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Abstract

Diametral compression test or the Brazilian disc test is commonly used to characterise the tensile strength of brittle
materials. A general fracture model based on energy assumptions is proposed for simulation of the discrete and localised
tensile fracturing process in metal powder. The characteristics of the tensile fracture development of the central crack in
diametral tested specimen is numerically studied. The softening rate of the model is obtained from the corresponding rate
of the dissipated energy. Finite element simulations of the diametral compression test are performed with the proposed
tensile fracture model used in conjunction with a Cap model for the deformation of the powder material. The results agree
reasonably with experiments.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

A common process in powder metallurgy (PM) is cold uniaxial compaction with rigid tools and die. The
main stages in the pressing process are powder fill and transfer, compaction, axial load release, ejection, release
from the die, post-ejection and handling. Cracks can be initiated during all stages, but are primarily formed
during compaction, ejection and handling. Fracture in powder compacts can be defined as separation or frag-
mentation of a solid body into two or more parts, under the action of stress and is the result of crack initiation
and propagation. According to Zenger and Cai (1997), cracks in a green PM compact during powder pressing
are characterised by broken inter-particle bonds and/or never formed inter-particle bonds during compaction.
The main cause of broken inter-particle bonds is the pulling apart of powder particles which have been
mechanically locked during compaction. The pulling apart of powder particles is caused by tensile forces, lat-
eral shear forces, or a combination of these two. Prediction of shear crack formation using a softening material
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law for powder pressing have been performed in Coube (1998). A mesh size independent smeared crack
approach using a fracture energy dependent softening modulus is proposed in Oliver et al. (2005).

The diametral compression test, also called the Brazilian disc test, is considered to be a reliable and accurate
method to determine strength of brittle and low strength material, see Fairhurst (1964) and Hondros (1959).
The test has been used to measure the tensile strength of concrete, rock, coal, polymers, cemented carbides,
and ceramics. For powder material no extensive machining of specialised shape is needed as a powder material
can be pressed directly to a desired geometry. During the test a thin disc is compressed to failure across a
diameter. The compression induces tensile stresses, normal to the compressed diameter, which are constant
over a region around the centre of the disc. In Jonsén (2006), the fracturing process during diametral compres-
sion test is characterised for water atomised metal powder. The main results are tensile strength and fracture
energy as functions of density.

Powder material is pressure sensitive and density dependent which induces a complex material behaviour.
To numerically reproduce this behaviour the choice of constitutive model is critical. A better understanding of
the material behaviour will give advantages to other production methods and allow more extensive computer
simulations. Numerical analysis of tool kinematics, tool force, tool stresses, tool design, density distribution,
green strength, residual stresses and crack initiation etc. might reduce today’s time consuming trial and error
methods.

The aim of this work is to model tensile cracking and crack propagation in metal powder compacts during
loading. Here, the deformation and the fracturing is separately modelled. An elastic–plastic model for the
deformation of the powder material. As fracturing is a discrete and local process the fracture is modelled with
an cohesive zone model. The form of the cohesive law have been evaluated. Finite element simulations of the
fracture process are performed and compared with experimental tests.
2. Fracture process in diametral compression tests

In Jonsén (2006) diametral compression tests are performed for an iron based metal powder with a density
range of 4.90–7.35 g/cm3. The samples was 25 mm in diameter with a thickness of 5 and 10 mm. To avoid frac-
ture at the loading point the load was distributed over a small arc. The load versus displacement response in
the diametral compression tests is shown in Fig. 1 from Jonsén (2006).

The load response of the test is described in several stages, see Figs. 1 and 2. Stage 1 illustrates the initial
nonlinear elastic load–displacement relation. In stage 2, from point A, the powder shows a linear elastic rela-
tionship. In stage 3, the response diverges from the linear as a crack is initiated at B. The crack propagates
moderately through the sample and the load reaches maximum at C. In stage 4, the unstable crack growth
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Fig. 1. A typical force–displacement curve for a diametral test, from Jonsén (2006). 1 – nonlinear elastic, 2 – linear elastic, 3 – stable crack
extension, 4 – ‘unstable’ crack extension, 5 – stable loading of two halves.



Fig. 2. Crack development during the test, from Jonsén (2006). The pictures are related to different positions on the load curve in Fig. 1.
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stage, the load decreases rapidly as the crack is widened. In stage 5, from point D, the load increases again and
the behaviour corresponds to the loading of two separate disc halves. The end of test is reached at E. Close to
the loaded edge of the disc, shear band and small tensile cracks appear. The decreasing load is caused by ten-
sile cracking which is a local and discrete process driven by cohesive stresses. Timoshenko and Goodier (1970)
postulated a theoretical basis for the stress state of a circular disc subjected to two concentrated diametral
forces assuming plane stress. In the centre of the disc the stress can be described with the following relation:
Fig. 3.
cap an
rx ¼
2P
pDt

ð1Þ

ry ¼ �
6P
pDt

ð2Þ
where P is applied load, t thickness of the disc, D diameter, rx and ry normal stresses in the directions per-
pendicular and parallel to the loaded diameter. Tensile strength is calculated at point B using Eq. (1). Hondros
(1959) presented a theory for the case of a pressure applied over two diametrically opposite arcs. He also
showed that this theory agrees with Eqs. (1) and (2) in the centre of the disc. Fahad (1996) performed a finite
element analysis of both arc and point loading and showed that a good correlation exists between the solutions
for arc angles up to at least 22.90� for stresses in the centre of the disk.

3. Plasticity model

The constitutive behaviour of the powder material is governed by a Cap model presented in Jonsén and
Häggblad (2005a). To control yielding the model consists of a density dependent perfectly plastic failure enve-
lope and a hardening cap, see Fig. 3. The model is fitted to experimental data for the actual powder. Plastic
deformation follows an associative flow rule and in the principal stress space the yield functions are given by
Cap Failure
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The Cap model for powder material in principal stress space I1 �
ffiffiffiffiffi
J 2

p
. f1 is the failure envelope, f2 is the moving strain hardening

d c is the cohesion.
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f1ðI1; J 2Þ ¼
ffiffiffiffiffi
J 2

p
� a� ða1 � expða2ðqÞa3ÞÞc expðbI1Þ � hI1½ � ¼ 0 ð3Þ

f2ðI1; J 2; jÞ ¼
ffiffiffiffiffi
J 2

p
� 1

R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðX� LÞ2 � ðI1 � LÞ2

q
¼ 0 ð4Þ
where I1 is the first invariant of the stress tensor and J2 is the second invariant of the deviatoric stress tensor.
The parameter j is an internal state hardening variable and a function of the plastic volumetric strain ep

v and q
is the relative density. L is the point of intersection between the two yield surfaces and X the point of inter-
section between the hydrostatic axis and the cap function. The parameter R, which is the ratio between the
horizontal and vertical ellipse axes, defines the shape of the cap in the I1 �

ffiffiffiffiffi
J 2

p
plane and a, b, c, h, a1, a2

and a3 are material parameters.

4. Fracture material models

Linear elastic fracture mechanics is not applicable to cracking in metal powder compacts because the frac-
ture zone is large compared to the crack dimension. Hillerborg et al. (1976) proposed a nonlinear fracture
model suited for numerical analysis of crack propagation in concrete. This crack model uses ideas from the
Barenblatt (1962) theory, in which cohesive forces act on the crack planes and decrease when a crack is wid-
ening. Barenblatt proved the existence of cohesive forces acting on the crack surfaces and that the opposite
faces of a crack close smoothly at the tip of the cohesive zone, see Fig. 4.

The present crack model is an extension of the Barenblatt’s cohesive force model to nonlinear fracture
mechanics where the forces are due to macroscopic effects from microcracking in the fracture zone. The
numerical implementation uses a discrete crack model, where the forces between the nodes in the fictitious
crack follows an assumed stress crack–width relation. See Fig. 5 for an illustration of the crack model in finite
element analysis. A fracture material model with a linear stress crack–width relation Hillerborg et al. (1976) is
rnðwÞ ¼ rf 1� w
wc

� �
ð5Þ
where rn is the tensile stress normal to the crackplane, rf is the tensile strength, w is the crack–width and wc is
the critical crack–width, see Fig. 6. This model was applied by Jonsén and Häggblad (2005b) to simulate diam-
etral compression tests of metal powder compacts.

Nilsson and Oldenburg (1983) showed in an analysis of impact loading of concrete structures that the
energy dissipation in the fracture material model was essential if accurate results were to be obtained. They
considered the stress crack–width relation as a softening function with the fracture energy as one parameter
in the following model:
. The Barenblatt model with a cohesive zone ahead of the crack tip, stress distribution and crack geometry. The stress and
ement fields are finite and continuous at the crack tip.



Fig. 5. Illustration of the fictitious crack for finite element analysis.
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Fig. 6. Fracture model with a linear stress versus crack–width relationship, from Hillerborg et al. (1976).

6402 P. Jonsén, H.-Å. Häggblad / International Journal of Solids and Structures 44 (2007) 6398–6411
rnðwÞ ¼ rf exp
�rf

Gf
w

� �
ð6Þ
where the energy required to fully open a crack of unit area Gf is defined as
Gf ¼
Z 1

0

rnðwÞdw ð7Þ
Experimental observation in Jonsén (2006) shows that tensile cracking in pressed metal powder is a discrete
and localised phenomenon exhibiting a softening effect caused by decreasing cohesive stresses. A density
dependent fracture model with a potential function is proposed for metal powder applications. Below is the
model shown in its general form
rnðwÞ ¼
rf ðqÞ

1þ ðkðqÞwÞl
with l 2 Rð1;1Þ ð8Þ
where w is the crack opening, rf(q) tensile strength as function of density and rn normal stress for a crack
opening normal to the crack plane. The model has been studied for different values of the exponent l. For
a general case the evaluation of the parameter k(q) is given by Eqs. (7) and (8) as
Gf ðqÞ ¼ rf ðqÞ
Z 1

0

dw

1þ kðqÞwð Þl
¼ p

l sinðplÞ
rf ðqÞ
kðqÞ ð9Þ
and for the general case k(q) becomes
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Fig. 7. The exponential and the potential function models used in the numerical investigation.
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kðqÞ ¼ p
l sinðplÞ

rf ðqÞ
Gf ðqÞ

ð10Þ
For l = 2.0 the stress rn becomes
rnðwÞ ¼
rf ðqÞ

1þ p
2

rf ðqÞ
Gf ðqÞw

� �2:0
ð11Þ
and for l = 3.0 this stress becomes
rnðwÞ ¼
rf ðqÞ

1þ 2
ffiffi
3
p

p
9

rf ðqÞ
Gf ðqÞw

� �3:0
ð12Þ
In Fig. 7 the exponential model Eq. (6) and the proposed fracture model Eq. (8) with different values of l are
shown. By varying the exponent l the characteristics of rn can be affected. For a low value of l, the rn-function
decreases moderately from the beginning to the end of the fracture process. With a large value of l, the
rn-function is almost constant at the onset of fracture, but decreases rapidly as the function has a larger slope.
Another feature of the potential function is that the derivative of the normal stress as function of the
crack–width is zero for w = 0, see Eq. (13).
lim
w!0

drnðwÞ
dw

¼ lim
w!0
� rf ðqÞlkðqÞlwl�1

ð1þ ðkðqÞwÞlÞ2
¼ � 0

1þ 0
¼ 0 ð13Þ
5. Finite element simulation of diametral compression

Diametral compression tests of pressed powder discs are virtually reproduced, validated and compared with
experimental results. A three-dimensional finite element model of the tool and the disc where the material
response of the powder is controlled with a Cap model is exploited in the simulations. A fracture model controls
the fictitious crack with a stress crack–width relation. The force displacement response for different stress
crack–width relations at equivalent Gf are studied. In the comparison with experiments two different densities
5.65 and 7.21 g/cm3 are studied. In the experimental study by Jonsén (2006) 25 mm diameter samples with 5 and
10 mm thickness are exploited and here only t = 5 mm samples are reproduced. In Fig. 8 the symmetric finite
element mesh used in the numerical analysis containing 20 666 nodes and 17234 brick elements is shown.

The tool is considered rigid and a small finite arc with radius 12.7 mm and an angular width of 14.0�
distributes the load to the sample as in the experiments. Friction between the tool and the disc is assumed



Fig. 8. The symmetric finite element mesh used for simulations of diametral compression test of pressed powder.
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constant and set to l = 0.10. Symmetry condition is exploited to facilitate computing. Only the upper half of
the disc and half its thickness is modelled. A third symmetry plane located in the middle of the disc is exploited
to model the fracturing. Between the two halves of powder a tiebreak contact is active for nodes which initially
are in contact. The stress is limited by a yield condition rf and fracturing is a function of the crack–width
opening controlled by the fracture models proposed above.

5.1. Validation of the numerical model

A validation of the numerical model has been carried out. In this validation the proposed fracture model
Eq. (8) for l = 3 controls the fracturing which is governed by a stress crack–width relation. The force response,
crack–width, crack length and dissipated energy are checked. In Jonsén (2006) a method to estimate the dis-
sipated part of the energy W from the total energy consumed in the test is proposed. This method is also used
to check the numerical model. Three different simulations are performed for the density 7.21 g/cm3. In the first
simulation, V1, a fracture energy of Gf = 1489 J/m2 is used, in the second simulation, V2, fracture energy
Gf = 1638 J/m2, which is a 10% increase compared to V1. For V1 and V2, the tensile strength is 16.0 MPa.
The tensile strength, rf = 16.0 MPa, corresponds to the force at point B in Fig. 1 using Eq. (1). To separate
the dissipated energy from the fracturing of the central crack and the total consumed energy a simulation of
two separate halves is performed in the third simulation, V3. The fracture model is removed and the response
is from loading of two separate halves with rf = 0. In Fig. 9 the horizontal stress rx distribution is shown for
simulation V1 in the elastic range before crack initiation and at the maximum load point.
Fig. 9. The horizontal stress, rx, distribution for simulation V1 in the elastic range and at maximum load. At the maximum load the
central crack is partly opened.
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In Fig. 10 the global response from the virtual diametral compression tests V1, V2 and V3 is shown. The
response curves from V1 and V3 intersects in the point marked (*1) and the area enclosed by V1 and V3 is
defined as the dissipated energy W. The intersection point between V1 and V2 is marked (*2) in Fig. 10
and the area enclosed by V1 and V2 is DW the difference in dissipated energy between V1 and V2. Dissipated
energy from V1 is W = 0.1344 J and DW = 0.0145 J which gives D W/W = 0.108.

Another approach to determine the dissipated energy is to calculate the energy consumed in the fracture
interface. Dissipated energy W can be calculated incrementally from time n to time n + 1 from the fracture
interface as
Fig. 10
Simula
W, int

Fig
W nþ1 ¼ W n þ
Xnsn

i¼1

DF slave
i � Ddslave

i þ
Xnmn

i¼1

DF master
i � Ddmaster

i

" #
ð14Þ
Where W n is the stored energy, nsn is the number of slave nodes, nmn is the number of master nodes, DF slave
i is

the interface force between the i-th slave node and the contact segment, DF master
i is the interface force between

the i-th master node and the contact segment, Ddslave
i is the incremental distance the i-th slave node has moved

during the current time step and Ddmaster
i is the incremental distance the i-th slave node has moved during the

current time step. In Fig. 11 dissipated energy as a function of tool displacement for the central crack in sim-
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Table 1
Validation of dissipated energy W for the fracture simulations V1 and V2

Method V1 W (J) V2 W (J) Difference DW/W (%)

Global force estimation 0.1344 0.1489 10.8
Fracture interface 0.1339 0.1473 10.0
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Fig. 12. Central crack form in the centre of the crack surface and outer edge at (*1) in Fig. 10.
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ulation V1 is shown. The dissipated energy W is calculated with this method for V1 at (*1) and V2 at (*2), see
Fig. 10. The results from dissipated energy calculations using the global load response method from Jonsén
(2006) and the contact interface method Eq. (14) are shown in Table 1. Both methods give almost equal result
of the dissipated energy for V1 and V2. The table shows also that the 10% increase in Gf gives an equal in-
crease in W. This is correct as the crack surface area Af of V1 at (*1) and V2 at (*2) are nearly equal.

Before crack initiation around 80% of the vertical diameter is loaded in tension horizontally. During frac-
turing stresses are controlled and related to crack–width w by the fracture model. As the crack opens up tensile
stresses will decrease around the centre of the disc and be more concentrated where the crack is less opened.
The crack–width is checked at the intersection point between simulation V1 and V3, (*1), see Fig. 10. At the
crack tip most of the energy is left and to numerically determine the crack length and relate it to a real value
can be difficult. In Fig. 12 crack length against crack–width on the outer edge and centre of the crack surface
at (*1) is shown. The maximum crack–width is 250 lm and the crack length is around 90% of the vertical
radius at the end of the test. Of course this value depends on the tolerance that is used in the determination
of the crack length.
5.2. Results

The load response from the finite element model with a fictitious crack is studied for different fracture mod-
els. All models have equal Gf, but different functions for the stress versus crack–width relation. Input data to
the numerical model is taken from the experimental investigation carried out in Jonsén (2006). Using equal
input data as for the validation simulation V1, the density of the powder is q = 7.21 g/cm3, the fracture energy,
Gf = 1489 J/m2 and the tensile strength, rf = 16.0 MPa for all fracture models. In Fig. 13 force versus displace-
ment for the exponential model by Nilsson and Oldenburg Eq. (6) and the suggested potential model Eq. (8)
with l = 2, 3 and 9 are shown. In Table 2 the maximum and minimum loads with corresponding displacements
from Fig. 13 are shown. A high value of l gives a larger difference in the maximum and minimum load values
of the response curve after fracture. The exponential model have least difference in between maximum and
minimum followed by the potential function model with l = 2. The response difference is probably due to that
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Table 2
Maximum and minimum loads with corresponding displacement from Fig. 13

Model Max load P (kN) Displacement at PMax (lm) Min load P (kN) Displacement at PMin (lm)

Exponential-model 3.786 127.9 3.536 148.3
Pot-model, l = 2 3.743 122.4 3.403 142.0
Pot-model, l = 3 3.787 126.1 3.399 154.3
Pot-model, l = 9 3.838 125.7 3.281 155.4

The Exponential-model is the model proposed by Nilsson and Oldenburg Eq. (6) and Pot-model is the suggested potential function model
Eq. (8).
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a low value of l will have more energy left at high w values. On the other hand a high value of l will stiffen the
response as more energy is needed to open the crack at the beginning of the fracturing.

From the experimental work carried out by Jonsén (2006) two specific experiments are compared to finite
element simulations. In the first experiment the measured fracture energy is Gf = 1489 J/m2 with a tensile
strength rf = 16.0 MPa at the density q = 7.21 g/cm3, the second experimental test is carried out at the density
q = 5.65 g/cm3 and the measured fracture energy is Gf = 112 J/m2 with a tensile strength rf = 1.28 MPa. The
proposed fracture model with l = 3 and l = 9 is used for both densities. In Fig. 14 the load responses from the
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densities 7.21 and 5.65 g/cm3. The load response for the density 5.65 g/cm3 around the maximum load is shown in the magnified plot.
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experimental and finite element simulations are shown for both densities. The constitutive model for the pow-
der does not include the nonlinear elastic behaviour shown experimentally in the initial loading stage, stage 1
in Fig. 1. This nonlinear effect arises from the geometrical nonlinearity of the contact problem between the
powder particles. The nonlinear contributions are added to the displacements of the numerical simulations
in the figures so that the numerical results start at a nonzero displacement value.
5.2.1. Cut off parameter wc

According to the experimental study in Jonsén (2006), unstable crack widening occurs after the maximum
load, see stage 4 Fig. 1. This is not shown in the simulated response above. Another difference between the
force displacement response from experimental tests and numerical simulation is that the minimum value after
fraction is lower in the real test then for simulated ones. The suggested model Eq. (8) is defined for 0 6 w <1
which is unrealistic. One difference may be that there is energy left in the simulated crack even at the end of the
test. In the fracture model proposed by Hillerborg et al. Eq. (5) the fracture model works on a finite interval
0 6 w < wc where wc is a critical crack–width. By introducing wc as a cut off parameter into the suggested
model Eq. (8) the model will be switched of at a certain crack-width and the stress rn = 0 for w > wc.

In Fig. 15 the suggested model Eq. (8) with l = 3 and with wc as a cut of parameter is shown. The grey area
in Fig. 15 is the omitted fracture energy. The approach to turn off the fracture model at a critical crack–width,
violates the theory described above as Gf is a physical parameter and a cut off may decrease the value of Gf, see
Eq. (7). The stress versus crack–width relation can be compensated so that the area below the function still
represents Gf. In the comparison with experimental load response a fracture model with l = 3 is used, see
Fig. 14. Below is an example where the cut off parameter wc is included in the same model. The particle size
of the powder mix is 20–180 lm and the roughness of the fracture surface is estimated to 100–200 lm in Jon-
sén (2006). The value of the critical crack–width, wc is set to 150 lm and this reduces the fracture energy Gf to
1350 J/m2 which is about 10% lower than the original Gf. In this simulation this change in Gf is not compen-
sated for. To compare the effect of the cut off parameter wc an equal fracture model with no cut off parameter
(Gf = 1489 J/m2) is used in the reference simulation. In Fig. 16 the response from finite element simulations
using wc = 150 lm is shown together with the load response from the reference simulation and the experimen-
tal test. The response from the extended model including wc improves the load response for the model com-
pared to the experimental response, see Figs. 14 and 16. In Table 3 the maximum and minimum loads with
corresponding displacement and dissipated energies for experimental and simulated diametral compression
tests with and without cut off parameter wc are presented.

Experimental dissipated energy (*) from Jonsén (2006) is evaluated with a global method and the simulated
energy is calculated with Eq. (14). With the critical crack–width, wc included as a parameter the maximum
load response is unchanged, but the minimum load is changed. Comparison of dissipated energy in Table 3
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Table 3
Load response from an experimental diametral compression test and the potential function model l = 3, with and without cut off
parameter

Max P (kN) Displacement at PMax (lm) Min P (kN) Displacement at PMin (lm) Dissipated Energy W (J)

Experiment 3.724 140.0 2.792 168.6 0.1489 (*)
Pot-model, ref 3.787 139.1 3.399 167.3 0.1339 (*1)
wc = 150 lm 3.787 139.1 3.126 167.3 0.1313 (*1)

Experimental dissipated energy W from Jonsén (2006) (*) estimated with a global method. Dissipated energy W at equal displacement (*1)
from Fig. 10.
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for the simulation with a cut off value and the reference simulation shows that a critical crack–width of
wc = 150 lm gives a 1.9% lower value of the dissipated energy compared to a the reference simulation.
6. Discussion and conclusion

The diametral compression test is an established method for measurement of tensile strength in brittle mate-
rials such as rock, concrete, polymers, ceramics etc. During testing a load P, applied along a diameter, induces
compressive stresses. Stresses are tensile perpendicular to the compressed diameter. These tensile stresses act
until failure. Pressed and unsintered powder compacts are low strength material and the diametral compres-
sion test is an alternative method as an ordinary tensile test is almost impossible to perform and results are
given with a large uncertainty, see Dorémus et al. (2001).

An energy dependent fracture model Eq. (8) together with Eq. (10) to control dissipated energy for pressed
powder is suggested in this work. A property of the potential function is that the derivative of the normal
stress as function of the crack–width is zero for w = 0, see Eq. (13). This grants function stability at the onset
of fracture. The numerical modelling of fracture in pressed powder is based on an experimental investigation
of the diametral compression test performed for pressed water atomised metal powder in Jonsén (2006). One
of the main findings from the experimental work is that pressed powder seems to exhibit a cohesive behaviour
upon tensile loading. Experimentally determined tensile strength rf and fracture energy Gf as functions of den-
sity are also results from the study, see Jonsén (2006).

Finite element simulations of diametrically compressed discs with a fictitious crack controlled by a stress
versus crack-width relationship are performed in this work. In the simulation tensile strength rf is used as fail-
ure condition and limits the stress in the fracture interface. After crack initiation, damage is governed with the
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energy dependent fracture model. A validation using two different methods to calculate dissipated energy is
performed. Both methods show almost equal result regarding the dissipated energy. The difference between
the methods is that the global method includes plastic and elastic energy from the material and the fracture
interface method only includes the energy in the interface, work dissipated in decohesion. The validation
shows that an increase in the parameter Gf results in an almost equally corresponding increase of dissipated
energy W, see Table 1. This shows that the major part of the dissipated energy is from the work dissipated in
decohesion.

The form of the stress versus crack–width relation governs dissipation of crack surface energy and thereby
affects the load response, see Fig. 13 and Table 2. The difference between the maximum and minimum load
value after fracture increases with the exponent l. The response difference is due to dissipation of energy. A
small value of l will have more energy left at large w compared to models with larger values of l. On the other
hand a large value of l will stiffen the load response at the beginning of the fracture process as most of the
energy is consumed early in the fracturing. In comparison with experiments the proposed model Eq. (8) using
l = 3 shows a fair agreement with the maximum load while l = 9 gives a larger maximum load. Both models
gives too high values of the minimum load compared to experiments, but l = 9 gives a smaller value than l = 3,
see Fig. 14.

A modification of the proposed model is also considered and here the fracture model works on a finite inter-
val 0 6 w < wc where the critical crack–width wc is introduced as a cut off parameter, see Fig. 15. Using the
suggested model it is important not to omit too much energy as it affects the fracture energy Gf, which will
be reduced. If the cut off parameter is used in the model the omitted energy should be compensated so that
Gf is unchanged. The extended model improves the simulated load response, the maximum load is unchanged,
but the minimum load after fracture is changed, see Table 3 and Fig. 16. Using wc in fracture modelling has a
disadvantage as the critical crack–width might be difficult to determine.

The simulation results show that it is possible to simulate fracturing of pressed powder. The global method
to estimate the dissipated energy W and the fracture energy Gf from a real test seems to be a good approxi-
mation. From experiments Jonsén (2006) the length of the central crack is estimated to be fully open 80% of
the disc diameter. In the numerical simulation the crack length is around 90% of the disc diameter at the end of
the simulation, but it is only partly opened, see Fig. 12. Thus, the assumption of a crack length of 80% for the
determination of Gf is reasonably correct when comparing with the simulations. In the simulated result only
the fracturing of the central crack is modelled. This gives a higher final stiffness than for a real test where shear
bands and other types of fracture appear. One possibility would be to include effects of shear cracking in the
modelling, see Dahlblom and Ottosen (1990).
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