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Abstract The heat shock protein 90 co-chaperone p23 has re-
cently been shown to be up-regulated in cancer cells and down-reg-
ulated in atheroschlerotic plaques. We found that p23 is degraded
during apoptosis induced by several stimuli, including Fas and
TNFa-receptor activation as well as staurosporine treatment.
Caspase inhibition protected p23 from degradation in several cell
lines. In addition, recombinant caspase-3 and 8 cleaved p23 at
Asp 142 generating a degradation product of 18 kDa as seen in
apoptotic cells. Truncated p23 is further degraded in a proteasome
dependent process during apoptosis. Furthermore, we found that
the anti-aggregating activity of truncated p23 was reduced com-
pared to full length p23 indicating that caspase mediated p23
degradation contributes to protein destabilisation in apoptosis.
� 2005 Published by Elsevier B.V. on behalf of the Federation of
European Biochemical Societies.
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1. Introduction

The heat shock proteins (hsp�s) are molecular chaperones

that guide the folding, assembly, maturation and turnover of

many key regulators of cell growth, differentiation and sur-

vival. One of the most abundant proteins in mammalian cells

is hsp90 [1]. The formation of a dynamic complex with

hsp90, hsp70, hsp40, heat shock organising protein (hop),

p23 co-chaperone, ATP and the client protein is required for

the hsp90 chaperone activity [2]. The co-chaperone p23 enters

the hsp90 chaperone complex late in the maturation process

of the steroid hormone receptors when hsp90 binds ATP,

but no longer binds hsp70, hsp40, and hop (reviewed in [3]).

p23 stimulates the ATP-driven release of the client steroid

receptor protein from the chaperone complex [4].

Geldanamycin (GA) has been shown to destabilise hsp90

client proteins, leading to the demise of many oncogenic client

proteins in human cancer [5]. GA and its analogues competi-

tively inhibit ATP binding to hsp90 and prevent the

ATP-dependent interaction between hsp90 and p23 [6,7]. The
Abbreviations: hsp, heat shock protein; TNFa, tumor necrosis factor
alpha; hop, heat shock organising protein; RIP, receptor interacting
protein; CHIP, c-terminal of hsc70 interacting protein; CS, citrate
synthase; TPR, tetratricopeptide repeat
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co-chaperone p23 has been shown to be particularly important

for the hsp90 chaperone activity, because it stabilises the ATP-

bound form of hsp90, and it facilitates subsequent steps in the

chaperoning cycle [8]. Furthermore, p23 has been shown to be

rate-limiting for hsp90 chaperone activity during glucocorti-

coid receptor heterocomplex formation in vitro and in vivo [9].

Hsp90 independent functions of p23 have also been found.

These include passive chaperone activity [10,11] and alteration

of the ligand efficiency of steroid hormone receptors [12].

Furthermore, p23 may release active steroid hormone recep-

tors from the DNA [13]. p23 was also found to be identical

to the cytoplasmic prostaglandin E2 synthase, a glutathione

dependent enzyme in the cyclooxygenase I pathway.

Recently, p23 was described to be up-regulated in rat brain

ischemia, in human cancers and metastatic tissue, and to be

downregulated in artherosclerotic plaques and THP-1 macro-

phage cells stimulated with aggregated low density lipoproteins

[14–18]. Initially, we have shown that p23 is cleaved in the T

cell leukemia cell line (Jurkat-E6) during Fas-induced apopto-

sis, indicating that p23 may be a target for proteases activated

during programmed cell death [18]. In line with this finding,

p23 was recently shown to be cleaved by caspases 3 and 7 fol-

lowing treatment of HL-60 and NB4 cell lines with GA and

other chemotherapeutic drugs [19].

In this paper we report that apoptosis induced by extrinsic

or intrinsic pathways lead to caspase-mediated cleavage of

p23 at its C-terminal tail. This leaves a truncated p23 that

has reduced passive chaperone activity. We also observed that

truncated p23 is further degraded in a process dependent on

proteasomal activity.
2. Materials and methods

2.1. Reagents and antibodies
The mouse anti-p23 clone 22 [18] was from BD (BD Biosciences, San

Jose, FL, USA). The mouse anti-Fas antibody, clone APO-1-3, that
was used to crosslink the Fas receptor in Jurkat-E6 cells, was a kind
gift from Peter Krammer (Deutsches Krebsforschungszentrum, Hei-
delberg, Germany). The secondary goat anti-mouse immunoglobulin
(Ig)-HRP and goat anti-rabbit Ig-HRP were from DakoCytomation
(Glostrup, Denmark). Cycloheximide and citrate synthase (CS) were
from Sigma (St. Louis, MO, USA). 35S-methionine was from Per-
kin–Elmer (Belgium). TNT Wheat Germ Extract was from Promega
Corporation (Madison, WI, USA). The purified recombinant active
caspase-3 and caspase-8 were a kind gift of Henning R. Stennicke
(Novo Nordisk, Bagsværd, Denmark). The recombinant human tumor
necrosis factor-a (TNFa) was from Research Diagnostics Inc.
(Flanders, NJ, USA). The benzyloxycarbonyl-Val-Ala-Asp-fluoro-
methyl ketone (zVAD-fmk) and N-acetyl-Asp-Glu-Val-Asp-aldehyde
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(Ac-DEVD-CHO) were from Bachem AG (Bubendorf, Schwitzer-
land). PSI (carbobenzoxy-LL-isoleucyl-c-t-butyl-LL-glutamyl-LL-alanyl-LL-
leucinal) was from Affinity Bioreagents (Golden, CO, USA). GA
was from Biomol Research Laboratories (Plymouth Meeting, PA,
USA). All other reagents used were of analytical grade.

2.2. Cell culture and apoptosis induction
Jurkat-E6 (human T-cell leukaemia) and NIH3T3 cells were main-

tained in RPMI 1640 (Invitrogen Corp., Carlsbad, USA) and in
DMEM (Invitrogen Corp.), respectively. Both media were supple-
mented with 10% heat inactivated fetal calf serum (Biochrom Ltd.,
Cambridge, UK), penicillin and streptomycin (Invitrogen Corp.) and
cells were grown at 37 �C in a 5% CO2 atmosphere. Apoptosis was in-
duced in Jurkat-E6 cells by cross-linking of APO-1/CD95/Fas using
the anti-APO-1-3 antibody [20] and 10 ng/ml of protein A. NIH3T3
cells were induced to apoptosis by incubation with 20 or 50 ng/ml of
recombinant human TNFa, respectively, together with 10 lg/ml cyclo-
heximide or 0.5 lM of GA. A flow cytometry based annexin-V label-
ling assay was primarily used to monitor apoptosis.

2.3. Cell lysates, SDS–PAGE and immunoblotting
Cells were lysed in ice-cold NP-40 lysis buffer (0.5% NP-40, 50 mM

Tris, pH 7.4; 150 mMNaCl) with 0.1% protease inhibitor cocktail (Sig-
ma, St. Louis, USA) or in RIPA lysis buffer (1% NP-40, 0.1% SDS,
0.5% Na-deoxycholate, 50 mM Tris, pH 7.4; 150 mM NaCl) with
0.1% protease inhibitor cocktail. The total protein concentrations of
the cleared lysates were determined using a modified Lowry assay (Bio-
Rad DC Protein Assay) with bovine serum albumin as the standard.
Before SDS–PAGE and immunoblotting, samples were diluted with

lysis buffer to balance the protein concentration and then SDS sample
buffer was added, followed by heating to 90 �C for 2 min. SDS–PAGE
was carried out using resolving gels of 10% or 12% acrylamide with 4%
stacking gel or 10–20% gradient gels (Cambrex, Bio Science Rockland,
Inc., Rockland, Maine). The proteins were blotted onto Hybond-P
membranes (Amersham Biosciences, Uppsala, Sweden). After blocking
in Tris-buffered saline containing 5% dry skim milk and 1% Tween 20
the membranes were incubated with primary antibody for 1 h, washed
three times and incubated with the secondary HRP-conjugated anti-
body for 1 h and finally washed as above. Immunoreactivity was visu-
alised by chemiluminescence using ECL (Amersham Biosciences)
followed by exposure to Hyperfilm (Amersham Biosciences).

2.4. Site-directed mutagenesis
Human p23 was amplified by PCR from IMAGE clone 6173097 to

incorporate a Kozak sequence and restriction endonuclease sites to al-
low insertion in pcDNA3 (Invitrogen Corp.). The mutant constructs
p23-D142E and p23-D150E were prepared by site-directed mutagene-
sis using the protocol of Sawano and Miyawaki [21]. Truncated p23-
C18, lacking the last 18 codons, was prepared by PCR to incorporate
a stop codon after D142 followed by a restriction endonuclease site.
For bacterial expression of 6 ·His-tagged human p23, human p23
was amplified using PCR with primer overhangs containing the
6 · His-tag and restriction sites for incorporation into a modified pGE-
MEX-2 vector. All p23 coding regions were verified by sequencing.

2.5. p23 cleavage by recombinant caspases
p23-wt, p23-D142E, and p23-D150E were synthesised in vitro using

the TNT Coupled Wheat Germ Extract System with LL-[35S]-methio-
nine incorporation from linearised DNA templates using T7 RNA
polymerase. 1 ll of the 35S-labelled protein was incubated with differ-
ent concentrations of recombinant caspase-3 or caspase-8 in caspase
buffer (20 mM PIPES, 100 mM NaCl, 10 mM DTT, 1 mM EDTA,
0.1% CHAPS, 10% sucrose, pH adjusted to 7.2) in a total volume of
20 ll, for 1 h at 37 �C. Cleavage was terminated by addition of a con-
centrated SDS-sample buffer (250 mM Tris, pH 8.8, 10% SDS, 0.5%
bromophenol blue, 100 mM DTT, 500 mM sucrose) and incubation
at 90 �C for 2 min. Samples were separated by SDS–PAGE and gels
dried before autoradiography.
2.6. Citrate synthase aggregation assay by light scatter
p23 mediated inhibition of CS aggregation following heat induced

inactivation at 43 �C was essentially performed as described previously
[22]. Citrate synthase from porcine heart (Sigma, St. Louis, MO) was
dialysed against 50 mM Tris, pH 8.0 with 2 mM EDTA. The protein
concentration was determined by absorbance at 280 nm using a calcu-
lated absorption of 1.64 for a 1 mg/ml solution in a 1 cm cuvette at
280 nm. Purified 6 ·His-tagged p23 protein or control proteins were
added to 1500 ll of 40 mM HEPES–KOH, pH 7.5 buffer at 43 �C in
a termostated cuvette with constant stirring. Light scatter at 500 nm
was recorded using a spectrofluorometer (Shimadzu, Duisburg, Ger-
many) at 5 nm slit opening. Sampling at 2 Hz was started 4 min before
the addition of 15 ll of CS from a 30 lM stock on ice. Data collection
was continued for 40 min.

2.7. Expression and purification of His-tagged p23 proteins
Plasmids encoding recombinant His-tagged p23 and p23-C18 was

transformed into competent E. coli BL21 (DE3) (Stratagene, La Jolla,
CA, USA). Expression was induced with 1 mM IPTG for 2 h at 37 �C.
Lysates with 1 mg/ml lysozyme were prepared from the pelleted bacte-
ria, and following a freeze–thaw cycle DNA and insoluble material
were removed by centrifugation. HITrap Chelating HP 1 ml columns
(Amersham Biosciences) loaded with NiSO4 were used for purification
of the His-tagged proteins. Elution was done with 500 mM imidazole
in PBS. Fractions with His-tagged protein were pooled and dialysed
against 40 mM HEPES–KOH, pH 7.5. The concentrations of purified
His-p23-wt and His-p23-C18 were determined using the calculated
absorption of 2.04 and 1.89 for a 1 mg/ml solution in a 1 cm cuvette
at 280 nm, respectively.
3. Results

3.1. Cleavage of p23 during programmed cell death

Previously, we reported that activation of the Fas receptor

by antibody cross-linking led to the cleavage of the hsp90

co-chaperone p23 in Jurkat-E6 cells [18]. To examine whether

activation of other death receptors also leads to the cleavage of

p23, NIH3T3 cells were stimulated with TNFa and CHX.

Inhibition of translation by CHX prevents synthesis of the

anti-apoptotic caspase-8 inhibitor FLIPL, whose expression

is stimulated following the activation of NFjB by TNFa
[23]. Significant cleavage of p23 was observed in NIH3T3 cells

after TNFa stimulation in the presence of CHX, whereas CHX

or TNFa alone had no effect (Fig. 1(a)). Activation of the

intrinsic death pathway in Jurkat-E6 cells by staurosporine

(STS) resulted also in p23 cleavage (Fig. 1(b)). Furthermore,

we have observed that p23 is cleaved in HeLa cells exposed

to TNFa/CHX and in UV-exposed HUVEC cells (data not

shown). These results demonstrate that p23 cleavage occurs

independent on whether the extrinsic or the intrinsic death

pathway is activated, indicating that the degradation of p23

may be a general hallmark of apoptosis.

3.2. p23 cleavage is prevented by caspase inhibitors

To verify whether caspases are responsible for the cleavage of

p23, the broad range caspase inhibitor zVAD-fmk, or Ac-

DEVD-CHO, an inhibitor of caspase-3 like activity, were added

to Jurkat-E6 cells at the time of Fas receptor cross-linking. Both

zVAD-fmk and Ac-DEVD-CHO prevented the cleavage of p23

in Jurkat-E6 cells, whereas p23 was processed as expected in the

absence of these inhibitors (Fig. 2(a)).When the effect of zVAD-

fmk and Ac-DEVD-CHO on TNFa/CHX induced apoptosis

was examined in NIH3T3 cells, we also observed complete pre-

vention of p23 cleavage by zVAD-fmk, while Ac-DEVD-CHO

had no effect (Fig. 2(b)). This could indicate that different casp-

ases are activated in Jurkat-E6 cells during Fas induced apopto-

sis as compared to TNFa/CHX induced apoptosis in NIH3T3

cells. However, it cannot be ruled out that the NIH3T3 cells

are less sensitive to Ac-DEVD-CHO.



Fig. 2. Caspase inhibitors prevent p23 cleavage. p23 immunoblots of
Jurkat-E6 (a) and NIH3T3 cell lysates (b). At the timepoint of Fas
receptor crosslinking in Jurkat-E6 cells, or addition of 20 ng/ml TNFa
and 10 lg/ml CHX to NIH3T3 cells, the caspase inhibitors zVAD-fmk
(20 lM) or DEVD-CHO (30 lM) were added to the cells. After 4 h the
cells were harvested. SDS–PAGE and immunoblotting of p23 was
carried out as described in Fig. 1.

Fig. 3. Cleavage of in vitro synthesised p23 by recombinant caspase-3
and 8. Autoradiography of 35S-methionine labelled p23-wt, p23-
D142E, and p23-D150E after incubation at 37 �C for 1 h with 0.8 lM
recombinant caspase-3 (lanes 1), 0.8 lM recombinant caspase-8 (lanes
2) or 0.2 lM recombinant caspase-8 (lanes 3).

Fig. 1. p23 cleavage following TNFa/CHX or STS treatment. Immu-
noblotting of p23 from NIH3T3 (a) or Jurkat-E6 (b) cell lysates.
NIH3T3 cells were incubated with 20 ng/ml TNFa and 10 lg/ml
cycloheximide for 4 h, and Jurkat-E6 cells were incubated with 1 lM
STS for 4 h. Proteins (10 lg) in the cell lysates were separated by SDS–
PAGE. Following semi-dry transfer to a PVDF membrane, p23
immunoreactivity was developed using the p23 clone 22 antibody and a
HRP-conjugated goat anti mouse IgG secondary antibody. Chemilu-
minescence signals were visualised using ECL and exposure to X-ray
film. Equal gel loading was verified by Coomassie brilliant blue G
staining of the membrane (not shown).
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3.3. p23 is cleaved by recombinant caspase-3 and caspase-8 at

Asp 142 in vitro

By tryptic in-gel digest of immunoprecipitated full length

and truncated p23 followed by matrix assisted laser desorption

ionisation time of flight (MALDI TOF) mass spectrometry, we

obtained detailed information of the peptide composition and

possible caspase cleavage sites in p23 [18]. Based on this infor-

mation we predicted aspartic acids 142 and 150 as the likely

cleavage sites. To test whether caspases are able to cleave

p23 at these sites in vitro, we generated 35S-methionine labelled

p23 proteins by in vitro translation in which Asp 142 or Asp

150 were changed to Glu (D142E or D150E). The proteins

were visualised by autoradiography and their identities verified

by immunoblotting using the anti-p23 clone 22 antibody (data

not shown). In the absence of the plasmid template, p23 was

not detected in the extracts (data not shown). We incubated

p23, p23-D142E or p23-D150E with purified active recombi-

nant caspase-3 or caspase-8 and examined the cleavage of these

proteins by autoradiography. p23 and p23-D150E were

cleaved following a 1 h incubation with caspase-3 or caspase-

8, whereas p23-D142E was left un-cleaved by both caspases

(Fig. 3). These data provide strong evidence that p23 is cleaved

within the PEVD142G sequence after Asp 142 by caspase-3 and

caspase-8 in vitro, whereas these caspases do not cleave p23

after Asp 150 within the DSQD150S sequence.

3.4. GA sensitises p23 cleavage

To investigate whether blocking of the p23–hsp90 interac-

tion by GA has any effect on the cleavage of p23 during apop-

tosis in NIH3T3 cells, we examined the effect of overnight

incubation with 0.5 lM GA followed by TNFa/CHX treat-
ment. Following the 18 h GA treatment we observed the trun-

cated form of p23 in NIH3T3 cell lysates (Fig. 4(a)). GA

treated NIH3T3 cells rapidly became apoptotic following addi-

tion of TNFa in the absence of CHX, as judged by morpholog-

ical criteria (data not shown), and GA sensitised the cells to

TNFa induced p23 cleavage in the absence of CHX (Fig. 4).

The sensitisation of TNFa induced p23 cleavage by GA could

be prevented by the co-addition of the caspase inhibitor

zVAD-fmk (Fig. 4(a)). The data indicate that GA accelerates

the demise of p23 in NIH3T3 cells and p23 seems to be par-

tially protected from cleavage by the association with hsp90.

However, we cannot rule out that the sensitisation of p23

cleavage by GA is indirectly caused by down-regulation and



Fig. 4. GA accelerates p23 cleavage and PSI stabilises truncated p23. NIH3T3 cells were pre-incubated with 0.5 lMGA for 18 h, then TNFa (20 ng/
ml in lane 3 and 50 ng/ml in lane 4), 10 lg/ml CHX, or 10 lM zVAD-fmk as indicated were added and the cells harvested after 4 h (a). NIH3T3 cells
were pre-incubated with 0.5 lM GA for 18 h, then 20 lM PSI, or 20 ng/ml TNFa as indicated were added and the cells harvested after 4 h (b). SDS–
PAGE and immunoblotting of p23 was carried out as described in Fig. 1. Coomassie brilliant blue G staining of the membrane in (b) is shown to
visualise equal loading levels (c).
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inactivation of the numerous hsp90 client proteins that are

dependent on the hsp90 chaperone machinery.

3.5. Proteasome inhibition does not prevent the initial p23

cleavage

To rule out that full length p23 was cleaved by proteasome

dependent proteolysis, we tested whether the potent inhibitor

of the proteasomal chymotrypsin-like activity, carbobenzoxy-

LL-isoleucyl-c-t-butyl-LL-glutamyl-LL-alanyl-LL-leucinal (PSI) pre-

vented the GA and TNFa induced cleavage of p23 in NIH3T3

cells. Cells treated with GA were exposed to TNFa, PSI or

both. In cells treated with PSI only we did not observe cleavage

of p23 (data not shown). Addition of PSI to the GA treated

cells led to a minor accumulation of truncated p23 (Fig.

4(b)), indicating that PSI did not protect full length p23 from

degradation but accelerated the caspase-mediated initial cleav-

age of p23. Combined treatment with TNFa, PSI and GA led

to the complete disappearance of full-length p23 as did GA
Fig. 5. PSI changes the ratio between p23 and truncated p23 in favour of t
Jurkat-E6 cells in the absence (a) or presence (b) of 20 lM PSI, and ce
immunoblotting of p23 was carried out as described in Fig. 1.
and TNFa treatment, but truncated p23 consistently accumu-

lated to a greater extent in the GA, PSI and TNFa treated cells

as compared to the GA and TNFa treated cells (Fig. 4(b)). In

support of this conclusion the Coomassie brilliant blue G

stained membrane is also shown to verify equal loading levels

(Fig. 4(c)). The increased stability of truncated p23 in the pres-

ence of PSI indicates that truncated p23 is a substrate for chy-

motrypsin-like activity of the proteasome in NIH3T3 cells.

We also analysed the effect of PSI on the time course of p23

degradation in Jurkat-E6 cells following Fas receptor cross-

linking. For this purpose Jurkat-E6 cells were induced to

apoptosis in the presence or absence of PSI. Truncated p23 ap-

peared at the same time point in the absence (Fig. 5(a)) or pres-

ence (Fig. 5(b)) of PSI, but full-length p23 disappeared faster

in the presence of PSI. Importantly, the ratio of full-lenght

p23 to truncated p23 is in strong favour of truncated p23 in

the presence of PSI (Fig. 5). This observation support the sug-

gestion that truncated p23 is degraded by the proteasome.
runcated p23. Apoptosis was induced by Fas receptor crosslinking of
ll samples were harvested at different time points. SDS–PAGE and



Fig. 6. Truncated p23 has passive chaperone activity. Purified His-tagged human p23 and His-tagged human p23-C18 (18 C-terminal aa deleted)
were stained with Coomassie brilliant blue G (a). CS light scatter at 500 nm was recorded in the absence (circle) or presence of p23-wt (triangle
down), p23-C18 (triangle up), BSA (square), or IgG (diamond) at a 2-fold molar excess to CS (b). CS light scatter at 500 nm was recorded in the
absence (circle) or presence of p23-wt (triangle down) or p23-C18 (triangle up) at equal molar levels to CS (closed triangles) or at 2-fold molar excess
(open triangles) of CS (c). The arrows in (b) and (c) indicate the time of CS addition to the cuvette.
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3.6. Anti-aggregating effect of recombinant truncated p23

p23 has been proposed to be a chaperone on its own [11], as

purified recombinant p23 delays the aggregation of heat inac-

tivated CS [10,24]. Therefore, we tested whether cleavage of

p23 in the C-terminal region that removes the 18 C-terminal

aa could impair the anti-aggregating activity of the protein.

Recombinant His-p23 and His-p23-C18, that resembles the

caspase cleaved p23, were analysed by SDS–PAGE and Coo-

massie staining (Fig. 6(a)). We observed aggregation of

0.3 lM heat inactivated CS following incubation at 43 �C as

expected, and BSA or rabbit purified IgG used as controls

did not affect this aggregation of CS (Fig. 6(b)). In contrast,

addition of His-p23 or His-p23-C18 greatly reduced the speed

of CS aggregation (Fig. 6(b)), to the same extent as previously

described [24]. We did not observe any difference in the anti-

aggregating effect of the two proteins at a 1:2 molar ratio of

CS to His-p23 or His-p23-C18 (Fig. 6(b)), and higher concen-

trations of His-tagged p23 did not change the slope of the

curves (data not shown). However, when the amount of His-

tagged p23 was decreased to a molar ratio of 2:1 (CS: His-p23

or His-p23-C18), His-p23-C18 was less effective in preventing

CS aggregation when compared to the full length His-p23

(Fig. 6(c)). These data indicate that the anti-aggregating activ-

ity of p23 is diminished following removal of the 18 C-terminal

residues, although the His-p23-C18 recombinant protein still

has anti-aggregating activity that prevents the aggregation of

heat inactivated CS, when present in excess.
4. Discussion

The data presented in this paper show that the hsp90 co-

chaperone p23 is a target for caspases which are activated in

apoptosis induced by either intrinsic or extrinsic pathways.

The data also indicate that truncated p23 is a substrate for pro-

teasomal degradation. The cleavage of p23 by caspases leaves a

truncated p23 with reduced anti-aggregating activity. Other

putative functional consequences of p23 cleavage and degrada-

tion may be a decline in the cellular PGE2 synthesis, changed

transcriptional regulation by steroid hormone receptors, and

abolishment of hsp90 chaperone activity.
The degradation of p23 following activation of the intrinsic

or extrinsic apoptotic pathways could be part of the elimina-

tion of the hsp90 chaperone machinery, accelerating the death

process. Although speculative, this is in agreement with the re-

ported protective function of the hsp90 chaperone complex

during apoptosis [25]. Hsp90 was reported to repress cas-

pase-dependent apoptosis via inhibition of the formation of

a functional apoptosome through binding to Apaf-1, thereby

preventing Apaf-1 oligomerisation.

Hsp90 was described to stabilise receptor interacting protein

(RIP) which is recruited to activated TNFR-1, where RIP is

needed for activation of NFjB and c-Jun N-terminal protein

kinase upon TNFa signalling [26]. Targeting of the hsp90

chaperone by GA resulted in RIP degradation and subsequent

increased vulnerability to cell death following TNFR-1 activa-

tion due to the abolished NFjB activation. Additionally, it

was shown that destabilisation of RIP was prevented by pro-

teasome inhibition but not by caspase inhibition.

We have observed that GA sensitises NIH3T3 cells to

TNFa-induced apoptosis. In addition, we and others [19]

found that GA accelerates caspase-dependent p23 cleavage,

and therefore RIP and p23 do not seem to be degraded by sim-

ilar routes. NIH3T3 cells over-expressing hsp90 were shown to

partially suppress caspase-3 activation and combined TNFa/
CHX-induced apoptosis [27]. Since the hsp90 chaperone activ-

ity is dependent on p23, our observations indicate that target-

ing of p23 by caspases and the proteasome, is one likely route

leading to the inactivation of the hsp90 chaperone complex.

Indeed, inhibition of the hsp90 chaperone has been shown to

alter the delicate balance between cell survival and death to-

wards the latter, as is seen after long term GA treatment of tu-

mour cells. Up-regulation of p23 in tumour cells [16,18] to

increase the activity of hsp90, may be a survival strategy of

cancer cells.

The cleavage of p23 at Asp 142 during apoptosis leaves a

truncated p23 with the ultimate C-terminal sequence PEVD.

The recognition motif on hsp70 and hsp90 for tetratricopep-

tide repeat (TPR) domain containing proteins is a C-terminal

EEVD sequence. The initial cleavage of p23 during apoptosis

therefore leaves a truncated p23 that may interfere with the

binding of TPR domain containing proteins to hsp90 or hsp70.
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It has been reported that hsp90 directs client proteins to deg-

radation by the proteasome [28], but the molecular events that

convert hsp90 from a chaperone to a complex facilitating client

protein degradation is unknown. The carboxy terminus of

hsc70 interacting protein (CHIP) that binds hsp90 is an E3

ubiquitin ligase. CHIP interact with the C-terminal part of

hsp90 through its TPR and the adjacent charged domain.

CHIP has been shown to take part in protein quality control

that carry out selective ubiquitination of target proteins in

their non-native state when these client proteins are ‘‘assisted’’

by the chaperone complex [29]. The ubiquitination of client

proteins bound to the C-terminal chaperone site of hsp90 by

CHIP, results in their subsequent degradation by the protea-

some. Interestingly, the association of CHIP with the hsp90

chaperone complex has been shown to result in dissociation

of p23 from the complex [30], because p23 and CHIP compete

for binding to hsp90 even though their binding sites are differ-

ent. Therefore, the presence of p23 in non-apoptotic cells pre-

vents CHIP from associating with hsp90, whereas, p23

degradation during apoptosis could facilitate the CHIP–

hsp90 interaction. The hsp90 chaperone activity is thereby

shifted into a CHIP complex facilitating proteasomal degrada-

tion of client proteins. This may suggest that p23 plays a role

of a caspase-sensitive switch that enables targeted disruption

of hsp90 client proteins during apoptosis.
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