresponds to the cost function d|·|(x, y) := |x − y|
the Euclidean distance. In general, the Monge problem is ill-posed. To overcome the difficulties
of the Monge problem, L.V. Kantorovich (1942) [15] proposed to study a relaxed version of the
Monge problem and, what is more relevant here, introduced a dual variational principle.
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We will use the usual convention of denoting by πi : R
N × R

N the projections, π1(x, y) := x,
π2(x, y) := y. Given a Radon measure μ in Ω × Ω , its marginals are defined by projx(μ) :=
π1 # μ, projy(μ) := π2 # μ.

The Monge–Kantorovich relaxed problem for d1. Fix f + and f − satisfying (1.1). Let
π(f +, f −) the set of transport plans between f + and f −, that is the set of non-negative Radon
measures μ in Ω × Ω such that projx(μ) = f +(x) dx and projy(μ) = f −(y) dy. The Monge–
Kantorovich problem is to find a measure μ∗ ∈ π(f +, f −) which minimizes the cost functional

Kd1(μ) :=
∫

Ω×Ω

d1(x, y) dμ(x, y),

in the set π(f +, f −). A minimizer μ∗ is called an optimal transport plan between f + and f −.
Remark that we say plans between f + and f − since this problem is reversible, which is not true
in general for the Monge problem.

As a consequence of [1, Propostion 2.1], we have

inf
{

Kd1(μ): μ ∈ π
(
f +, f −)}

� inf
{

Fd1(T ): T ∈ A
(
f +, f −)}

.

On the other hand, since d1 is a lower semi-continuous cost function, it is well known the
existence of an optimal transport plan (see [1,16] and the references therein). Therefore we have
the following result.

Proposition 1.1. Let f +, f − ∈ L1(Ω) be two non-negative Borel functions satisfying the mass
balance condition (1.1). Then, there exists an optimal transport plan μ∗ ∈ π(f +, f −) solving
the Monge–Kantorovich problem Kd1(μ

∗) = min{Kd1(μ): μ ∈ π(f +, f −)}.

The Kantorovich dual problem for d1. Since the cost function d1 is a lower semi-continuous
metric, we have the following result (see for instance [19, Theorem 1.14]).

Theorem 1.2 (Kantorovich–Rubinstein Theorem). Let f +, f − ∈ L1(Ω) be two non-negative
Borel functions satisfying the mass balance condition (1.1). Then,

min
{

Kd1(μ): μ ∈ π
(
f +, f −)} = sup

{
Pf +,f −(u): u ∈ Kd1(Ω)

}
, (1.2)

where

Pf +,f −(u) :=
∫
Ω

u(x)
(
f +(x) − f −(x)

)
dx,

and Kd1(Ω) is the set of 1-Lipschitz functions w.r.t. d1,

Kd1(Ω) := {
u ∈ L2(Ω):

∣∣u(x) − u(y)
∣∣ � d1(x, y) for all x, y ∈ Ω

}
.

The maximizers u∗ of the right-hand side of (1.2) are called Kantorovich (transport) potentials.
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The Kantorovich dual problem consists in finding this Kantorovich potentials. Although it can
be studied for masses being Borel measures, we will restrict ourselves to Lebesgue integrable
functions in order to avoid more technicalities.

If we denote by IKd1 (Ω) to the indicator function of Kd1(Ω),

IKd1 (Ω)(u) :=
{

0 if u ∈ Kd1(Ω),

+∞ if u /∈ Kd1(Ω),

we have that the Euler–Lagrange equation associated with the variational problem

sup
{

Pf +,f −(u): u ∈ Kd1(Ω)
}

is the equation

f + − f − ∈ ∂IKd1 (Ω)(u). (1.3)

That is, the Kantorovich potentials of (1.2) are solutions of (1.3).
In the particular case of the Euclidean distance d|·|(x, y) and for adequate masses f + and

f −, Evans and Gangbo in [11] find a solution of the related equation (1.3) as a limit, as p → ∞,
of solutions to the local p-Laplace equation with Dirichlet boundary conditions in a sufficiently
large ball BR(0):

{−�pup = f + − f −, BR(0),

up = 0, ∂BR(0).

Moreover, they characterize the solutions to the limit equation (1.3) by means of a PDE.

Theorem 1.3 (Evans–Gangbo Theorem). Let f +, f − ∈ L1(Ω) be two non-negative Borel func-
tions satisfying the mass balance condition (1.1). Assume additionally that f + and f − are
Lipschitz continuous functions with compact support such that supp(f +)∩ supp(f −) = ∅. Then,
there exists u∗ ∈ Lip1(Ω,d|·|) such that

∫
Ω

u∗(x)
(
f +(x) − f −(x)

)
dx = max

{∫
Ω

u(x)
(
f +(x) − f −(x)

)
dx: u ∈ Lip1(Ω,d|·|)

}
;

and there exists 0 � a ∈ L∞(Ω) (the transport density) such that

f + − f − = −div
(
a∇u∗) in D′(Ω). (1.4)

Furthermore |∇u∗| = 1 a.e. on the set {a > 0}.

The function a that appear in the previous result is the Lagrange multiplier corresponding to
the constraint |∇u∗| � 1, and it is called the transport density. Moreover, what is very important
from the point of view of mass transport, Evans and Gangbo use this PDE to find a proof of the
existence of an optimal transport map for the classical Monge problem, different to the first one
given by Sudakov in 1979 by means of probability methods ([18], see also [1] and [3]).
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One of our main aims will be to perform such program for the discrete distance. Before start-
ing with it, we want to remark that, as it is known (see [16]), the equality between Monge’s
infimum and Kantorovich’s minimum is not true in general if the cost function is not continuous.
The example given by Pratelli in [16] can be adapted to get a counterexample also for the case
of the cost function given by the metric d1.

Example 1.4. Consider R, S and T the parallel segments in R
2 given by R := {(−1, y): y ∈

[−1,1]}, S := {(0, y): y ∈ [−1,1]} and Q := {(1, y): y ∈ [−1,1]}. Let f + := 2H1 S and
f − := H1 R + H1 Q. It is not difficult to see that min{Kd1(μ): μ ∈ π(f +, f −)} = 2 and
the minimum is achieved by the transport plan splitting the central segment S in two parts and
translating them on the left and on the right. On the other hand, we claim that

inf
{

Fd1(T ): T ∈ A
(
f +, f −)}

� 4. (1.5)

To prove (1.5), fix T ∈ A(f +, f −) and consider I (T ) := {x ∈ S: d1(x, T (x)) = 1}. If we see
that

f +(
I (T )

) = 0, (1.6)

then

Fd1(T ) =
∫
S

d1
(
x,T (x)

)
df +(x) � 2

∫
S\I (T )

dH1(x) = 4,

and (1.5) follows. Finally, let us see that (1.6) holds. If we define

I (T )R := {
x ∈ I (T ): T (x) ∈ R

}
and I (T )Q := {

x ∈ I (T ): T (x) ∈ Q
}
,

we have I (T ) = I (T )R ∪ I (T )Q and I (T )R ∩ I (T )Q = ∅, and by the definition of I (T ), if
E = T (I (T )), it is easy to see that

H1(E) = H1(E ∩ R) + H1(E ∩ Q) = H1(I (T )R
) + H1(I (T )R

) = H1(I (T )
)
.

Therefore, f +(I (T )) = 2f −(E). But since T ∈ A(f +, f −) one has f −(E) = f +(T −1(E)) �
f +(I (T )) = 2f −(E), that implies f +(I (T )) = 0 and (1.6) is proved.

2. Kantorovich potentials

The aim of this section is the study of the Kantorovich potentials that maximize

sup
{

Pf +,f −(u): u ∈ K1
}
,

where K1 := Kd1(Ω) for shortness.
Following ideas from [11], we first show that it is possible to construct Kantorovich potentials

for the cost function d1 taking limit, as p goes to ∞, in some p-Laplacian problems but of non-
local nature. Afterwards, we prove the existence of Kantorovich potentials with a finite number
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of jumps of size one (a specially interesting result for searching/constructing optimal transport
maps and plans).

Let ⎧⎪⎨
⎪⎩

J : R
N → R be a non-negative continuous radial function with

supp(J ) = B1(0), J (0) > 0 and
∫

RN

J (x) dx = 1. (2.1)

We will use the following Poincaré type inequality from [4].

Proposition 2.1. (See [4].) Given p � 1, J and Ω , there exists βp = β(J,Ω,p) > 0 such that

βp

∫
Ω

∣∣∣∣u − 1

|Ω|
∫
Ω

u

∣∣∣∣
p

� 1

2

∫
Ω

∫
Ω

J(x − y)
∣∣u(y) − u(x)

∣∣p dy dx ∀u ∈ Lp(Ω). (2.2)

Proposition 2.2. Let f ∈ L2(Ω) and p > 2. Then the functional

Fp(u) = 1

2p

∫
Ω

∫
Ω

J(x − y)
∣∣u(y) − u(x)

∣∣p dy dx −
∫
Ω

f (x)u(x) dx

has a unique minimizer up in Sp := {u ∈ Lp(Ω):
∫
Ω

u(x)dx = 0}.

Proof. Let un be a minimizing sequence. Hence, Fp(un) � C, that is

1

2p

∫
Ω

∫
Ω

J(x − y)
∣∣un(y) − un(x)

∣∣p dy dx −
∫
Ω

f (x)un(x) dx � C.

Then,

1

2p

∫
Ω

∫
Ω

J(x − y)
∣∣un(y) − un(x)

∣∣p dy dx �
∫
Ω

f (x)un(x) dx + C.

From the Poincaré inequality (2.2) and Hölder’s inequality, we get

1

2p

∫
Ω

∫
Ω

J(x − y)
∣∣un(y) − un(x)

∣∣p dy dx

� ‖f ‖L2(Ω)‖un‖L2(Ω) + C

� ‖f ‖L2(Ω)

(
1

2β2

∫
Ω

∫
Ω

J(x − y)
∣∣u(y) − u(x)

∣∣2
dy dx

) 1
2 + C

� C(f )

(∫ ∫
J (x − y)

∣∣un(y) − un(x)
∣∣p dy dx

)1/p(∫ ∫
J (x − y)

) 2−p
2p + C.
Ω Ω Ω Ω
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Therefore, we have that ∫
Ω

∫
Ω

J(x − y)
∣∣un(y) − un(x)

∣∣p dy dx � C.

Then, applying again Poincaré’s inequality (2.2), we have {un: n ∈ N} is bounded in Lp(Ω).
Hence, we can extract a subsequence that converges weakly in Lp(Ω) to some u (that clearly
has to verify

∫
Ω

u = 0) and we obtain

lim inf
n→+∞

1

2p

∫
Ω

∫
Ω

J(x − y)
∣∣un(y) − un(x)

∣∣p dy dx � 1

2p

∫
Ω

∫
Ω

J(x − y)
∣∣u(y) − u(x)

∣∣p dy dx

and

lim
n→+∞

∫
Ω

f (x)un(x) dx =
∫
Ω

f (x)u(x) dx.

Therefore, u is a minimizer of Fp . Uniqueness is a direct consequence of the fact that Fp is
strictly convex. �
Lemma 2.3. Given u ∈ L1(Ω) such that

E := {
(x, y) ∈ Ω × Ω:

∣∣u(x) − u(y)
∣∣ > d1(x, y)

}
is a null set of Ω × Ω , there exists û ∈ K1 such that

u = û a.e. in Ω. (2.3)

Proof. We can assume that u is defined everywhere in Ω and bounded. Indeed, let A be the null
set in Ω such that for all x ∈ Ω \ A, Ex = {y ∈ Ω: (x, y) ∈ E} is null and u(x) is finite. Take
x ∈ Ω \ A, then, for all y ∈ Ω \ Ex ,

u(x) − d1(x, y) � u(y) � u(x) + d1(x, y),

and therefore u(y) is a.e. bounded by M := |u(x)| + supz∈Ω d1(x, z). Take now B the null set in
Ω where |u| > M and define ũ(x) := u(x) in Ω \ B , ũ(x) := 0 in B . Then ũ = u a.e. and∣∣ũ(x) − ũ(y)

∣∣ � d1(x, y) ∀(x, y) ∈ Ω × Ω \ [
E ∪ (B × Ω) ∪ (Ω × B)

]
.

Let us consider

uε(x) = 1

|Bε(x)|
∫

Bε(x)

u(z) dz,

where u is extended by 0 to R
N \ Ω. Then, for any x ∈ Ω , we define

û(x) := lim sup
ε→0

uε(x).

It is clear that û = u a.e. in Ω .
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Let x, y ∈ Ω be such that |x − y| 
= i for any i = 0,1,2, . . . . Then, there exists i ∈ N such
that i − 1 < |x − y| < i and there exists ε0 > 0 such that Bε0(x),Bε0(y) ⊂ Ω and

i − 1 < |z1 − z2| < i, for any (z1, z2) ∈ Bε0(x) × Bε0(y).

This implies that, for any 0 < ε � ε0, we have

uε(x) − uε(y) = 1

|Bε(x)|
∫

Bε(x)

u(z) dz − 1

|Bε(y)|
∫

Bε(y)

u(z) dz

= 1

|Bε(0)|2
∫ ∫

Bε(x)×Bε(y)

(
u(z1) − u(z2)

)
dz1 dz2

� 1

|Bε(0)|2
∫ ∫

Bε(x)×Bε(y)

d1(z1, z2) dz1 dz2

= d1(x, y).

Then, letting ε → 0, we deduce that

û(x) � d1(x, y) + û(y) for any (x, y) ∈ Ω × Ω, |x − y| 
= i, i = 1,2, . . . . (2.4)

Now, assume that x, y ∈ Ω , |x − y| = i, for some i ∈ N. And let ε0 be such that
Bε0(x),B2ε0(y) ⊂ Ω . Let yn ∈ Ω be such that yn → y, Bε0(yn) ⊂ Ω and i − 1 < |x − yn| < i.
Using the continuity of uε and (2.4) we see that, for any 0 < ε � ε0,

uε(x) − uε(y) = lim
n→∞

(
1

|Bε(x)|
∫

Bε(x)

û(z) dz − 1

|Bε(yn)|
∫

Bε(yn)

û(z) dz

)

= lim
n→∞

1

|Bε(0)|
∫

Bε(0)

(
û(x + z) − û(yn + z)

)
dz

� lim
n→∞d1(x, yn) = i = d1(x, y).

Letting ε → 0, we obtain that

û(x) � d1(x, y) + û(y).

The proof is finished. �
Now we show that the limit as p goes to ∞ of the sequence up of minimizers of Fp in Sp

gives a Kantorovich potential.

Theorem 2.4. Let f +, f − ∈ L2(Ω) be two non-negative Borel functions satisfying the mass
balance condition (1.1). Let up be the minimizer in Proposition 2.2 for f = f + − f −, p > 2.
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Then, there exists a subsequence {upn}n∈N having as weak limit a Kantorovich potential u for
f ± and the metric cost function d1, that is,∫

Ω

u(x)
(
f +(x) − f −(x)

)
dx = max

v∈K1

∫
Ω

v(x)
(
f +(x) − f −(x)

)
dx.

Proof. For 1 � q , we set

|||u|||q :=
(∫

Ω

∫
Ω

J(x − y)
∣∣u(y) − u(x)

∣∣q dx dy

) 1
q

.

By Hölder’s inequality, for r � q:

|||u|||q �
(∫

Ω

∫
Ω

J(x − y)
∣∣u(y) − u(x)

∣∣r dx dy

) 1
r
(∫

Ω

∫
Ω

J(x − y)dx dy

) r−q
rq

,

that is, for (r, q), r � q ,

|||u|||q � |||u|||r
(∫

Ω

∫
Ω

J(x − y)dx dy

) r−q
rq

. (2.5)

Since Fp(up) � Fp(0) = 0 and Poincaré’s inequality (2.2),

|||up|||pp � 2p

∫
Ω

f (x)up(x) dx � 2p‖f ‖2‖up‖2 � 2p‖f ‖2

(2β2)1/2
|||up|||2.

Then, for 2 � q < p, using (2.5) twice (for (p, q) and for (q,2)),

|||up|||pq � |||up|||pp
(∫

Ω

∫
Ω

J(x − y)dx dy

) p−q
q

� 2p‖f ‖2

(2β2)1/2
|||up|||2

(∫
Ω

∫
Ω

J(x − y)dx dy

) p−q
q

� 2p‖f ‖2

(2β2)1/2
|||up|||q

(∫
Ω

∫
Ω

J(x − y)dx dy

) p−q
q

+ q−2
2q

.

Consequently,

|||up|||q �
(

2p‖f ‖2

(2β2)1/2

) 1
p−1

(∫ ∫
J (x − y)dx dy

) 1
q
− 1

2(p−1)

. (2.6)
Ω Ω
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Then, {|||up|||q : p > q} is bounded. Hence, by Poincaré’s inequality (2.2), we have that
{up: p > q} is bounded in Lq(Ω). Therefore, we can assume that up ⇀ u weakly in Lq(Ω).
By a diagonal process, we have that there is a sequence pn → ∞, such that upn ⇀ u weakly
in Lm(Ω), as n → +∞, for all m ∈ N. Thus, u ∈ L∞(Ω). Since the functional v �→ |||v|||q is
weakly lower semi-continuous, having in mind (2.6), we have

|||u|||q �
(∫

Ω

∫
Ω

J(x − y)dx dy

) 1
q

.

Therefore, limq→+∞ |||u|||q � 1, from where it follows that |u(x) − u(y)| � d1(x, y) a.e.
in Ω × Ω . Now, thanks to Lemma 2.3 we can suppose, that u ∈ K1. Let us see that u is a
Kantorovich potential associated with the metric d1. Fix v ∈ K1. Then,

−
∫
Ω

f up � 1

2p

∫
Ω

∫
Ω

J(x − y)
∣∣up(y) − up(x)

∣∣p dx dy −
∫
Ω

f (x)up(x) dx

= Fp(up) � Fp

(
v − 1

|Ω|
∫
Ω

v

)

= 1

2p

∫
Ω

∫
Ω

J(x − y)
∣∣v(y) − v(x)

∣∣p dx dy −
∫
Ω

f (x)v(x) dx

� 1

2p

∫
Ω

∫
Ω

J(x − y)dx dy −
∫
Ω

f (x)v(x) dx,

where we have used
∫
Ω

f = 0 for the second equality and the fact that v ∈ K1 for the last
inequality. Hence, taking limit as p → ∞, we obtain that∫

Ω

u(x)
(
f +(x) − f −(x)

)
dx �

∫
Ω

v(x)
(
f +(x) − f −(x)

)
dx. �

Let us now study a special class of Kantorovich potentials. We begin with the following
lemma.

Lemma 2.5. Assume that v ∈ K1 takes a finite number of values. Then, there exists u ∈ K1 that
also takes a finite number of values but with jumps of length 1, the number of points in its image
is less or equal than the number of points in the image of v and improves in the maximization
problem, that is, ∫

Ω

u(x)
(
f +(x) − f −(x)

)
dx �

∫
Ω

v(x)
(
f +(x) − f −(x)

)
dx.

Proof. The proof runs by induction in the number of nonempty level sets of v. Take f := f + −
f − and suppose that v ∈ K1 is given by, without loss of generality, v(x) = a0χA0 + a1χA1 +
· · · + akχA , a0 = 0, |Ai | > 0, Ai ∩ Aj = ∅ for any i 
= j .
k
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Set s := Sign(
∫
A0

f ), where

Sign(r) =
{

1 if r � 0,

−1 if r < 0,

and consider t0 = max{t � 0: ut := (a0 + st)χA0 + a1χA1 + · · · + akχAk
∈ K1}. So, t0 is such

that ∃i 
= 0, dist(Ai,A0) � 1 and |a0 + st0 − ai | = 1 and∫
Ω

f (x)v(x) dx �
∫
Ω

f (x)ut (x) dx.

Hence, replacing v by ut0 , we can assume that Ai are disjoint sets, dist(A0,A1) � 1 and
|u0 − u1| = 1.

Now, we set s := Sign(
∫
A0∪A1

f ) and we consider

t0 = max
{
t � 0; ut := (a0 + st)χA0 + (a1 + st)χA1 + a2χA2 + · · · + akχAk

∈ K1
}
.

So, t0 is such that ∃i ∈ {0,1} and ∃ji /∈ {0,1} such that dist(Ai,Aji
) � 1, |ai + st0 −aji

| = 1 and∫
Ω

f (x)v(x) dx �
∫
Ω

f (x)ut (x) dx.

Hence, replacing v by ut0 , we can assume that Ai are disjoint sets and |ui − uj | ∈ {0,1,2}, for
any i, j ∈ {0,1,2}.

Now, by induction assume that we have u = a0χA0 + · · · + alχAl
+ · · · + akχAk

, where Ai

are disjoint sets, and |ai − aj | ∈ N, for any i, j = 0,1, . . . , l, and let us prove that we can assume
that Ai are disjoint compact sets, and |ai − aj | ∈ N, for any i, j ∈ {0,1, . . . , l + 1}. We set

s := Sign

( ∫
A0∪···∪Al

f

)
,

and we consider

t0 = max
{
t � 0; ut := (a0 + st)χA0 + · · · + (al + st)χAl

+ al+1χAl+1 + · · · + akχAk
∈ K1

}
.

So, t0 is such that ∃i ∈ {0,1, . . . , l} and ∃ji /∈ {0,1, . . . , l} for which

dist(Ai,Aji
) � 1, |ui + st0 − uji

| = 1 and
∫
Ω

f (x)u(x) dx �
∫
Ω

f (x)ut (x) dx.

Hence, replacing u by ut0, we can assume that the sets Ai are disjoint and |ai − aj | ∈ N, for any
i, j ∈ {0,1, . . . , l + 1}.

Finally, by induction, we deduce that we can assume that Ai are disjoint compact sets, and
|ai − aj | ∈ N, for any i, j ∈ {0,1, . . . , k}. �

Now we find the special Kantorovich potentials.
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Theorem 2.6. Let f +, f − ∈ L∞(Ω) be two non-negative Borel functions satisfying the mass
balance condition (1.1) and such that supp(f +) ∩ supp(f −) is a null set. Then there exists a
Kantorovich potential u∗ for f ±, associated with the metric d1, such that u∗(Ω) ⊂ Z and takes
a finite number of values.

Proof. Take f := f + − f −. By density, we have that there exists a maximizing sequence
vn ∈ K1 such that vn takes a finite number of values and

∫
Ω

vnf → max
w∈K1

∫
Ω

wf.

Thanks to the previous lemma, there exists un ∈ K1,

un = 0χCn
0

+ 1χCn
1

+ · · · + knχCn
kn

, kn ∈ N ∪ {0},∣∣Cn
i

∣∣ > 0, Cn
i ∩ Cn

j = ∅, if i 
= j,

a new maximizing sequence, that is,

∫
Ω

unf → max
w∈K1

∫
Ω

wf. (2.7)

Notice now that the sequence {kn} is uniformly bounded by a constant that only depends on Ω .
Indeed, if u ∈ K1 is of the form u(x) = 0χC0 +1χC1 +· · ·+kχCk

, with |Ci | > 0, Ci ∩Cj = ∅ for
i 
= j , then |x − y| > 1 for every (x, y) ∈ (Ci−1 × Ci+1) for all i, otherwise u /∈ K1. Therefore,
since Ω has finite diameter, this provides a bound m0 ∈ N for the number of possible sets k, and
consequently, 0 � kn � m0 for all n ∈ N.

By Fatou’s Lemma and having in mind (2.7), we get

max
w∈K1

∫
Ω

wf �
∫
Ω

lim sup
n→∞

(unf ).

Now, since supp(f +) ∩ supp(f −) is a null set and having in mind that un(x) ∈ {0,1, . . . ,m0}
for all n ∈ N, it is easy to see that

lim sup
n→∞

(unf ) � f + lim sup
n→∞

un − f − lim inf
n→∞ un = f +

m0∑
i=0

iχAi
− f −

m0∑
i=0

iχBi
= f

m0∑
i=0

iχCi
,

where Ci = (Ai ∩ {f +(x) > 0}) ∪ (Bi ∩ {f −(x) > 0}) for i > 0 and C0 = Ω \ ⋃m0
i=0 Ci.

Therefore, setting u∗ = ∑m0
i=0 iχCi

, we have

max
w∈K1

∫
wf �

∫
f u∗.
Ω Ω
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To finish the proof let us see that u∗ ∈ K1. Take x, y ∈ Ω . Let us suppose that

x ∈ Ai ∩ {
f + > 0

}
and y ∈ Bj ∩ {

f − > 0
}

(the other cases being similar), then we have

∣∣u∗(x) − u∗(y)
∣∣ = |i − j | � d1(x, y).

If not, that is, if |i − j | > d1(x, y), assuming for instance that i < j , we have that there exists
0 < ε < 1 such that i < i + ε < j − ε < j and there exists n ∈ N such that un(x) ∈ [i, i + ε], and
un(y) ∈ [j − ε, j ], that is, un(x) = i and un(y) = j , which contradicts that |un(x) − un(y)| �
d1(x, y). �
Remark 2.7. Let us remark that the results we have obtained are also true if in the definition of
the metric d1 we change the Euclidean norm by any norm ‖ · ‖ of R

N . Especially interesting is
the case in which we consider the ‖ · ‖∞ norm since in this case it counts the maximum of steps
moving parallel to the coordinate axes. That is, in this case we measure the distance cost as the
number of blocks that the taxi has to cover going from x to y in a city.

Remark 2.8. If we assume that u∗ takes only the values {j, j + 1, j + 2, . . . , j + k}, j ∈ Z, that
is, u∗ = jχA0 + (j + 1)χA1 + (j + 2)χA2 + · · · . + (j + k)χAk

, then,

∣∣Ak ∩ supp
(
f −)∣∣ = 0 and

∣∣A0 ∩ supp
(
f +)∣∣ = 0. (2.8)

In fact, if not, just redefine u∗ to be

ũ∗(x) =
{

j + k − 1 in Ak ∩ supp(f−),

u∗(x) otherwise,

and we get that ũ∗ ∈ K1 with

∫
Ω

u∗f <

∫
Ω

ũ∗f,

a contradiction. We also observe that

∫
Ak

f + �
∫

Ak−1

f −. (2.9)

In fact, if not, we define

ũ∗(x) =
{

j + k − 1 in Ak,

j + k − 2 in Ak−1 ∩ supp(f −),
∗
u (x) otherwise,
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and we get that ũ∗ ∈ K1 with ∫
Ω

u∗f <

∫
Ω

ũ∗f,

a contradiction. Properties (2.8) and (2.9) will be of special interest in the next sections.

Let us finish this section by proving, working as in the proof of Lemma 6 in [9], the following
Dual Criteria for Optimality.

Lemma 2.9.

1. If u∗ ∈ K1 and T ∗ ∈ A(f +, f −) satisfy

u∗(x) − u∗(T ∗(x)
) = d1

(
x,T ∗(x)

)
for almost all x ∈ supp

(
f +)

, (2.10)

then:
(i) u∗ is a Kantorovich potential for the metric d1,

(ii) T ∗ is an optimal map for the Monge problem associated to the metric d1,
(iii) inf{Fd1(T ): T ∈ A(f +, f −)} = sup{Pf +,f −(u): u ∈ K1}.

2. Under (iii), every optimal map T̂ for the Monge problem associated to the metric d1 and
Kantorovich potential û for the metric d1 satisfy (2.10).

Proof. 1. By (2.10)

Fd1

(
T ∗) =

∫
Ω

d1
(
x,T ∗(x)

)
f +(x) dx

=
∫
Ω

(
u∗(x) − u∗(T ∗(x)

))
f +(x) dx

=
∫
Ω

u∗(x)f +(x) dx −
∫
Ω

u∗(y)f −(y) dy

= Pf +,f −
(
u∗).

Hence

Pf +,f −
(
u∗) = Fd1

(
T ∗)

� inf
{

Fd1(T ): T ∈ A
(
f +, f −)}

� sup
{

Pf +,f −(u): u ∈ K1
}

� Pf +,f −
(
u∗),

and consequently (iii) holds. Moreover, we also get P (u∗) = max{P (u): u ∈ K1}, from where it
follows (i), and Fd (T ∗) = min{Fd (T ): T ∈ A(f +, f −)}, from where (ii) follows.
1 1
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2. Assume (iii) holds. Let T̂ be an optimal map for the Monge problem associated to the
metric d1 and û a Kantorovich potential for the metric d1. Then Fd1(T̂ ) = P (û), that is,

∫
Ω

d1
(
x, T̂ (x)

)
f +(x) dx =

∫
Ω

(
û(x) − û

(
T̂ (x)

))
f +(x) dx.

Consequently, since d1(x, T̂ (x)) � û(x)− û(T̂ (x)) and f + � 0, we have that û(x)− û(T̂ (x)) =
d1(x, T̂ (x)) for almost all x ∈ supp(f +). �
Remark 2.10. Observe also that when u∗ is a Kantorovich potential for the metric d1, from (1.2)
and the inequality u∗(x) − u∗(y) � d1(x, y) it follows that, if μ∗ ∈ π(f +, f −),

μ∗ is optimal ⇐⇒ u∗(x) − u∗(y) = d1(x, y), μ∗-a.e. in Ω × Ω. (2.11)

3. Constructing optimal transport plans. A nonlocal version of the Evans–Gangbo
approach

As remarked in the introduction, although the general theory provides the existence of optimal
transport plans, our objective is to give a concrete construction via an equation satisfied by the
Kantorovich potentials following the approach of Evans–Gangbo.

We first begin with the one-dimensional case where some examples illustrate the difficulties
of the mass transport problem with d1.

3.1. The one-dimensional case

3.1.1. A better description of the special Kantorovich potentials
We assume first that the functions f + and f − are L∞-functions satisfying

f − = f −χ [a,0], f + = f +χ [c,d], c � 0,

supp
(
f ±) ⊂ [−L,L], for some L ∈ N. (3.1)

Set Ω any interval containing [−L,L].
By Theorem 2.6, there exists a Kantorovich potential u∗ associated with the metric d1, such

that u∗(Ω) ⊂ Z and takes a finite number of values. It is easy to see that we can take

u∗(x) = θα(x) :=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

...

−1 if α − 2 < x � α − 1,

0 if α − 1 < x � α,

1 if α < x � α + 1,
...

(3.2)

for some 0 < α � 1. In order to find which α’s give the Kantorovich potential, we need to maxi-
mize
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∫
Ω

u∗(x)
(
f +(x) − f −(x)

)
dx

= −
0∫

−L

u∗(x)f −(x) dx +
L∫

0

u∗(x)f +(x) dx

= −
−1∑

j=−L

1∫
0

(
θα(x) + j

)
f −(x + j) dx +

L−1∑
j=0

1∫
0

(
θα(x) + j

)
f +(x + j) dx

= −
−1∑

j=−L

1∫
0

θα(x)f −(x + j) dx +
L−1∑
j=0

1∫
0

θα(x)f +(x + j) dx

−
−1∑

j=−L

1∫
0

jf −(x + j) dx +
L−1∑
j=0

1∫
0

jf +(x + j) dx.

Since the last two integrals are independent of θα , we only need to maximize

−
−1∑

j=−L

1∫
0

(
θα(x)

)
f −(x + j) dx +

L−1∑
j=0

1∫
0

(
θα(x)

)
f +(x + j) dx

=
1∫

0

θα(x)M(x)dx =
1∫

α

M(x)dx,

for 0 < α � 1, where

M(x) = −
−1∑

j=−L

f −(x + j) +
L−1∑
j=0

f +(x + j), 0 < x � 1. (3.3)

Observe that
∫ 1

0 M(x)dx = ∫
(f + − f −) = 0. If M(x) is monotone nondecreasing, it is clear

that, for 0 < x � 1,

θα(x) =
{

0 if M(x) < 0,

1 if M(x) > 0,

is the best choice (unique for points where M(x) 
= 0). If M(x) is monotone nonincreasing,
α = 1 is the best choice.

Remark 3.1. Let us suppose now that the supports of the masses are not ordered. For example,
let us search for a Kantorovich potential associated with the metric d1 for f − = f1 + f2, f1 =
f −

1
χ(a1,a2), f2 = f −

2
χ(c1,c2), and f + = f +χ(b1,b2), with a1 < a2 < b1 < b2 < c1 < c2. Let

b ∈ (b1, b2) be such that
∫

f1 = ∫
f χ(b ,b) and

∫
f2 = ∫

f χ(b,b ). Let us call f + := f χ(b ,b)
1 2 1 1
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and f +
2 := f χ(b,b2). By the previous example we construct a monotone nondecreasing stair-

shaped function, θ1, as Kantorovich potential for f +
1 and f −

1 with value at b equals to some
λ fixed, and a monotone nonincreasing stair function, θ2, as Kantorovich potential for f +

2 and
f −

2 with the same value λ at b. Then, θ = θ1χ(a1,b) + θ2χ(b,c2) gives a Kantorovich potential
for f + and f −. This construction can be done for any configuration f + = ∑m

i=1 χ(b1,i ,b2,i ) and
f − = ∑n

i=1 χ(c1,i ,c2,i ).

3.1.2. Nonexistence of optimal transport maps
Here we see with a simple example that, in general, an optimal transport map does not exist

for d1 as cost function. Let us point out that for the Euclidean distance it is well known (see
for instance [1] or [19]) the existence of an optimal transport map in the case f ± ∈ L1(a, b),
even more, there exists a unique optimal transport map in the class of monotone nondecreasing
functions:

T0(x) := sup

{
y ∈ R:

y∫
a

f −(t) dt �
x∫

a

f +(t) dt

}
if x ∈ (a, b). (3.4)

Let f + = Lχ [0,1] and f − = χ [−L,0] with L ∈ R. Set Ω an interval containing [−L,L]. Let
us see that if L ∈ N, L � 2, then there is no optimal transport map T with distance d1 pushing
f + to f −, nevertheless we will see later in Example 3.4 that if L /∈ N then there is an optimal
transport map pushing f + to f −.

A Kantorovich potential for this configuration of masses f + and f − is given by

u∗(x) =

⎧⎪⎪⎨
⎪⎪⎩

0, x ∈ (0,1),

−1, x ∈ (−1,0],
...

−L, x ∈ (−L,−L + 1],
and hence we have

sup
{

P (u): u ∈ K1
} =

∫
Ω

u∗(x)
(
f +(x) − f −(x)

)
dx = 1 + 2 + 3 + · · · + L = L(L + 1)

2
.

Let us see first that the Monge infimum and the Kantorovich minimum are the same by finding
tn ∈ A(f +, f −) such that

Fd1(tn) =
∫
Ω

d1
(
x, tn(x)

)
f +(x) dx

n→0+−−−→ L(L + 1)

2
.

Consider L = 2 for simplicity. These tn can be constructed following the subsequent ideas. Push
f +χ [1− 1

2n+1 ,1] to f −χ [−2,−2+ 1
2n ] with a plan induced by a map as in the picture below, paying

3
2n , and f +χ [0,1− 1

2n+1 ] to f −χ [−2+ 1
2n ,0] with a plan induced also by a map, see below, paying

3 − 2
n .
2
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1
80 1

0

−1
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Support of 2χ [0,1](x)δ[y=t2(x)] .
Observe that all the segments have slope 2.

In this way,

Fd1(tn) =
∫
Ω

d1
(
x, tn(x)

)
f +(x) dx = 3 + 1

2n

n→0+−−−→ 3.

Arguing by contradiction assume now that there is an optimal transport map T pushing f +
to f −. Then, since inf{Fd1(T ): T ∈ A(f +, f −)} = sup{Pf +,f −(u): u ∈ K1}, from Lemma 2.9
we have the equality u∗(x) − u∗(T (x)) = d1(x, T (x)). Then,

Ai := {
x ∈ ]0,1[: d1

(
x,T (x)

) = i
} = T −1((−i,−i + 1]), i = 1, . . . ,L.

Therefore, |Ai | = |T −1((−i,−i + 1])| = 1/L. Moreover, we also have T (x) � x − i for all
x ∈ Ai . Now, we claim that

T (x) = x − i for all x ∈ Ai, for every i = 1, . . . ,L. (3.5)

Hence, |T (Ai)| = 1/L which gives a contradiction with the fact that |T ([0,1])| = L.
To prove (3.5) we argue as follows: assume, without lose of generality, that there is a set of

positive measure K ⊂ A1 such that T (x) > x − 1 in K . Then, it is easy to see that there exists
θ ∈ (0,1) such that |T −1((−1, θ − 1))| < |A1 ∩ (0, θ)|. Therefore, since T −1((−i, θ − i)) ⊂
Ai ∩ (0, θ) for all i, we have
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θ = 1

L

∣∣∣∣∣
L⋃

i=1

(−i, θ − i)

∣∣∣∣∣ =
∣∣∣∣∣T −1

(
L⋃

i=1

(−i, θ − i)

)∣∣∣∣∣
=

∣∣∣∣∣
L⋃

i=1

T −1((−i, θ − i)
)∣∣∣∣∣ <

L⋃
i=1

∣∣Ai ∩ (0, θ)
∣∣ = θ,

and we arrive to a contradiction.
With a similar proof it can be proved that there is no transport map T between f + = Lχ [0,1]

and f − = χ [−L,0] with L ∈ N if one considers the distance d1/k with k ∈ N.

Remark 3.2. Observe that it is easy to construct an optimal transport plan μ∗ ∈ π(f +, f −)

solving the Monge–Kantorovich problem. Indeed, if define the measure μ∗ in Ω × Ω by

μ∗(x, y) := Lχ [0,1](x)

(
1

L
δ[y=−1+x] + 1

L
δ[y=−2+x] + · · · + 1

L
δ[y=−L+x]

)
,

then μ∗ ∈ π(f +, f −) and, moreover, since

Kd1

(
μ∗) =

∫
Ω×Ω

d1(x, y) dμ∗(x, y)

= L

1∫
0

(
1

L
d1(x,−1 + x) + 1

L
d1(x,−2 + x) + · · · + 1

L
d1(x,−L + x)

)
dx

= L(L + 1)

2

= sup
{

P (u): u ∈ K1
}

= min
{

K1(μ): μ ∈ π
(
f +, f −)}

,

we have that μ∗ is an optimal plan.

3.1.3. A precise construction of optimal transport plans
Let us now see that in one dimension we can give, in a quite easy way, a construction of

optimal transport plans by using the special Kantorovich potentials obtained in Section 3.1.1.
This is independent of the general construction given afterward.

We will construct an optimal transport plan under the assumptions (3.1); Remark 3.1 says how
to work in a more general situation. Let u∗ = θα be the Kantorovich potential given from (3.2)
and construct a new configuration of equal masses as follows:

f +
0 (x) =

(
L−1∑

f +(x + j)

)
χ ]0,1[(x), f −

0 (x) =
(

L−1∑
f −(x − j)

)
χ ]−1,0[(x).
j=0 j=0
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For these masses, the same u∗ is a Kantorovich potential. Moreover,

L∫
−L

u∗(x)
(
f +(x) − f −(x)

)
dx

=
1∫

−1

u∗(x)
(
f +

0 (x) − f −
0 (x)

)
dx +

L−1∑
j=0

1∫
0

jf +(x + j) dx +
L−1∑
j=0

0∫
−1

jf −(x − j) dx.

By (2.9) there exists β ∈ [α,1] such that

β∫
α

f +
0 =

0∫
−1+α

f −
0 .

Consider the smallest of such β . Take also the smallest γ ∈ [−1,−1 + α] such that

1∫
β

f +
0 =

γ∫
−1

f −
0 .

For x ∈ (0,1), we define T0 by

T0(x) =

⎧⎪⎪⎨
⎪⎪⎩

sup{y ∈ R : ∫ y

−1+α
f −

0 = ∫ x

α
f +

0 } if x ∈ (α,β),

sup{y ∈ R : ∫ y

−1 f −
0 = ∫ x

β
f +

0 } if x ∈ (β,1),

sup{y ∈ R : ∫ y

γ
f −

0 = ∫ x

0 f +
0 } if x ∈ (0, α).

x

y

γ

α β0 1

−1

0

The straight lines are only illustrative.

It is easy to see that T0 ∈ A(f +, f −) and that

d1
(
x,T0(x)

) = u∗(x) − u∗(T0(x)
)

a.e. x ∈ supp
(
f +)

.
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Then, by Lemma 2.9 (or a direct computation), μ00(x, y) = f +
0 (x)δ[y=T0(x)] is an optimal trans-

port plan between f +
0 and f −

0 for the cost function d1.
Once we have the above construction, it is also easy to see that

μ0(x, y) =
L−1∑
j=0

f +(x)χ(j,j+1)(x)δ[y=T0(x−j)]

is an optimal transport plan between f + and f −
0 for the cost function d1. A remarkable observa-

tion is that these μ00 and μ0 are induced by transport maps and that for the above configurations
the Monge infimum and the Monge–Kantorovich minimum coincide.

By splitting the mass

f +(x)χ(j,j+1)(x) =
L−1∑
i=0

gi,j (x), j = 0,1, . . . ,L − 1, (3.6)

is such a way that, for i = 0,1, . . . ,L − 1,

L−1∑
j=0

x+j∫
j

gi,j =
T0(x)−i∫
γ−i

f − if x ∈ (0, β), (3.7)

and

L−1∑
j=0

x+j∫
β+j

gi,j =
T0(x)−i∫
−1−i

f − if x ∈ (β,1), (3.8)

we can finally see that

μ(x, y) =
L−1∑
i=0

L−1∑
j=0

gi,j (x)χ(j,j+1)(x)δ[y=−i+T0(x−j)]

is a transport plan between f + and f − for the cost function d1: taking x = β in (3.7), and x = 1
in (3.8), respectively, we get

L−1∑
j=0

β+j∫
j

gi,j =
−i∫

γ−i

f − and
L−1∑
j=0

1+j∫
β+j

gi,j =
γ−i∫

−1−i

f −.

Adding the last two equalities, we obtain

L−1∑
j=0

1+j∫
gi,j (x) dx =

−i∫
f −(x) dx =

0∫
f −(x − i) dx.
j −1−i −1
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Hence,

L∫
−L

u∗(f + − f −) =
∫ ∫

d1(x, y)μ0(x, y) +
L−1∑
j=0

0∫
−1

j f −(x − j) dx

=
L−1∑
j=0

j+1∫
j

d1
(
x,T0(x − j)

)
f +(x) +

L−1∑
i=0

i

0∫
−1

f −(x − i) dx

=
L−1∑
j=0

j+1∫
j

d1
(
x,T0(x − j)

)(L−1∑
i=0

gi,j (x)

)
dx +

L−1∑
i=0

i

L−1∑
j=0

j+1∫
j

gi,j (x) dx

=
L−1∑
i=0

L−1∑
j=0

j+1∫
j

(
d1

(
x,T0(x − j)

) + i
)
gi,j (x) dx

=
L−1∑
i=0

L−1∑
j=0

j+1∫
j

d1
(
x,−i + T0(x − j)

)
gi,j (x) dx

=
∫

Ω×Ω

d1(x, y)μ(x, y).

In the following example, μ(x, y) = f +(x)δ[y=T ∗
1 (x)] illustrates the above construction.

Example 3.3. Set f − = 1
4
χ ]−1,0[ and f + = χ ] 7

4 ,2[. Then M = − 1
4
χ ]0, 3

4 [ + 3
4
χ ] 3

4 ,1[ and therefore

u∗(x) = θ 3
4

is (up to adding a constant) the unique Kantorovich potential associated with the

metric d1 for f + and f −, moreover,
∫

u∗(f + − f −) = 11
16 . Nevertheless, there exist infinitely

many optimal transport maps. For example, the following two are optimal transport maps,

T ∗
1 (x) =

⎧⎪⎨
⎪⎩

4x − 29
4 if 28

16 < x < 29
16 ,

4x − 33
4 if 29

16 < x < 2,

x otherwise,

T ∗
2 (x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

4x − 29
4 if 28

16 < x < 57
32 ,

−4x + 57
8 if 57

32 < x < 29
16 ,

−4x + 7 if 29
16 < x < 2,

x otherwise.

Observe that both push the mass f +χ ] 7
4 , 29

16 [ toward f −χ ]− 1
4 ,0[ paying, after 2 steps, 2 × 1

16 , and

push the rest from f +χ ] 29
16 ,2[ toward f −χ ]−1,− 1

4 [ paying, after 3 steps, 3 × 3
16 . Therefore the

total cost is, as known, 2 × 1
16 + 3 × 3

16 = 11
16 .

We want to remark that the unique monotone nondecreasing optimal transport map, T0, for
the Euclidean distance as cost function that pushes f + forward to f − in this particular case is
T0(x) = 4x − 8. Now, T0 is not an optimal transport map for d1, the transport cost with this
map is, in fact, 12 . However, it is well known (see [3]) that if the cost function c(x, y) is equal
16
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to φ(|x − y|) with φ monotone nondecreasing and convex then T0 is an optimal transport, but
in our situation φ fails to be convex. On the other hand, the following simple transport plan
between f + and f −, not induced by a map, is optimal: μ = χ

( 7
4 ,2)(x)( 1

4δ[y=x−2] + 1
4δ[y=x− 9

4 ] +
1
4δ[y=x− 10

4 ] + 1
4δ[y=x− 11

4 ]).

In contrast with the example given in Section 3.1.2 for which there is not optimal transport
map we present the following one.

Example 3.4. Let f + = Lχ [0,1] and f − = χ [−L,0] with L /∈ N. Let us see that there is an optimal
transport map T pushing f + to f − for d1. In order to simplify the exposition we take 2 < L < 3.
This particular case shows clearly how to handle the general case.

Using the procedure introduced in this subsection we have that

T0(x) =
{

L
2 x − 1 if 0 < x <

2(3−L)
L

,

L
3 (x − 1) if 2(3−L)

L
< x < 1,

is an optimal transport map pushing f +
0 to f −

0 (α = 1 = β and γ = −1). Now, we perform
the splitting procedure (3.6) (there are many different ways) in the following adequate way. For
x <

2(3−L)
L

we have to distribute the mass f + in two equiweighted parts, so, set the rectangles
with corner coordinates,

upper-left, uli = (xi+1, yi), upper-right, uri = (xi, yi),

lower-left, lli = (xi+1, yi+1), lower-right, lri = (xi, yi+1),

i = 1,2, . . . , where

x1 = 2(3 − L)

L
, y1 = 2 − L,

yi+1 = xi − 1, xi+1 = xi − 2

L
(yi − yi+1) = 2

L
(yi+1 + 1)

(observe that lri ∈ [y = x − 1] and lli , uri ∈ [y = L
2 x − 1]); in each rectangle we can trace 2

parallel segments of slope L defined by the lines

y = L(x − xi) + yi and y = L(x − x̂i ) + yi, with x̂i = xi − xi − xi+1

2
;

then Ti(x) = f +(x)χ ]x̂i ,xi [(x)δ[y=L(x−xi )+yi ] + f +(x)χ ]xi+1,x̂i [(x)δ[y=L(x−x̂i )+yi−1] push in an
optimal way f +χ ]x ,x [ to f −χ ]y ,y [∪]y −1,y −1[, for i = 1,2, . . . .
i+1 i i+1 i i+1 i
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x

y

2 − L

2(3−L)
L0 1

−1

0

For x >
2(3−L)

L
we have to distribute the mass f + in three equiweighted parts, in this case,

set the rectangles with corner coordinates,

lower-left, lli = (xi, yi), lower-right, lri = (xi+1, yi),

upper-left, uli = (xi, yi+1), upper-right, uri = (xi+1, yi+1),

i = 1,2, . . . , where now

x1 = 2(3 − L)

L
, y1 = 2 − L,

xi+1 = yi + 1, yi+1 = yi + L

3
(xi+1 − xi) = L

3
(xi+1 − 1)

(observe that lri ∈ [y = x − 1] and lli , uri ∈ [y = L
3 (x − 1)]); in each rectangle we can trace

three parallel segments of slope L defined by the lines

y = L(x − xi) + yi, y = L(x − x̂i ) + yi, x̂i = xi + xi+1 − xi

3
,

and

y = L(x − x̃i ) + yi, x̃i = xi + 2
xi+1 − xi

3
;

then

Ti(x) = f +(x)χ(xi ,x̂i )(x)δ[y=L(x−xi )+yi ] + f +(x)χ(x̂i ,x̃i )(x)δ[y=L(x−x̂i )+yi−1]
+ f +(x)χ(x̃i ,xi+1)(x)δ[y=L(x−x̃i )+yi−2]

push in an optimal way f +χ(xi ,xi+1) to f −χ(yi ,yi+1)∪(yi−1,yi+1−1)∪(yi−2,yi+1−2), for i = 1,2, . . . .
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3.2. Characterizing the Euler–Lagrange equation: A nonlocal version of the Evans–Gangbo
approach

Our first objective is to characterize the Euler–Lagrange equation associated with the varia-
tional problem sup{Pf +,f −(u): u ∈ Kd1(Ω)}, that is, characterize f + − f − ∈ ∂IK1(u), where,
as above, we denote for simplicity K1 := Kd1(Ω).

Let Ma
b(Ω × Ω) := {bounded antisymmetric Radon measures in Ω × Ω}. And define the

multivalued operator B1 in L2(Ω) as follows: (u, v) ∈ B1 if and only if u ∈ K1, v ∈ L2(Ω), and
there exists σ ∈ Ma

b(Ω × Ω) such that

σ = σ
{
(x, y) ∈ Ω × Ω: |x − y| � 1

}
,∫

Ω×Ω

ξ(x)dσ (x, y) =
∫
Ω

ξ(x)v(x) dx, ∀ξ ∈ Cc(Ω),

and

|σ |(Ω × Ω) � 2
∫
Ω

v(x)u(x) dx.

Theorem 3.5. The following characterization holds: ∂IK1 = B1.

Proof. Let us first see that B1 ⊂ ∂IK1 . Let (u, v) ∈ B1, to see that (u, v) ∈ ∂IK1 we need to prove
that

0 �
∫
Ω

v(x)
(
u(x) − ξ(x)

)
dx, ∀ξ ∈ K1.

Using an approximation procedure, we can assume that ξ ∈ K1 is continuous. Then,

∫
Ω

v(x)
(
u(x) − ξ(x)

)
dx � 1

2
|σ |(Ω × Ω) −

∫
Ω

v(x)ξ(x) dx

= 1

2
|σ |(Ω × Ω) −

∫
Ω×Ω

ξ(x)dσ (x, y)

= 1

2
|σ |(Ω × Ω) − 1

2

∫
Ω×Ω

(
ξ(x) − ξ(y)

)
dσ(x, y) � 0,

where in the last equality we have used the antisymmetry of σ . Therefore, we have B1 ⊂ ∂IK1 .
Since ∂IK1 is a maximal monotone operator, to see that the operators are equal we only need to
show that for every f ∈ L2(Ω) there exists u ∈ K1 such that

u + B1(u) � f. (3.9)
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Let J : R
N → R as in (2.1). By results in [5], given p > N and f ∈ L2(Ω) there exists a

unique solution up ∈ L∞(Ω) of the nonlocal p-Laplacian problem

up(x) −
∫
Ω

J(x − y)
∣∣up(y) − up(x)

∣∣p−2(
up(y) − up(x)

)
dy = Tp(f )(x) ∀x ∈ Ω, (3.10)

where Tk(r) := max{min{k, r},−r}. And we also know, using again Lemma 2.3, that there exists
u ∈ K1 such that

up → u in L2(Ω) as p → +∞, (3.11)

with u + ∂IK1(u) � f , from where it follows that∫
Ω

(
f (x) − u(x)

)(
w(x) − u(x)

)
dx � 0, ∀w ∈ K1,

and consequently, u = PK1(f ). Multiplying (3.10) by up and integrating, we get

∫
Ω

(
Tp(f )(x) − up(x)

)
up(x) dx = 1

2

∫
Ω×Ω

J(x − y)
∣∣up(y) − up(x)

∣∣p dx dy, (3.12)

from where it follows that∫
Ω×Ω

J(x − y)
∣∣up(y) − up(x)

∣∣p dx dy +
∫
Ω

∣∣up(x)
∣∣2

dx � ‖f ‖2
L2(Ω)

. (3.13)

If we set σp(x, y) := J (x − y)|up(y) − up(x)|p−2(up(y) − up(x)), by Hölder’s inequality,

∫
Ω×Ω

∣∣σp(x, y)
∣∣dx dy

=
∫

Ω×Ω

J(x − y)
∣∣up(y) − up(x)

∣∣p−1
dx dy

�
( ∫

Ω×Ω

J(x − y)
∣∣up(y) − up(x)

∣∣p dx dy

) p−1
p

( ∫
Ω×Ω

J(x − y)dx dy

) 1
p

=
( ∫

Ω×Ω

J(x − y)
∣∣up(y) − up(x)

∣∣p dx dy

) p−1
p

.

Now, by (3.13), we have ∫ ∣∣σp(x, y)
∣∣dx dy �

(‖f ‖2
L2(Ω)

) p−1
p .
Ω×Ω
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Hence, {σp: p � 2} is bounded in L1(Ω × Ω), and consequently we can assume that

σp(.,.) ⇀ σ weakly∗ in Mb(Ω × Ω). (3.14)

Obviously, since each σp is antisymmetric, σ ∈ Ma
b(Ω ×Ω). Moreover, since supp(J ) = B1(0),

we have σ = σ {(x, y) ∈ Ω ×Ω: |x − y| � 1}. On the other hand, given ξ ∈ Cc(Ω), by (3.10),
(3.11) and (3.14), we get

∫
Ω×Ω

ξ(x)dσ (x, y) = lim
p→+∞

∫
Ω×Ω

ξ(x)σp(x, y) dx dy

= lim
p→+∞

∫
Ω×Ω

J(x − y)
∣∣up(y) − up(x)

∣∣p−2(
up(y) − up(x)

)
ξ(x) dx dy

= lim
p→+∞

∫
Ω

(
Tp(f )(x) − up(x)

)
ξ(x) dx

=
∫
Ω

(
f (x) − u(x)

)
ξ(x) dx.

Then, to prove (3.9), we only need to show that |σ |(Ω × Ω) � 2
∫
Ω

(f (x) − u(x))u(x) dx. In
fact, by (3.14), we have

|σ |(Ω × Ω) � lim inf
p→+∞

∫
Ω

∫
Ω

∣∣σp(x, y)
∣∣dx dy.

Now, by (3.12),

∫
Ω×Ω

∣∣σp(x, y)
∣∣dx dy �

( ∫
Ω×Ω

J(x − y)
∣∣up(y) − up(x)

∣∣p dx dy

) p−1
p

=
(

2
∫
Ω

(
Tp(f )(x) − up(x)

)
up(x) dx

) p−1
p

= 2
p−1
p

(∫
Ω

(
Tp(f )(x) − up(x)

)
up(x) dx

) p−1
p

.

Therefore |σ |(Ω × Ω) � 2
∫
Ω

(f (x) − u(x))u(x) dx. �
We can rewrite the operator B1 as follows.

Corollary 3.6. (u, v) ∈ B1 if and only if u ∈ K1, v ∈ L2(Ω), and there exists σ ∈ Ma
b(Ω × Ω)

such that
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σ+ = σ+ {
(x, y) ∈ Ω × Ω: |x − y| � 1, u(x) − u(y) = 1

}
,

σ− = σ− {
(x, y) ∈ Ω × Ω: |x − y| � 1, u(y) − u(x) = 1

}
,∫

Ω×Ω

ξ(x)dσ (x, y) =
∫
Ω

ξ(x)v(x) dx, ∀ξ ∈ Cc(Ω),

and

|σ |(Ω × Ω) = 2
∫
Ω

v(x)u(x) dx.

Proof. Let (u, v) ∈ B1, then

∫
Ω×Ω

ξ(x)dσ (x, y) =
∫
Ω

ξ(x)v(x) dx, ∀ξ ∈ Cc(Ω). (3.15)

Hence, by approximation, we can take ξ ∈ L2(Ω) in (3.15) and
∫
Ω

∫
Ω

ξ(x)dσ (x, y) has this
sense.

Taking ξ = u in (3.15) and using the antisymmetric of σ and the previous result we get

|σ |(Ω × Ω) �
∫

Ω×Ω

(
u(x) − u(y)

)
dσ(x, y)

= 2
∫

Ω×Ω

u(x)dσ(x, y)

= 2
∫
Ω

u(x)v(x) dx

� |σ |(Ω × Ω). �
As consequence of the above results, we have that u∗ ∈ K1 is a Kantorovich potential for d1,

f +, f −, if and only if

f + − f − ∈ B1
(
u∗), (3.16)

that is, if u∗ ∈ K1 and there exists σ ∗ ∈ Ma
b(Ω × Ω), such that

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

[
σ ∗]+ = [

σ ∗]+ {
(x, y) ∈ Ω × Ω: u∗(x) − u∗(y) = 1, |x − y| � 1

}
,[

σ ∗]− = [
σ ∗]− {

(x, y) ∈ Ω × Ω: u∗(y) − u∗(x) = 1, |x − y| � 1
}
,∫

ξ(x) dσ ∗(x, y) =
∫

ξ(x)
(
f +(x) − f −(x)

)
dx,

(3.17)
Ω×Ω Ω
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and

∣∣σ ∗∣∣(Ω × Ω) = 2
∫
Ω

(
f +(x) − f −(x)

)
u∗(x) dx = 2P

(
u∗). (3.18)

We want to highlight that (3.16) plays the role of (1.4). Moreover, we will see in the next
subsection that we can construct optimal transport plans from it, more precisely, we shall see
that the potential u∗

1 and the measure σ ∗
1 encode all the information that we need to construct an

optimal transport plan associated with the problem.

3.3. Constructing optimal transport plans

We will use a gluing lemma (see Lemma 7.6 in [19]), which permits to glue together two
transport plans in an adequate way. As remarked in [19], it is possible to state the gluing lemma
in the following way (we present it for the distance d1).

Lemma 3.7. Let f1, f2, g be three positive measures in Ω . If μ1 ∈ π(f1, g) and μ2 ∈ π(g,f2),
there exists a measure G(μ1,μ2) ∈ π(f1, f2) such that

Kd1

(
G(μ1,μ2)

)
� Kd1(μ1) + Kd1(μ2). (3.19)

Let us now proceed with the general construction. Given f +, f − ∈ L∞(Ω) two non-negative
Borel functions satisfying the mass balance condition (1.1) and | supp(f +) ∩ supp(f −)| = 0, by
Theorems 1.2 and 2.6, there exists a Kantorovich potential u∗ taking a finite number of entire
values such that

min
{

Kd1(μ): μ ∈ π
(
f +, f −)} =

∫
Ω

u∗(x)
(
f +(x) − f −(x)

)
dx.

Then, by Corollary 3.6, there exists σ ∈ Ma
b(Ω × Ω) satisfying (3.17) and (3.18). We are going

to give a method to obtain an optimal transport plan μ∗ from the measure σ .
We divide the construction in two steps. We assume without loss of generality that

u∗ = 0χA0 + 1χA1 + · · · + kχAk
, with Ai = {

x ∈ Ω: u∗(x) = i
}
.

Step 1. How the measures σ+ (Aj ×Aj−1) work. Taking into account the antisymmetry of σ

and (3.17), we have that projx(σ
+) − projy(σ

+) = f + − f −, which implies g := projx(σ
+) −

f + = projy(σ
+)−f −. By (2.8), projx(σ

+) Ak = f +χAk
and projx(σ

+) A0 = f +χA0 = 0,

then

g Ak = g A0 = 0.

Moreover, we have projx(σ
+ (Aj ×Aj−1)) = projx(σ

+) Aj and projy(σ
+ (Aj ×Aj−1)) =

projx(σ
+) Aj−1, then projx(σ

+ (Aj × Aj−1)) = f +χAj
+ g Aj and projy(σ

+ (Aj ×
Aj−1)) = f −χAj−1 + g Aj−1. Let us call μj := σ+ (Aj × Aj−1). Let us briefly comment
what these measures do. The first one, μk , transports f +χA into f −χA plus something else,
k k−1
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that is g Ak−1. Afterwards, μj transports f +χAj
+g Aj into f −χAj−1 again plus something

else, that is g Aj−1. The last one, μ1, transports f +χA1 + g A1 to f −χA0 .
Step 2. The gluing. Now, we would like to glue this transportations, and, in order to apply the

gluing lemma, we consider the measures

μl
k(x, y) := μk(x, y) + f +(x)χAk−1(x)δ[y=x],

and

μr
k−1(x, y) := μk−1(x, y) + f −(x)χAk−1(x)δ[y=x].

It is easy to see that

μl
k ∈ π

(
f +χAk

+ f +χAk−1 , f
−χAk−1 + projx

(
σ+)

Ak−1
)

and

μr
k−1 ∈ π

(
f −χAk−1 + projx

(
σ+)

Ak−1, f
−χAk−1 + f −χAk−2 + g Ak−2

)
.

Therefore, by the gluing lemma,

G
(
μl

k,μ
r
k−1

) ∈ π
(
f +χAk

+ f +χAk−1, f
−χAk−1 + f −χAk−2 + g Ak−2

)
.

Let us now consider the measures

μl
k−1(x, y) := G

(
μl

k,μ
r
k−1

)
(x, y) + f +(x)χAk−2(x)δ[y=x]

and

μr
k−2(x, y) := μk−2(x, y) + (

f −(x)χAk−1(x) + f −(x)χAk−2(x)
)
δ[y=x].

Then we have

μl
k−1 ∈ π

(
f +χAk

+ f +χAk−1 + f +χAk−2 , f
−χAk−2 + f −χAk−1 + projx

(
σ+)

Ak−2
)

and

μr
k−2 ∈ π

(
f −χAk−2 + f −χAk−1 + projx

(
σ+)

Ak−2,

f −χAk−1 + f −χAk−2 + f −χAk−3 + g Ak−3
)
.

Consequently,

G
(
μl

k−1,μ
r
k−2

) ∈ π
(
f +χAk

+ f +χAk−1 + f +χAk−2 ,

f −χA + f −χA + f −χA + g Ak−3
)
.

k−1 k−2 k−3
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Proceeding in this way we arrive to the construction of

μl
2(x, y) = G

(
μl

3,μ
r
2

)
(x, y) + f +(x)χA1(x)δ[y=x],

μr
1(x, y) = μ1(x, y) +

k−1∑
i=1

f −(x)χAi(x)δ[y=x]

and

μ∗ = G
(
μl

2,μ
r
1

) ∈ π
(
f +, f −)

,

which is, in fact, an optimal transport plan since, by (3.19),

Kd1

(
μ∗) = Kd1

(
G
(
μl

2,μ
r
1

))
� Kd1

(
μl

2

) + Kd1

(
μr

1

)
= Kd1

(
G
(
μl

3,μ
r
2

)) + Kd1(μ1) � Kd1

(
μl

3

) + Kd1

(
μr

2

) + Kd1(μ1)

= Kd1

(
G
(
μl

4,μ
r
3

)) + Kd1(μ2) + Kd1(μ1) � . . . � Kd1

(
μl

k

) +
k−1∑
j=1

Kd1(μj )

=
k∑

j=1

Kd1(μj ) =
k∑

j=1

∫
Ω×Ω

dσ+ (Aj × Aj−1) =
∫

Ω×Ω

dσ+

= 1

2
|σ |(Ω × Ω) = min

{
Kd1(μ): μ ∈ π

(
f +, f −)}

.

We want to remark that a similar construction works for any Kantorovich potential u∗, without
assuming that u∗(Ω) ⊂ Z, but the above one is simpler.

4. Convergence to the classical problem

The task of this section is the connection between this discrete mass transport problem and
the classical transport problem for the Euclidean distance. In particular we recover the PDE
formulation (1.4) of Evans–Gangbo by means of this discrete approach.

Let us begin by remarking that an equivalent result to Corollary 3.5 for dε gives us that
(u∗

ε , σ
∗
ε ) is a solution of the Euler–Lagrange equation

f + − f − ∈ ∂IKdε (Ω)(u), (4.1)

that corresponds to the maximization problem

max

{∫
u(x)

(
f +(x) − f −(x)

)
dx: u ∈ Kdε (Ω)

}
,

Ω
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if and only if u∗
ε ∈ Kdε(Ω) and σ ∗

ε in Ω is an antisymmetric bounded Radon measure such that

[
σ ∗

ε

]+ = [
σ ∗

ε

]+ {
(x, y) ∈ Ω × Ω: u∗

ε(x) − u∗
ε(y) = ε, |x − y| � ε

}
,[

σ ∗
ε

]− = [
σ ∗

ε

]− {
(x, y) ∈ Ω × Ω: u∗

ε(y) − u∗
ε(x) = ε, |x − y| � ε

}
, (4.2)∫

Ω×Ω

ξ(x)dσ ∗
ε (x, y) =

∫
Ω

ξ(x)
(
f +(x) − f −(x)

)
dx, (4.3)

and

∣∣σ ∗
ε

∣∣(Ω × Ω) = 2

ε

∫
Ω

(
f +(x) − f −(x)

)
u∗

ε(x) dx = 2

ε
P

(
u∗

ε

)
. (4.4)

4.1. Convergence to the classical problem

Let us fix f +, f − ∈ L2(Ω) satisfying the mass balance condition (1.1). First of all, in the
following result we state the convergence to the Monge–Kantorovich problems. We will denote
Kε = Kdε(Ω) and Kd|·| = Kd|·|(Ω) for simplicity (recall that d|·| denotes the Euclidean distance),
and

W := sup
{

Pf +,f −(u): u ∈ Kd|·|
} = min

{
Kd|·|(μ): μ ∈ π

(
f +, f −)}

= inf
{

F (T ): T ∈ A
(
f +, f −)}

,

Wε := sup
{

Pf +,f −(u): u ∈ Kε

} = min
{

Kε(μ): μ ∈ π
(
f +, f −)}

.

Proposition 4.1. For the costs Wε and W the following facts hold:

Wε � Wε′ for ε � ε′.

0 � Wε − W � ε

∫
Ω

f +(x) dx for any ε > 0. (4.5)

For the primal problems, it also holds:

lim
ε→0+ inf

{
Fε(μ): μ ∈ π

(
f +, f −)} = W . (4.6)

Proof. Since

dε(x, y) − ε � d|·|(x, y) � dε(x, y), (4.7)

given μ ∈ π(f +, f −), we have

∫ (
dε(x, y) − ε

)
dμ(x, y) �

∫
d|·|(x, y) dμ(x, y) �

∫
dε(x, y) dμ(x, y).
Ω×Ω Ω×Ω Ω×Ω



N. Igbida et al. / Journal of Functional Analysis 260 (2011) 3494–3534 3527
Then, taking the minimum over all μ ∈ π(f +, f −), and having in mind that∫
Ω×Ω

dμ(x, y) =
∫
Ω

f +(x) dx,

we obtain (4.5). Moreover, since dε � dε′ for ε � ε′, the sequence of costs {Wε}ε>0 is monotone
nonincreasing as ε decreases to zero.

Let us now prove (4.6), which, by Example 1.4, is not a trivial consequence of the above
statement. Precisely, this previous statement gives:

lim
ε→0+ Wε = inf

{
F (T ): T ∈ A

(
f +, f −)}

. (4.8)

Take now T ′ a transport map. Thanks to (4.7),

lim sup
ε→0

inf
{

Fε(T ): T ∈ A
(
f +, f −)}

= lim sup
ε→0

inf

{∫
Ω

dε

(
x,T (x)

)
f +(x) dx: T ∈ A

(
f +, f −)}

� lim sup
ε→0

∫
Ω

dε

(
x,T ′(x)

)
f +(x) dx =

∫
Ω

∣∣x − T ′(x)
∣∣f +(x) dx.

Therefore,

lim sup
ε→0

inf
{

Fε(T ): T ∈ A
(
f +, f −)}

� inf
{

F (T ): T ∈ A
(
f +, f −)}

. (4.9)

On the other hand,

Wε = min
{

Kε(μ): μ ∈ π
(
f +, f −)}

� inf
{

Fε(T ): T ∈ A
(
f +, f −)}

.

Taking now the lim infε→0 in the above expression and taking into account (4.8) and (4.9) we
obtain (4.6). �

Let us now proceed with the approximation of optimal transport plans. Let us consider, for
each ε > 0, an optimal transport plan με between f + and f − for dε , that is, με ∈ π(f +, f −)

such that

Kε(με) = min
{

Kε(μ): μ ∈ π
(
f +, f −)}

.

Proposition 4.2. There exists a sequence εn → 0 as n → ∞ and μ∗ ∈ π(f +, f −) such that

μεn ⇀ μ∗ as measures

and

K
(
μ∗) = min

{
K(μ): μ ∈ π

(
f +, f −)}

.
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Proof. To prove this we just observe that

d|·|(x, y) = |x − y| � dε(x, y) � |x − y| + ε

(note that this implies dε(x, y) → |x − y| uniformly as ε → 0). Hence,

∫
Ω×Ω

|x − y|dμε(x, y) �
∫

Ω×Ω

dε(x, y) dμε(x, y) �
∫

Ω×Ω

(|x − y| + ε
)
dμε(x, y).

On the other hand, by Prokhorov’s Theorem, we can assume that, there exists a sequence εn → 0
as n → ∞ such that μεn converges weakly∗ in the sense of measures to a limit μ∗. Therefore,
we conclude that ∫

Ω×Ω

|x − y|dμ∗(x, y) = lim
n→+∞

∫
Ω×Ω

dεn(x, y) dμεn(x, y).

Finally, by Proposition 4.1 we obtain that μ∗ is a minimizer for the usual Euclidean distance. �
To illustrate these results, we present an example in one dimension that shows how one can

recover the unique monotone nondecreasing optimal transport map for the Euclidean distance
between f + and f −.

Example 4.3. Let f + = 2χ [0,1] and f − = χ [−2,0]. Set Ω an interval containing [−2,2]. As we
set in Section 3.1.2, there is no transport map T between f + and f − if one considers the distance
d1/k with k ∈ N. Nevertheless, for each n ∈ N,

μn(x, y) = χ [ 2n−1
2n ,1](x)δ[y=x−1] +

2n−1∑
m=1

χ [ 2n−m−1
2n , 2n−m+1

2n ](x)δ[y=x−1− m
2n ] + χ [0, 1

2n ](x)δ[y=x−2]

is an optimal transport plan between f + and f − for the distance d 1
2n

such that

μn ⇀ f +(x)δ[y=T (x)] weakly∗ as measures,

where T (x) = 2x − 2 is the unique monotone nondecreasing optimal transport map for the Eu-
clidean distance between f + and f −.

Let us finish this subsection with a convergence result for Kantorovich potentials.

Proposition 4.4. Let u∗
ε be a Kantorovich potential for f + − f − associated with the metric dε .

Then, there exists a sequence εn → 0 as n → ∞ such that

u∗
εn

⇀ u∗ in L2,

where u∗ is a Kantorovich potential associated with the Euclidean metric d|·|.
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Proof. It is an obvious fact that {uε} is L∞-bounded, then, there exists a sequence

u∗
εn

⇀ v in L2.

Therefore,

lim
n→+∞

∫
Ω

u∗
εn

(x)
(
f +(x) − f −(x)

)
dx =

∫
Ω

v(x)
(
f +(x) − f −(x)

)
dx.

Now, since ∫
Ω

u∗
εn

(x)
(
f +(x) − f −(x)

)
dx = sup

{
Pf +,f −(u): u ∈ Kεn

}
,

by Proposition 4.1, we conclude that∫
Ω

v(x)
(
f +(x) − f −(x)

)
dx = sup

{
Pf +,f −(u): u ∈ Kd|·|

}
.

In order to have that the limit v is a maximizer u∗ we need to show that v ∈ Kd|·| , and this follows
by the Mosco-convergence of IKε to IKd|·| (see [5]). �
4.2. Approximating the Evans–Gangbo PDE

The main task in this subsection is to show how from the solutions (u∗
ε , σ

∗
ε ) of the Euler–

Lagrange equation

f + − f − ∈ ∂IKdε (Ω)(u),

that corresponds to the maximization problem

max

{∫
Ω

u(x)
(
f +(x) − f −(x)

)
dx: u ∈ Kdε (Ω)

}
,

we can recover u∗ ∈ Kd|·|(Ω) such that

∫
Ω

u∗(x)
(
f +(x) − f −(x)

)
dx = max

{∫
Ω

u(x)
(
f +(x) − f −(x)

)
dx: u ∈ Kd|·|(Ω)

}
,

and 0 � a ∈ L∞(Ω) such that

f + − f − = −div
(
a∇u∗) in D′(Ω),

∣∣∇u∗∣∣ = 1 a.e. on the set {a > 0}.

Remember that u∗
ε ∈ Kdε (Ω) and σ ∗

ε is an antisymmetric bounded Radon measure in Ω sat-
isfying (4.2), (4.3) and (4.4). Moreover, by Proposition 4.4, after a subsequence,
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u∗
ε ⇀ u∗ in L2(Ω) as ε → 0,

where u∗ is a Kantorovich potential associated with the metric d|·|.
Let us now fix

Ω ′ � Ω ′′ � Ω (4.10)

be such that |x − y| > r = diam(supp(f + − f −)) for any x ∈ supp(f + − f −) and any y ∈
Ω \ Ω ′. By (4.3),

∫
Ω

ξ(x)
(
f +(x) − f −(x)

)
dx =

∫
Ω×Ω

ξ(x)dσ ∗
ε (x, y), ∀ξ ∈ Cc(Ω). (4.11)

Hence, for ξ ∈ C1
c (Ω), by (4.11) and the antisymmetry of σ ∗

ε , we have that

∫
Ω

ξ(x)
(
f +(x) − f −(x)

)
dx =

∫
Ω×Ω

ξ(x)dσ ∗
ε (x, y) =

∫
Ω×Ω

ξ(x) − ξ(y)

ε
d

(
ε

2
σ ∗

ε (x, y)

)
,

and ∫
Ω

ξ(x)
(
f +(x) − f −(x)

)
dx =

∫
Ω×Ω

ξ(x)dσ ∗
ε (x, y)

=
∫

Ω×Ω

ξ(x) − ξ(y)

ε
d
(
ε
[
σ ∗

ε

]+
(x, y)

)
. (4.12)

Now observe that for ϕ ∈ Cc(Ω × Ω), if φ(x, z) = ϕ(x, x + εz) and Tε(x, y) = y−x
ε

, then

∫
Ω×Ω

ϕ(x, y) d
[
σ ∗

ε

]+
(x, y) =

∫
Ω×Ω

φ
(
(π1, Tε)(x, y)

)
d
[
σ ∗

ε

]+
(x, y)

=
∫

Ω× Ω−Ω
ε

φ(x, z) d
(
(π1, Tε) #

[
σ ∗

ε

]+)
(x, z)

=
∫

Ω× Ω−Ω
ε

ϕ(x, x + εz) d
(
(π1, Tε) #

[
σ ∗

ε

]+)
(x, z).

Also, since

[
εσ ∗

ε

]+ = [
εσ ∗

ε

]+ {
(x, y) ∈ Ω × Ω: u∗

ε(x) − u∗
ε(y) = ε, |x − y| � ε

}
,

and (π1, Tε) is one to one and continuous, we have that, setting με := (π1, Tε) # [εσ ∗
ε ]+,

με = με (π1, Tε)
({

(x, y) ∈ Ω × Ω: u∗
ε(x) − u∗

ε(y) = ε, |x − y| � ε
})

,
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that is,

με = με

{
(x, z): x ∈ Ω, x + εz ∈ Ω, |z| � 1, u∗

ε(x) − u∗
ε(x + εz) = ε

}
.

Therefore, we can rewrite (4.12) as

∫
Ω

ξ(x)
(
f +(x) − f −(x)

)
dx =

∫
Ω×B1(0)

ξ(x) − ξ(x + εz)

ε
dμε(x, z). (4.13)

On the other hand, by (4.4), με is bounded by a constant independent of ε. Therefore there exists
a subsequence εn → 0 such that

μεn ⇀ ϑ weakly as measures, (4.14)

with

ϑ = ϑ
{
(x, z): x ∈ Ω, |z| � 1

}
.

Then, taking limit in (4.13), for ε = εn, as n goes to infinity, we obtain

∫
Ω

ξ(x)
(
f +(x) − f −(x)

)
dx =

∫
Ω×B1(0)

∇ξ(x) · (−z) dϑ(x, z). (4.15)

Now, by disintegration of the measure ϑ (see [2]),

ϑ = (ϑ)x ⊗ μ,

with

μ = π1 # ϑ,

that is a non-negative measure. Moreover, if we define

ν(x) :=
∫

B1(0)

(−z) d(ϑ)x(z), x ∈ Ω,

then, ν ∈ L1
μ(Ω,R

N) and we can rewrite (4.15) as

∫
Ω

ξ(x)
(
f +(x) − f −(x)

)
dx =

∫
Ω

∇ξ(x) · ν(x) dμ(x), ∀ξ ∈ C1
c (Ω). (4.16)

Let us see that

supp(μ) � Ω. (4.17)



3532 N. Igbida et al. / Journal of Functional Analysis 260 (2011) 3494–3534
The proof of (4.17) follows the argument of [1, Lemma 5.1] (we include this argument here for
the sake of completeness). In fact, let x0 ∈ supp(f + −f −) be a minimum point for the restriction
of u∗ to supp(f + − f −) and define

w(x) := min
{(

u∗(x) − u∗(x0)
)+

, dist
(
x,Ω \ Ω ′)},

where Ω ′ verifies (4.10). Then, w(x) = u∗(x)−u∗(x0) on supp(f + −f −) and w ≡ 0 on Ω \Ω ′.
On the other hand,

μ(Ω) = ϑ(Ω × R
N) � lim inf

ε→0
με(Ω × R

N) � lim inf
ε→0

ε[σ ∗
ε ]+(Ω × R

N)

= lim inf
ε→0

∫
Ω

u∗
ε(x)(f +(x) − f −(x)) dx

=
∫
Ω

u∗(x)(f +(x) − f −(x)) dx, (4.18)

and, for a regularizing sequence {ρ 1
n
}, on account of (4.16) and using that |ν(x)| � 1, we have

∫
Ω

u∗(x)
(
f +(x) − f −(x)

)
dx =

∫
Ω

(
u∗(x) − u∗(x0)

)(
f +(x) − f −(x)

)
dx

= lim
n

∫
Ω

(w ∗ ρ 1
n
)(x)

(
f +(x) − f −(x)

)
dx

= lim
n

∫
Ω

∇(w ∗ ρ 1
n
)(x) · ν(x) dμ(x) � μ

(
Ω ′′),

where Ω ′′ verifies (4.10). So, μ(Ω \ Ω ′′) = 0, and (4.17) is satisfied.
Let us now recall some tangential calculus for measures (see [7,8]). We introduce the tangent

space Tμ to the measure μ which is defined μ-a.e. by setting Tμ(x) := N ⊥
μ (x) where:

Nμ(x) = {
ξ(x): ξ ∈ Nμ

}
being

Nμ = {
ξ ∈ L∞

μ

(
Ω,R

N
)
: ∃un smooth, un → 0 uniformly, ∇un ⇀ ξ weakly∗ in L∞

μ

}
.

In [7], given u ∈ D(Ω), for μ-a.e. x ∈ Ω , the tangential derivative ∇μu(x) is defined as the
projection of ∇u(x) on Tμ(x). Now, by [8, Proposition 3.2], there is an extension of the linear
operator ∇μ to Lip1(Ω,d|·|) the set of Lipschitz continuous functions. Let us see that

ν(x) ∈ Tμ(x), μ-a.e. x ∈ Ω. (4.19)

For that we need to show that∫
ν(x) · ξ(x) dμ(x) = 0, ∀ ξ ∈ Nμ. (4.20)
Ω
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In fact, given ξ ∈ Nμ, there exists un smooth, un → 0 uniformly, ∇un ⇀ ξ weakly∗ in L∞
μ .

Then, taking ξ = un in (4.16), which is possible on account of (4.17), we obtain

∫
Ω

un(x)
(
f +(x) − f −(x)

)
dx =

∫
Ω

∇un(x) · ν(x) dμ(x),

from here, taking limit as n → +∞, we get

∫
Ω

v(x)ξ(x) · ν(x) dμ(x) = 0, ∀v ∈ D(Ω),

from where (4.20) follows. Now, if we set Φ := νμ, by (4.16) we have

−div(Φ) = f + − f − in D′(Ω).

Then, having in mind (4.19), by [8, Proposition 3.5], we get

∫
Ω

u∗(x)
(
f +(x) − f −(x)

)
dx =

∫
Ω

ν(x)∇μu∗(x) dμ(x), (4.21)

where ∇μu∗ is the tangential derivative. Then, since |ν(x)| � 1 and |∇μu∗(x)| � 1 for μ-a.e.
x ∈ Ω , from (4.21) and (4.18), we obtain that ν(x) = ∇μu∗(x) and |∇μu∗(x)| = 1, μ-a.e. x ∈ Ω .
Therefore, we have

{−div
(
μ∇μu∗) = f + − f − in D′(Ω),∣∣∇μu∗(x)

∣∣ = 1 μ-a.e. x ∈ Ω.

Now, by the regularity results given in [12] (see also [1] and [13]), since f +, f − ∈ L∞(Ω), we
have that the transport density μ ∈ L∞(Ω). Consequently we conclude that the density transport
of Evans–Gangbo is represented by a = π1 # ϑ for any ϑ obtained as in (4.14).
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