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The structural diversity and SAR in a series of imidazopyridazine inhibitors of Plasmodium falciparum cal-
cium dependent protein kinase 1 (PfCDPK1) has been explored and extended. The opportunity to further
improve key ADME parameters by means of lowering logD was identified, and this was achieved by
replacement of a six-membered (hetero)aromatic linker with a pyrazole. A short SAR study has delivered
key examples with useful in vitro activity and ADME profiles, good selectivity against a human kinase
panel and improved levels of lipophilic ligand efficiency. These new analogues thus provide a credible
additional route to further development of the series.

� 2013 The Authors. Published by Elsevier Ltd. Open access under CC BY license.
Malaria is among the most widespread and dangerous infec-
tious diseases of the developing world, with the protozoan parasite
Plasmodium falciparum the main causative agent. More than 3 bil-
lion people are reported to be at risk of contracting the condition,
which is now thought to be responsible for approximately 1 mil-
lion fatalities each year.1 Young children under 5 years of age
and pregnant women account for a significant proportion of re-
ported cases within large affected populations in southern Africa
and south-east Asia. Widespread resistance to many small mole-
cule malarial drugs, including the current standard-of-care Arte-
misinin-based combination therapy (ACT), has emerged,2 and this
has prompted significant investment and research into urgently re-
quired new therapies and treatments.

Among at least five calcium-dependent protein kinases (CPDKs)
expressed in Plasmodium parasites,3 Plasmodium falciparum cal-
cium-dependent protein kinase 1 (PfCDPK1)4 is known to be in-
volved in key life-cycle stages of parasite motility and red blood
cell invasion.5,6 Inhibition of the function of this enzyme is thought
to represent a novel mechanism for malaria treatment.7 We
recently reported the discovery of a series of potent and selective
imidazopyridazine inhibitors of PfCDPK1.8 These compounds, of
type 1 (Fig. 1), displayed good in vitro anti-parasite activity, cou-
pled with good selectivity against human kinases and encouraging
in vivo activity. Examples bearing phenyl, pyridine (e.g. 2) or
pyrimidine linkers (A) at the 3-position of the bicyclic scaffold all
generated important preliminary SAR and displayed a range of
ADME properties. Our goal was to further extend the structural
diversity and physicochemical profile within the series, by means
of exploring alternative heteroaromatic linking motifs. We consid-
ered that pyrazole linked analogues of general structure 3 would
be likely to offer useful ADME property benefits (such as lowering
logP and logD),9 while exploring the variation in spatial position-
ing of an appended N-substituent (corresponding to the isopen-
tylamino group in 2). Here we disclose the preparation and
evaluation of pyrazole linked analogues based on 3, and show that
these compounds display promising in vitro potency and property
profiles. These efforts also contribute significant new structure
activity information and provide viable options for future develop-
ment of the series.

We first prepared compounds in which the aminopiperidine
motif at the 6-position of the imidazopyridazine core (as in 2)
was retained, as this basic side chain had been found to provide
good affinity with the target enzyme. Hence intermediates 4 or 5
were coupled with commercially available boronate esters to af-
ford the initial targets 6–12 (Scheme 1, Table 1).10 Analogues 6
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Figure 1. General structure of imidazopyridazines 1, pyridine linked example 28

and pyrazole targets 3. A = (hetero)aromatic linker. ADME data for 2; mLogD =
measured logD; HLM, MLM = % remaining after 30 min incubation with human or
mouse liver microsomes; PAMPA passive permeability.
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and 7 bearing secondary alkyl or cycloalkyl groups showed low po-
tency at the target enzyme, coupled with modest levels (LE 6 0.30)
of ligand efficiency.11 We considered this value to be our minimum
requirement, and sought to reach the value for 2 (LE = 0.37) where
possible. A moderate 3-4 fold improvement in potency could be
made by chain extension of the pyrazole alkyl substituent in 8
and 9. However, a significant further boost in affinity was achieved
by switching to a phenyl pyrazole substituent (in 10). In contrast,
methylation of the pyrazole linker in the 5-position in completely
abrogated this potency gain, suggesting that an unmodified linker
was optimal. These observations were confirmed by preparation of
the N-demethylated variant 12 (LE = 0.37), although this change
resulted in lower passive permeability (data not shown). Further,
10 and 12 displayed good ligand efficiency and sub-micromolar
EC50 values in a P. falciparum parasite growth assay.12

These observations encouraged us to prepare additional substi-
tuted aryl pyrazole analogues, which could be accessed by follow-
ing either of two general synthetic approaches (Scheme 2).13 The
Table 1
Pyrazole N-substituent variations

Compound R1 R2 PfCDPK1 IC50 (lM) Pf EC50
a (lM)

2 — — 0.013 0.400

6 H 1.98 nt

7 H 1.50 nt

8 H 0.480 nt

a nt = not tested.

Scheme 1. Reagents and conditions: (i) PdCl2(dppf), pyrazole-4-boronic acid or
first involved preparation of discrete pyrazole boronate esters by
means of copper-catalysed N-arylation of pyrazole 13,14 followed
by regioselective bromination at the 4-position of the pyrazole
ring15 and conversion to the pinacol boronate esters of general
structure 14. Several aryl pyrazole coupling partners were pre-
pared in this way, and could be reacted with intermediates such
as 4 or 5 to provide the target compounds (see Table 2). A second
more convergent route involved reaction of 4 with N-BOC-
protected pyrazole-4-pinacol boronate; efficient in situ N-depro-
tection was observed under the Suzuki reaction conditions
employed, affording 15 as the major product. Subsequent copper-
catalysed N-arylation of this key intermediate with the appropriate
aryl bromide or iodide, followed by deprotection and methylation
of the amine side chain where necessary gave the desired products.
Benzyl analogue 20 could be prepared by N-benzylation of pyra-
zole-4-boronic acid pinacol ester,16 followed by cross coupling of
4 as before.Introduction of fluorine atoms to aromatic rings is a
well-precedented strategy in medicinal chemistry.17 This approach
can often result in stabilisation of the aromatic ring to metabolic
attack at a particular position, whilst offering control of important
physicochemical parameters. Hence three isomeric monofluor-
ophenyl analogues were prepared and evaluated; the 2- and
4-isomers (16 and 18, respectively—Table 2) were slightly more
potent than the 3-isomer 17, with all showing very similar levels
of in vitro activity against the parasite. These observations were
further probed by combining two fluorine substituents in 19, but
no additional gain in potency was obtained. Preparation of benzyl
analogues such as 20 offered the opportunity to vary the spacial
positioning of the aryl pyrazole substituent. One possible explana-
tion for the resulting lower enzyme affinity18 is that any enthalpic
gain driven by additional binding interactions had been offset by a
larger entropic contribution by the additional rotatable bond.
Returning to directly linked aryl pyrazoles, introduction of a
2-methyl substituent in 21 restored enzyme affinity, but despite
satisfactory passive permeability (PAMPA Papp 110 nm s�1) this
did not translate into a good anti-parasite EC50.

These compounds possessed measured logD values which were
broadly similar to that of 2 (mLogD 3.4). Having attained useful
levels of affinity and ligand efficiency, we wanted to make further
Compound R1 R2 PfCDPK1 IC50 (lM) Pf EC50
a (lM)

9 H 0.546 nt

10 H 0.071 0.999

11 Me 3.61 nt

12 H 0.043 0.985

pincaol ester, Cs2CO3, dioxane, 90 �C; (ii) for R = BOC: 4 M HCl, dioxane, rt.



Scheme 2. Reagents and conditions: (i) ArBr or ArI, CuI (cat), L-proline (cat), K2CO3, DMSO, 90 �C; (ii) Br2, AcOH, rt; (iii) PdCl2(dppf), B2pin2, KOAc, dioxane, 90 �C; (iv) for 4:
PdCl2(dppf), 14, Cs2CO3, dioxane, 90 �C; (v) for 4 or 5: PdCl2(dppf), 1-N-Boc-pyrazole-4-boronic acid pinacol ester, Cs2CO3, dioxane, 90 �C; (vi) 4 M HCl, dioxane, rt; (vii) HCHO,
NaBH(OAc)3, AcOH, THF, rt.
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efforts to move this key ADME parameter into more desirable
property space. To this end, heterocyclic aromatic groups were ap-
pended to the pyrazole with the aim of further lowering logD, and
thus improving the likelihood of more favourable microsomal sta-
bility (Table 2). Introduction of a 2-position heteroatom in pyridine
analogue 22 resulted in a fivefold decrease in enzyme potency,
which could be linked to repulsion between the pyridine nitrogen
Table 2
Aryl and heteroaryl pyrazole SAR

NN
H

N

Compound R1 PfCDPK1 IC50 (lM) Pf EC50
a (lM) mLogD C

16
F

0.076 0.567 3.4 2

17

F
0.138 0.394 3.1 2

18 F 0.045 0.561 2.8 2

19
N

F

0.040 0.602 2.9 2

20

N

N 0.331 nt 3.0

2

2

a nt = not tested.
and the pyrazole ring’s 5-nitrogen atom, resulting in an altered
conformation about the pyrazole-pyridine bond. This contrasted
with a small improvement in the in vitro parasite activity for 22,
which is likely to be driven by an increase in off-target activity.
These observations were supported by the 6-fluoropyridine isomer
23 and pyrimidine variants 24 and 25, which were also revealed to
be of lower enzyme potency. However, pyrazine analogue 26
N

N

NN R1

ompound R1 PfCDPK1 IC50 (lM) Pf EC50
a (lM) mLogD

1
F

0.020 1.86 2.8

2

FF
0.203 0.317 2.9

3
F

0.145 1.96 2.9

4

N

F
0.239 1.28 1.7

5

N

N
F

0.486 nt 2.0

6

N

N
0.031 0.366 2.2



Scheme 3. Reagents and conditions: (i) for X = NH: R1NH2, NMP, sealed tube, 180 �C; (ii) for X = O: R1OH, NaH, THF, 65 �C; (iii) PdCl2(dppf), 1-N-Boc-pyrazole-4-boronic acid
pinacol ester, Cs2CO3, dioxane, 90 �C; (iv) 4-fluoro-1-iodobenzene, CuI (cat), L-proline (cat), K2CO3, DMF, 120 �C; (v) NBS, dibenzoyl peroxide (cat), MeCN, rt; (vi) 4 M HCl,
dioxane, rt; (vii) for 35: HCHO, NaBH(OAc)3, AcOH, THF, rt.

Table 3
Amine side chain and scaffold SAR

Z
Y

N

N

X

NN

R

F

Compound R1-X- Y Z PfCDPK1 IC50 (lM) Pf EC50
b (lM) mLogD HLM % remc MLM % remc

29
N
H

H2N

N C 0.056 0.262 1.9 80 84

30

N
H

N
N C 0.129 0.373 2.8 42 66

31
O

N
N C 0.184 nt 2.6 61 38

34a

N
C N 0.176 3.83 1.4 80 56

35a

N
C N 0.378 3.54 2.5 55 33

a Racemate.
b nt = not tested.
c % Remaining after 30 min.
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showed improved affinity and in vitro anti-parasite activity,
although this was accompanied by low passive permeability (PAM-
PA Papp 0.5 nm s�1).

We next explored variation of the 6-amino side chain as a
means of adjusting the ADME properties of the series whilst main-
taining potency. A number of alternative basic substituents had
previously been shown to perform well in this context8 and key
examples containing these groups were prepared and evaluated
here. Regioselective nucleophilic displacement at the 6-position
of diahlogenated imidazopyridazine 27, cross coupling to give



Table 4
Selected cyanophenyl pyrazoles

N
N

N

NN R2

X
R1

Compound R1-X R2 PfCDPK1 IC50 (lM) Pf EC50
a (lM) mLogD HLM % remb MLM % remb

29
N
H

H2N

F 0.056 0.262 1.9 80 84

36 N
H

N

CN 0.854 nt 1.9 79 59

37 N
H

N CN

0.189 0.255 2.7 70 59

38
N
H

H2N

0.070 0.103 1.2 93 90

a nt = not tested.
b % remaining after 30 min.

Table 5
In vitro/ADME profiles of key compounds

Compound 12 26 29 38

PfCDPK1 IC50 (lM) 0.043 0.031 0.056 0.070
Pf EC50 (lM) 0.985 0.366 0.262 0.103
LLEa 4.5 5.6 5.3 6.0
MLM (% rem)b 74 51 84 90
HLM (% rem)b 81 66 80 93
mLogD 1.8 2.2 1.9 1.2
PAMPA Papp (nm s�1)c 23 0.5 43 nr

a LLE = pIC50 �mLogD (note that LLE for 2 = 4.5).
b % Remaining after 30 min.
c nr = no result.

Figure 2. Kinase selectivity data for key aryl pyrazoles on screening against a 73-
member human kinase panel at 1 lM concentration; green <50% inhibition; orange
50–80% inhibition; red >80% inhibition.24
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intermediates of type 28 and subsequent functionalisation of the
pyrazole motif afforded 29–31 in good yields (Scheme 3, Table 3).
Diaminocyclohexane 29 showed a good in vitro potency and met-
abolic stability profile, coupled with adequate passive permeability
(PAMPA Papp 43 nm s�1). Cyclisation to give 30 was carried out
with a view to further improving passive permeability; this was
achieved (PAMPA Papp 104 nm s�1) with only a slight drop in po-
tency, but at the expense of lower metabolic stability. The nitrogen
linker atom between the basic side chain and the bicyclic scaffold
was replaced with an oxygen atom in 31. While this compound
showed high passive permeability (PAMPA Papp 214 nm s�1), en-
zyme affinity was again slightly lower. This suggested that the
presence of an N–H donor in this position was not critical for
achieving good enzyme affinity, in line with earlier homology
modeling studies.8 A further alternative involved switching to a
cyclic carbon-linked side chain attached to a pyrazolopyrimidine
scaffold; this closely related bicyclic template was known to show
activity against this target.19 Hence compounds 34 and 35 were
prepared by the route shown in Scheme 3,20 and although modest
enzyme affinity was observed alongside excellent passive perme-
ability (34: PAMPA Papp 217 nm s�1) and good lipophilicity (34:
mLogD 1.4), in vitro anti-parasite activity and metabolic stability
were poorer.

Returning to the original imidazopyridazine scaffold, a small
number of further adjustments to the aryl pyrazole substituent
were made (Table 4). Replacement of the 4-fluoro by 4-cyano in
36 resulted in a 10-fold drop in enzyme affinity, but this was par-
tially reversed by preparing the 3-cyano analogue 37, which also
possessed good in vitro anti-parasite activity. Exchanging the
amine side chain for the diaminocyclohexane gave 38, which
showed good potency against both the enzyme and the parasite21

coupled with excellent metabolic stability.
In the context of the series as a whole, the introduction of a pyr-
azole linker, in combination with an aryl or heteroaryl substituent
and a basic amine side chain, has resulted in compounds with good
potency and physicochemical properties. They also display key
ADME properties which serve to complement analogues such as
2, where a 6-membered aryl or heteroaryl ring linker had been
used (Table 5). As expected, the pyrazole linker has contributed
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to lowering logD in these new analogues, and perhaps more
importantly has promoted a significant increase in ligand lipophilic
efficiency (LLE)22 as compared to compounds such as 2. This
parameter is well-known to offer a useful guide to potency and
lipophilicity during the progression of chemical series from hits to-
wards leads. In addition, we observed promising kinase selectivity
profiles for key examples on screening against a human kinase pa-
nel at 1 lM concentration,23 as shown in Figure 2. The aryl pyra-
zoles described here thus represent a useful additional possibility
for progressing towards alternative early lead compounds with
good development characteristics.

In summary, we have shown that replacement of a six-mem-
bered aryl or heteroaryl linker motif with a pyrazole ring is a pro-
ductive strategy for adding useful structural diversity to a series of
imidazopyridazine PfCDPK1 inhibitors. Selected examples pro-
vided a good balance of enzyme affinity and in vitro anti-parasite
activity, lipophilicity and ADME properties, and this structural
class holds promise for future development. Additional work on
further improving the ADME property profile towards additional
in vivo studies is in progress and will be reported in due course.
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