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Whereas some rare lipids contribute to the identity of cell organelles, we focus on the abundant lipids that
form the matrix of organelle membranes. Observations using bioprobes and peripheral proteins, notably
sensors of membrane curvature, support the prediction that the cell contains two broad membrane territo-
ries: the territory of loose lipid packing, where cytosolic proteins take advantage of membrane defects,
and the territory of electrostatics, where proteins are attracted by negatively charged lipids. The contrasting
features of these territories provide specificity for reactions occurring along the secretory pathway, on the
plasma membrane, and also on lipid droplets and autophagosomes.
Introduction
Numerous molecular processes occur at the surface of organ-

elles through the reversible association of proteins from the

cytosol. These include signal transduction cascades, nucleation

of cytoskeleton structures, formation of transport vesicles

and lipid metabolism pathways. In the latter three cases, the

organelle membrane is remodeled either physically or chemi-

cally. Not surprisingly, cells have built detectors to monitor these

changes, allowing the establishment of feedback loops to

amplify or arrest the remodeling processes. Herein, we discuss

recent examples of such detectors and molecular circuits.

Some of these examples seem unrelated: the budding of trans-

port vesicles, the phagocytosis of bacteria, and the growth of

lipid droplets are obviously very different events. Yet despite

their heterogeneity, what unifies these processes is the fact

that deceptively simple physical parameters such as mem-

brane charge density, membrane curvature, or lipid packing

can be informative inputs to create sharp temporal and spatial

responses.

Biochemistry on Lipid Membrane Surfaces
Let’s begin with some hallmarks of biochemistry on membrane

surfaces. First, lipids are small compared to proteins. In a bilayer,

a lipid exposes a surface ofz0.7 nm2. Therefore, when sitting on

amembrane, a protein generally covers several lipids: a dozen in

the case of a z20-kDa small G protein (Liu et al., 2010);

a hundred in the case of some elongated proteins (e.g., a BAR

domain) (Peter et al., 2004). Second, although some proteins

carry a domain specific for a lipid polar head group, peripheral

proteins frequently use a combination of weak binding motifs

such as lipid modifications or unfolded sequences (McLaughlin

and Aderem, 1995). Thus, the adsorption of a protein to a

membrane can seldom be reduced to a bimolecular scheme,

and binding constants are generally apparent, reflecting multiple

interactions. Third, lipids are not evenly accessible. Crossing

the layers that separate the polar head group from the acyl

chains is not trivial and in some cases the main issue is not lipid

recognition per se, but the detection of defects in the geomet-
886 Developmental Cell 23, November 13, 2012 ª2012 Elsevier Inc.
rical arrangements of lipids (Attard et al., 2000; Davies et al.,

2001). Altogether, these considerations suggest that biochem-

istry on membrane surfaces is a branch of soft matter physics:

collective effects arising from multiple low energy interactions

have at least the same importance as bimolecular stereospecific

interactions.

Recognition of Organelles by Peripheral Proteins
Cytosolic proteins are surrounded bymembrane surfaces equiv-

alent to tens of millimolar lipids. This value implies that strong

affinity is not needed; instead the main issue is specificity: how

to distinguish one membrane-bound compartment from others.

For this aim, a few general strategies have been uncovered. The

most straightforward is the specific recognition of rare lipids,

most prominently phosphoinositides, which display a decorated

polar head group and are restricted to specific compartments

(Di Paolo and De Camilli, 2006). The second strategy is kinetic

trapping. The protein visits all membranes in a reversible manner

through aweak anchor. On the proper compartment, amolecular

event occurs that dramatically decreases the protein desorption

rate. Two well-known examples are the addition of a second

lipid modification (Rocks et al., 2005; Shahinian and Silvius,

1995) and the conformational changes undergone by Arf family

G proteins (Liu et al., 2010). The third strategy, which is the

topic of this review, is the recognition of a physicochemical

parameter of the membrane such as its curvature, its electro-

statics, or lipid packing (Figure 1).

Membrane Electrostatics
In eukaryotic cells, membrane electrostatics largely depends on

phosphatidylserine (PS), a negatively charged lipid, the amount

of which ranges from a few percent in the endoplasmic reticulum

(ER) to more than 10% at the plasma membrane (PM) (Holthuis

and Levine, 2005). Remarkably, results of recent experiments

suggest that PS is mostly present on the luminal side of the

ER, an asymmetric distribution opposite to that of the PM

where PS faces the cytosol (Fairn et al., 2011; Kay et al., 2012).

Consequently, the gradient of accessible PS seen by cytosolic
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Figure 1. Three Physicochemical Parameters for Lipid Membranes
Membrane electrostatics depends on the fraction of negatively charged lipids
such as phosphatidylserine (PS) and phosphoinositides. Packing defects are
promoted by lipids with unsaturated acyl chains and/or small head group.
Membrane curvature, which also results in lipid-packing defects, can reach
values of 20 nm (radius) compared to 4 nm for membrane thickness.
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Figure 2. Two Membrane Territories
(A) Lipidomic analysis and bioprobe distribution suggest two main membrane
territories in the cell. ER and cis-Golgi membranes are poorly charged on their
cytosolic leaflet but display lipid-packing defects owing to the presence of
lipids with monounsaturated chains. Membranes from the trans-Golgi to the
plasma membrane (PM) harbor negative lipids on their cytosolic face but are
tightly packed as their lipids are more saturated.
(B) Curved membranes are present everywhere in the cell, but curvature
sensors are adapted to each territory: ALPSmotifs to early membranes as they
insert hydrophobic residues into lipid-packing defects; BAR domains to late
membranes as their positive concave face fits with negatively charged
membranes.
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proteins along membranes of the secretory pathway is probably

sharper than what is suggested by bulk measurements (Fig-

ure 2A). The highly charged phosphoinositide phosphatidylinosi-

tol(4,5)bisphosphate (PIP2) accentuates this trend because it is

restricted to the inner leaflet of the PM (Di Paolo and De Camilli,

2006). The localization of PS and phosphoinositides probably

explains the remarkable localization of simple cytosolic bio-

probes carrying a defined number of positively charged resi-

dues: they label only membranes of the late secretory pathway

and in a manner that correlates with their charge density (Yeung

et al., 2006).

As rudimentary as it may seem, electrostatics stringently

governs the localization of peripheral proteins. Variants of G

proteins are good examples of the potency of electrostatics for

precise localization. Rac1 and Rac2 are attached to the PM

and to endosomes, respectively, owing to the different number

of basic residues in their C-terminal region (Magalhaes and Glo-

gauer, 2010; Ueyama et al., 2005; Yeung et al., 2006). K-Ras,

the sole Ras variant to harbor a polybasic tail, is restricted to

the PM, whereas H-Ras and N-Ras also explore membranes

of the early secretory pathway owing to the addition of a second

lipid modification (Ahearn et al., 2012). Bacterial toxins targeting

these small G proteins also use electrostatics (Mesmin et al.,

2004).

In liposome reconstitution assays, the effect of electrostatics

can be very steep. WASP, a nucleator of actin filaments, pro-

motes actin polymerization in a narrow range of PIP2 (Papayan-

nopoulos et al., 2005) because it does not probe PIP2 through

a specific site but via a cryptic polybasic region, which, like

Velcro, binds firmly only above a threshold of negative charges.

Finally, and this is the hallmark of nonspecific electrostatic
D

interactions, binding depends on the number of positive resi-

dues, but is poorly sensitive to the exact amino acid sequence.

In conclusion, electrostatics seems to define two territories

(Figure 2A): membranes of the early secretory pathway whose

cytosolic leaflet is weakly charged (ER, cis-Golgi), and

membranes of the late secretory pathwaywhose cytosolic leaflet

is highly charged (endosomes, PM).

Lipid-Packing Defects
The concept of lipid-packing defects pertains to the idea that

biological membranes display imperfections in the geometrical

arrangement of their lipids because they contain substantial

levels of lipids whose shape departs from the canonical
evelopmental Cell 23, November 13, 2012 ª2012 Elsevier Inc. 887
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cylindrical shape (Janmey and Kinnunen, 2006; van den Brink-

van der Laan et al., 2004). For example, phosphatidylethanol-

amine (PE) and diacylglycerol are defined as conical since their

polar heads are smaller than that of phosphatidylcholine (PC).

Lipid geometry depends also on the acyl chains. An oleyl chain

(C18:1) occupies a larger volume than a palmitoyl chain (C16:0)

because the double bond induces a ‘‘kink’’ in the middle of the

chain (Figure 1). Therefore, lipid packing depends on two ratios:

the ratio between small and large polar heads and the ratio

between unsaturated and saturated acyl chains. In addition,

sterols, which pack preferentially along lipids with saturated

chains, notably sphingolipids, improve lipid packing. Under

extreme conditions, tight lipid packing leads to the formation

of a liquid-ordered phase. However, even within the classical

liquid disordered phase, variations in the packing of lipids can

be large enough to dramatically influence the binding of periph-

eral proteins (Antonny et al., 1997; Attard et al., 2000; Davies

et al., 2001; Matsuoka et al., 1998).

Our knowledge of the lipidome of most cells remains rudimen-

tary. Nevertheless, several important features are emerging

thanks to recent progress in lipid mass spectrometry. First,

when a single phospholipid type is considered, its acyl chain

composition can display significant differences depending on

the organelle. In yeast, PS and PE are more saturated at the

PM than at the ER (Schneiter et al., 1999; Tuller et al., 1999). In

neurons, polyunsaturated lipids are more abundant in the axon

than in the cell body (Yang et al., 2012). Second, manipulations

aimed at altering the ratio between conical and nonconical lipids

suggest that this ratio is tightly regulated through compensatory

mechanisms (Boumann et al., 2006). Overall lipid packing prob-

ably increases along the secretory pathway (Figure 2A) (Brügger

et al., 2000; Holthuis and Levine, 2005; Klemm et al., 2009). At

one extreme, the ER is characterized by loose lipid packing

owing to the abundance of unsaturated phospholipids and to

the scarcity of cholesterol, which is tightly regulated (Bretscher

and Munro, 1993; Radhakrishnan et al., 2008). At the other

extreme, the PM is characterized by tight lipid packing due to

the presence of saturated lipid species and a high sterol level.

The importance of loose lipid packing at the ER is beginning to

emerge. In an extensive screening, 65 fatty acids of varying

length and saturation have been tested for their ability to alleviate

ER stress in a yeast strain deficient in unsaturated phospholipid

synthesis (Deguil et al., 2011). All fatty acids could be incorpo-

rated into phospholipids, but only unsaturated fatty acids

restored growth. Interestingly, oleate, which bears a single cis

double bound, was more beneficial than fatty acids bearing

multiple cis unsaturations or a single trans unsaturation. Because

the central kink in the oleate chain creates more distortion than

any other unsaturations, deviation from the straight conforma-

tion and consequently defects in lipid packing seem critical for

some functions of the ER.

The small G protein Sar1 is a nice example of the adaptation of

a peripheral protein to loose lipid packing. Sar1 is the house-

keeping G protein of the ER. Among all small G proteins, Sar1

displays the longest and most hydrophobic sequence for

membrane attachment (Huang et al., 2001; Lee et al., 2005).

Sar1 therefore strongly contrasts with Rac1 or K-Ras, whose

binding is governed by electrostatics. Sar1 binds better to

C18:1-C18:1 than to C16:0-C18:1 phospholipid membranes,
888 Developmental Cell 23, November 13, 2012 ª2012 Elsevier Inc.
suggesting that its hydrophobic amino terminal residues insert

preferentially into a bilayer with packing defects (Matsuoka

et al., 1998).

In conclusion, the territories governed by lipid-packing defects

might mirror those defined by electrostatics: membranes of

the early secretory pathway seem to combine loose lipid

packing and low electrostatic, whereas membranes of the late

secretory pathway seem to combine tight lipid packing and

high electrostatics (Figure 2A).

Membrane Curvature
The ER is composed of a network of tubules and sheets. The

Golgi apparatus combines flat cisternae, fenestrations, tubules,

and vesicles. In endocytic organelles, outward tubulations per-

mit cargo protein recycling whereas inward invaginations

engage cargo proteins in a degradation pathway. At the PM,

flat regions coexist with invaginations and protrusions of different

sizes, shapes, and dynamics (Shibata et al., 2009). Considering

the two broad territories defined above, the question then arises

as to whether membrane curvature should be considered

independently from membrane electrostatics and lipid-packing

defects or whether these parameters combine, at least to

some extent. The two major classes of membrane curvature

sensors, the BAR domains and the ALPS motifs, suggest that

the division of territories between early and late membranes

also applies to membrane curvature detection (Figure 2B).

All BAR domains are built on the same fold resulting in a

crescent shape (Frost et al., 2009; Peter et al., 2004). BAR

domains sense, stabilize, or induce membrane curvature in a

manner that depends on protein concentration, protein self-

assembly, and additional membrane-interacting regions such

as amphipathic helices (Frost et al., 2009; Galic et al., 2012; Peter

et al., 2004). Nevertheless, what unifies all BAR domains is their

association with late membranes, such as the PM or endo-

somes. Put differently, a recurrent observation is that BAR

domains, even when overexpressed, do not associate with the

ER (Peter et al., 2004). This negative observation is informative

since ER tubules are abundant and have a diameter of about

50 nm that should fit well with the concave face of many BAR

domains (Shibata et al., 2009). However as pointed out above,

the electrostatic of the ER is probably kept at minimum due to

PS orientation toward the lumen (Fairn et al., 2011; Kay et al.,

2012). Because BAR domains interact with membranes through

a basic surface, the early secretory pathway is probably not

adapted to this family of peripheral proteins.

ALPS motifs form a family of membrane-associated amphi-

pathic helices that are defined by the abundance of serine,

glycine, and threonine residues in their polar face (Antonny,

2011; Bigay et al., 2005; Drin et al., 2007). Three salient features

characterize the binding of ALPS motifs to lipid membranes:

a sharp dependency on membrane curvature, a high sensitivity

to lipid shape (C16:0-C16:0 PC << C18:1-C18:1 PC), and no

sensitivity to lipid charge (PC = PS). Mutagenesis studies

suggest that ALPS motifs use their bulky hydrophobic residues

to detect large lipid-packing defects that arise from the con-

junction of positive curvature and the presence of lipids with

conical shape but essentially ignore membrane surface charge

(Drin et al., 2007). Thus, ALPS motifs do not sense membrane

geometry per se but the stress corresponding to the mismatch
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between the actual curvature of the membrane and the sponta-

neous curvature of its cytosolic leaflet (the curvature that this

leaflet would adopt at equilibrium according to its composition

and without the constraint of being associated with another

leaflet; for discussion on the links between spontaneous

curvature, curvature stress, lateral pressure profile, and lipid-

packing defects see Attard et al., 2000; Davies et al., 2001; Jan-

mey and Kinnunen, 2006; van den Brink-van der Laan et al.,

2004; Antonny, 2011). ALPS motifs have been found in proteins

associated with the nuclear envelope (Nup133), the ER (Atg14L/

BARKOR), and the cis-Golgi (ArfGAP1, GMAP-210), and thus

seem adapted to membranes of the early secretory pathway

(Cardenas et al., 2009; Doucet et al., 2010; Fan et al., 2011;

Levi et al., 2008).

In conclusion, examination of the general features of the two

main classes of membrane curvature sensors, the BAR domains

and the ALPS motifs, further underlines the general division of

territories between membranes of the early secretory pathway

and membranes of the late secretory pathway. The code used

in early membranes seems to be curvature and lipid-packing

defects whereas the code used in late membranes is rather

curvature and electrostatics.

Changing Membrane Properties
So far, we have considered three parameters and argued that

they are tuned in such a way that they contribute to the identity

of cellular organelles. However, cellular membranes are not fixed

entities because they exchange materials and can maturate

(Bonifacino and Glick, 2004). Necessarily, these processes are

accompanied by changes in the bulk properties of the lipid

bilayer. On the one hand, these changes can be interpreted

from the point of view of homeostasis: a way to maintain

compartment identity, which otherwise would vanish due to

membrane budding and fusion events. On the other hand, the

examples presented below suggest that membrane electro-

statics, lipid packing, and membrane curvature are active

parameters in the sense that they contribute to the self-organiza-

tion of reactions at the surface of organelles.

Phagocytosis: Decrease in Electrostatics Drives
Membrane Maturation
Phagocytosis is the way specialized cells capture pathogens to

eliminate them. The membrane surrounding the pathogen

derives from the PM and initially displays its bulk features, with

charged lipids (PS and PIP2) enriched in the cytoplasmic leaflet

promoting actin polymerization for pathogen engulfment (Yeung

et al., 2009). Then the phagosome undergoes a maturation

process that leads to its fusion with endosomal and lysosomal

compartments and finally pathogen degradation.

Owing to their large size, phagosomes are ideal structures

for following membrane maturation under a light microscope.

With the parallel development of lipid probes (some specific

and some adapted to membrane electrostatics), a clear picture

is now emerging (Roy et al., 2000; Yeung et al., 2006, 2009).

Once the phagosome membrane is detached from the PM,

an abrupt decrease in PIP2 is observed, allowing actin depoly-

merization (Figure 3A). Yet, the phagosome remains partially

charged due to the persistence of PS. This sequential decrease

in electrostatics favors a well-ordered change in the repertoire
D

of associated small G proteins and correct delivery to the lyso-

some (Magalhaes and Glogauer, 2010; Ueyama et al., 2005;

Yeung et al., 2009). Not surprisingly, pathogens have developed

survival strategies to resist degradation. Salmonella typhimurium

injects a phosphoinositide phosphatase (SopB) whose action

reduces both the PIP2 and PS levels. Consequently, the proper

sequence of small G protein recruitment cannot occur and the

Salmonella-containing vacuole escapes lysosomal degradation

(Bakowski et al., 2010).

Feedback Loops Linking Membrane Curvature
and Vesicle Biogenesis
The budding of coated vesicles is one of the best-studied

processes of membrane traffic (Bonifacino and Glick, 2004). In

contrast to phagocytosis, it involves huge changes in curvature

because the membrane ultimately forms a vesicle of z30 nm

in radius compared to mm for phagosomes. This shape is the

result of the mechanical actions of cytosolic proteins that

together form a polymerized spherical coat. After vesicle forma-

tion, the coat starts to detach, at least partially, and subsequent

steps proceed up to membrane fusion.

The COPI coat is attached to Golgi membranes by Arf1-GTP

(Yu et al., 2012); the AP2-clathrin coat is attached to the PM by

PIP2 (Jackson et al., 2010). Although a small G protein and

a phosphoinositide are anything but similar, a common basis

unites these modes of attachment. The Arf1-binding sites on

the COPI coat are spatially related to the PIP2-binding sites on

the AP2 complex (Jackson et al., 2010; Yu et al., 2012). Further-

more, the parallel between the two systems extends to their

regulation (Figure 3B). Elimination of Arf1-GTP by the GTPase

activating protein ArfGAP1 and PIP2 hydrolysis by the phospha-

tase synaptojanin are both stimulated by membrane curvature

(Bigay et al., 2003; Chang-Ileto et al., 2011). However, the

analogy here is purely functional: the response of ArfGAP1 to

membrane curvature relies on its ALPSmotifs, whereas synapto-

janin seems to respond to membrane curvature by interacting

with the BAR-containing protein endophilin (Bigay et al., 2005;

Chang-Ileto et al., 2011; Milosevic et al., 2011). These different

mechanisms reflect the contrasting properties of the mem-

branes on which the two coats act.

Although the reported effect of membrane curvature on the

synaptojanin-endophilin tandem is modest compared to that

observed on ArfGAP1, recent studies suggest possibilities for

sharper regulation. Structural analysis of endophilin bound to

membrane tubes indicates that its SH3 domain undergoes

a monomer to dimer transition, which depends very precisely

on the tube radius (Mim et al., 2012). Because endophilin recruits

synaptojanin through its SH3 domain, the accessibility of this

domain could serve to communicate the curvature state of the

underlying membrane in a precise manner (Mim et al., 2012).

Testing this hypothesis seems possible thanks to the develop-

ment of micromanipulation assays allowing fine adjustment of

membrane tube radius (Roux et al., 2010; Zhu et al., 2012).

Barkor: Interplay between Curvature and PI(3)P
Synthesis for Autophagosome Formation
The autophagosome is a cup-shaped membrane compartment

that engulfs organelles and part of the cytosol in a nonselective

manner, thereby allowing cells to reduce their volume under
evelopmental Cell 23, November 13, 2012 ª2012 Elsevier Inc. 889
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Figure 3. Cellular Events Controlled by
Changes in the Physical Chemistry of
Membranes
(A) During phagocytosis, charged lipids are initially
mobilized, but once the phagosome detaches,
membrane charge steadily decreases up to
degradation by lysosomes. The pathogen effector
SopB eliminates negatively charged lipids, pre-
venting phagosome maturation.
(B) Clathrin and COPI coated vesicles display high
curvature, which favors the recruitment of syn-
aptojanin via endophilin, which contains a BAR
domain, or of ArfGAP1, which contains ALPS
motifs. Synaptojanin and ArfGAP1 eliminate PIP2

and Arf1-GTP, respectively, contributing to coat
destabilization.
(C) Autophagosome formation depends on the
recruitment of a PI3-kinase. Via an ALPS C-ter
motif, Barkor/Atg14(L) specifically targets the PI3
kinase complex to curved ER, promoting elonga-
tion of the phagophore and accumulation of PI3P.
(D) During lipid droplet expansion, CCTa, a key
enzyme for phosphatidylcholine (PC) synthesis,
detects the deficit in phospholipid in the droplet
monolayer.
(E) Ca2+ decrease in the ER induces STIM1 oligo-
merization. The polybasic end of STIM1 interacts
with negative charges at the PM promoting ER-PM
bridges and activation of a Ca2+ channel.
(F) The lipid transfer protein Osh4 might interact
alternatively with loosely packed membranes
to extract sterols, and with negatively charged
membranes, to deliver sterol and extract PI(4)P.
Red and blue lines represent inner leaflets rich
in negative lipids or in lipid-packing defects,
respectively.
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starvation conditions (Mizushima et al., 2011). The recent identi-

fication of an ALPS motif in a protein complex involved at early

stages of autophagy suggests an interesting feedback loop to

initiate autophagosome formation (Fan et al., 2011). The mam-

malian protein Atg14L/Barkor forms a complex with three other

proteins including a PI3-kinase (Matsunaga et al., 2010). Through

its C-terminal ALPS motif, Barkor seems to recognize curved

regions of the ER, hence triggering the unusual synthesis of

PI(3)P in this compartment (Fan et al., 2011). Because Barkor

also binds PI(3)P, the dual detection of positive curvature and

PI(3)P may create a positive feedback loop for PI(3)P synthesis

and contribute to the emergence of an atypical compartment,

both in shape and in lipid composition, from the ER (Figure 3C).

Note that here electrostatics increases and thus follows the

opposite trend as in the case of phagocytosis. These findings

should help to clarify the origin of the autophagosome mem-

brane,whichhasbeenheavily discussed (Mizushimaet al., 2011).

Lipid-Packing Defects as an Index of Lipid Droplet
Expansion
To store carbon sources in the densest way, cells use lipid

droplets: a core of triglycerides and sterol esters surrounded
890 Developmental Cell 23, November 13, 2012 ª2012 Elsevier Inc.
by a monolayer of phospholipids and

specific peripheral proteins (Wolins et al.,

2006). One interesting feature of the lipid

droplet monolayer is its composition: it

contains mostly PC and PE, whereas PS

is barely detectable (Bartz et al., 2007).
This composition fits with the hypothesis that lipid droplets

emerge from the ER. In this scenario, a lens of triglycerides

and sterol esters forms within the ER bilayer and bulges toward

the cytoplasm (Figure 3D). Consequently, the droplet monolayer

arises from the cytoplasmic leaflet of the ER, which is poor in

PS (Fairn et al., 2011; Fan et al., 2011).

Lipid droplets change their volume depending on triglyceride

synthesis or consumption, hence requiring adjustment of the

monolayer surface. A recent study suggests an elegant feed-

back mechanism for such an adjustment (Krahmer et al.,

2011). Phosphocholine synthetase (CCTa), the rate-limiting

enzyme of phosphatidylcholine synthesis, is recruited to lipid

droplets in the growing phase, thus allowing the production of

more PC molecules to surround the oil core. CCTa contains

a C-terminal amphipathic helix, which seems to sense the

decrease in packing in the phospholipid monolayer that accom-

panies droplet expansion. Because this helix was shown to bind

preferentially to lipid bilayers displaying a high PE/PC ratio

(Attard et al., 2000; Davies et al., 2001), CCTa seems to act

as a general sensor of PC deficiency, either in a droplet mono-

layer or in a lipid bilayer. However, the conformation of phos-

pholipids above an oil core may be quite different from that of
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phospholipids in a bilayer and the mechanisms by which peri-

pheral proteins selectively bind to lipid droplets remain largely

mysterious.

Membrane Contact Sites: When Lipid Territories Meet
Besides exchanging material through tubules and vesicles,

cellular compartments make specific contacts by tightly

apposing their membranes (Carrasco and Meyer, 2011; Lev,

2010). From the physicochemical perspective, contact sites

are interesting as they join membranes displaying different bulk

properties. The ER is almost systematically involved, contacting

organelles as different as mitochondria, vacuoles, the trans-

Golgi and the PM.

The yeast transmembrane protein Ist2p provides a straight-

forward mechanism for membrane contact site formation

(Ercan et al., 2009; Lavieu et al., 2010). Although biochemical

fractionation indicates that this protein is retained at the ER,

it also decorates the PM when observed with light microscopy.

This deceptive localization results from the engagement of its

cytosolic basic domain with anionic lipids, notably PIP2, of

the PM, which leads to the formation of bridges between the

cortical ER and the PM (Ercan et al., 2009). Another related

example is the STIM1-Orai1 tandem. STIM1 is an ER trans-

membrane protein that senses depletion of calcium in the

lumen. Upon calcium drop, STIM1 oligomerizes, invades the

cortical ER, and activates the PM calcium channel Orai1 in

a process referred to as store-operated calcium entry (Carra-

sco and Meyer, 2011). The formation of the STIM1-Orai1

complex seems to takes advantage of the negative charge of

the PM: oligomerization of STIM1 leads to the formation of

a cytosolic patch very rich in positive charges and sufficient

to surpass the threshold for efficient contact with PIP2 at the

PM (Figure 3E).

Membrane contact sites are also important for lipid transport

between organelles. Proteins such as CERT (ceramide traf-

ficking protein), FAPP (four-phosphate adaptor protein), and

ORPs (OSBP related proteins) contain a domain that can extract

a specific lipid and additional domains or motifs to tether the ER

to the trans-Golgi (D’Angelo et al., 2007; Hanada et al., 2003;

Im et al., 2005; Lev, 2010). Although in most cases the details

of the lipid exchange reaction remain to be investigated and

the function of these proteins may go beyond exchanging lipids

(Mousley et al., 2012), a few reconstitution experiments suggest

an exquisite adaptation to membrane interfaces. In vitro, the
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yeast protein Osh4 exchanges sterol for

PI(4)P between liposomes (de Saint-

Jean et al., 2011). The rate of lipid ex-

change is optimal when the sterol donor

liposomes are poorly packed and the
acceptor liposomes are charged and more strongly packed (de

Saint-Jean et al., 2011). The alternative use of an ALPS motif

(Drin et al., 2007) and basic surfaces (Im et al., 2005) might allow

Osh4 to rapidly land and take off from each membrane type,

hence optimizing lipid transport. Along the same line, CERT

extracts preferentially ceramide from poorly packed neutral

liposomes (Tuuf et al., 2011).

The finebalancebetweenelectrostatics, lipid-packingdefects,

and curvature might also control other complex reactions

involving two different membranes (Drin et al., 2008; Kunding

et al., 2011; Park et al., 2012).

Dangerous Combinations
The aforementioned examples illustrate the power of combining

surface charge, curvature, and defects in lipid packing to control

biochemical reactions on membrane organelles. Yet, certain

combinations seem to predominate. Let’s examine other formal

cases and discuss their relevance in a cellular context (Figure 4).

The first extreme combination is when a membrane displays

a high density of anionic lipids together with large lipid-packing

defects. In the test tube, this situation is mimicked by pure

C18:1-C18:1 PS (DOPS) liposomes where every lipid carries

a negative charge and two kinked acyl chains. Experimentally,

many peripheral proteins bind avidly to such liposomes. For

example, the seemingly innocent replacement of POPS by

DOPS causes Osh4 to remain associated to the liposomes

after sterol extraction, thereby preventing fast sterol transport

(de Saint-Jean et al., 2011), and can even cause liposome

aggregation when all Osh4 membrane determinants are simul-

taneously engaged with this too-accommodating membrane

surface (Schulz et al., 2009).

The opposite case is when the bilayer contains no anionic

lipids and is tightly packed. In the presence of high amounts of

cholesterol, lipids with saturated chains form a liquid-ordered

(‘‘raft’’) phase. Although this phase is assumed to favor

protein-signaling platforms (Lingwood and Simons, 2010), the

majority of intracellular peripheral proteins tested to date do

not readily partition into such domains in vitro (Silvius, 2005).

This is evidently the case for proteins that adsorb to membranes

through electrostatics, but this exclusion also applies to other

peripheral proteins. The small G protein Arf partitions exclusively

to the disordered phase when incubated with giant liposomes

exhibiting phase separation, suggesting that tight packing in

the liquid-ordered phase prohibits amphipathic helix insertion
ovember 13, 2012 ª2012 Elsevier Inc. 891
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(Manneville et al., 2008). Neutral liquid-ordered domains seem

adapted to the penetration of dual lipid modifications such as

those of GPI-anchored proteins (Silvius, 2005), but this situation

applies only to the external leaflet of the PM.

Altogether, and as far as the cytosolic leaflet of membranes

is concerned, the division of territories between loose lipid

packing and electrostatics seem advantageous because it pro-

vides both a broad level of specificity and a means of regulation

(Figure 4).

Limits of the Two Territories Model and Perspectives
We have put the emphasis on the separation between early and

late membranes for the association of peripheral proteins from

the cytosol. This separation is also important when considering

the distribution of transmembrane proteins, as well as other

general aspects of membrane traffic (Lippincott-Schwartz and

Phair, 2010; Saraste and Goud, 2007; Sharpe et al., 2010).

However, the role of membrane asymmetry in mechanisms

such as organelle shaping and sorting of luminal proteins

remains in most cases to be explored. In this last paragraph

we will evoke the merits and limitations of the two territories

model, and suggest some general lines for future works.

The development of bioprobes with a defined number of posi-

tive charges gives an illuminating picture of the electrostatics of

cell membranes (Yeung et al., 2006). For lipid-packing defects,

we are far from having a similar level of accuracy. First, lipid

packing is a more elusive concept and only recent atomic

simulations start depicting lipid-packing defects in a quantitative

manner (Cui et al., 2011; van den Brink-van der Laan et al., 2004).

Second, the influence of these defects on the functioning of

machineries acting on early membranes, notably the ER, in

most cases remains to be studied (however, see Fu et al.,

2011; Matsuoka et al., 1998; Nilsson et al., 2001). Lastly, cellular

approaches will require the development of bioprobes of varying

hydrophobicity to map the distribution of membranes with loose

versus tight lipid packing. For this aim, amphipathic helices seem

promising because their elongated structure is adapted to probe

the membrane interface in a repetitive manner (Antonny, 2011).

In a recent study, two amphipathic helices with the most con-

trasting hydrophobic and polar faces have been compared for

their localization in yeast cells (Pranke et al., 2011). The helix

with bulky hydrophobic residues (an ALPS motif) decorated

small vesicles of the early secretory pathway, whereas the helix

with small hydrophobic residues but a highly charged polar face

(from a-synuclein) decorated small endocytic vesicles. This

distribution seems driven by protein-lipid interactions because

the two helices are heterologously expressed and the ALPS

localization remains the same after sequence inversion. In the

future, other amphipathic helices with peculiar features should

help to evaluate the balance between surface charge and

lipid-packing defects on various organelles. Among the most

interesting helices are those of perilipins, which decorate lipid

droplets (Bulankina et al., 2009); synapsin, which binds to

synaptic vesicles (Krabben et al., 2011); Hsp12, which binds

to the PM under stress conditions (Welker et al., 2010); and

the yeast lipin, Pah1p, which associates with the nuclear/ER

membrane (Karanasios et al., 2010).

The contrasting physical chemistry of early versus late

membranes has an obvious corollary: the key role of lipid
892 Developmental Cell 23, November 13, 2012 ª2012 Elsevier Inc.
metabolism at the Golgi apparatus (Bankaitis et al., 2012; Lippin-

cott-Schwartz and Phair, 2010). Two reactions are particularly

interesting: phospholipid flip-flop, to generate asymmetry, and

phospholipid remodeling, to change acyl chain composition

(Figure 4). Several P4-type ATPases have now been identified

that promote PS and other phospholipid translocation from the

lumen to the cytoplasmic leaflet of the TGN or the PM (Alder-

Baerens et al., 2006; Hua et al., 2002). Their activities help to

explain why some mechanisms of membrane shaping at the

trans-Golgi are reminiscent of those occurring at the PM,

involving not only Arf and coats but also actin, Rac, and charged

lipids (Anitei et al., 2010; Koronakis et al., 2011; Wang et al.,

2003). Phospholipid remodeling is a long known reaction in

which a phospholipase and an acyltransferase act sequentially

to replace the esterified acyl chains on the phospholipid glycerol

backbone; for example, to convert a C18:1-C18:1 into a C16:0-

C18:1 lipid. The recent cloning of many acyl transferases and

the realization that some members reside at the Golgi suggest

interesting possibilities for their role in changing membrane

properties across this organelle (Schmidt and Brown, 2009;

Shindou et al., 2009; Yang et al., 2011).

So far, we have avoided discussing two lipids whose subcel-

lular distribution is difficult to integrate in a general scheme.

These are phosphatidic acid (PA) and phosphatidylinositol (PI).

Both are anionic and are present at the ER, thus posing the

question of their contribution to the electrostatics of this organ-

elle. PA is a key intermediate in the synthesis of most lipids but

its steady state level at the ER seems very low, suggesting no

major contribution to general electrostatics. Instead, the level

of PA serves as an index to control many lipid metabolism path-

ways (Loewen, 2012). In contrast to PA, PI is an abundant lipid.

However, recent studies suggest that PI is not evenly present

in the ER but, instead concentrates at specific subregions

(Kim et al., 2011). Together with the luminal distribution of PS

(Fairn et al., 2011; Kay et al., 2012), this finding reinforces the

idea that the surface of most of the ER is in fact quite neutral

and, as such, strongly contrasts with the PM inner leaflet.

Reducing the membrane complexity to two main membrane

territories is of course an oversimplification. It does not account

for the heterogeneities that exist within a continuous membrane

andwhich involve specific protein-lipid interactions, lipid domain

formation, restricted membrane diffusion by fences, and local-

ized enzymatic activities. However, the two territories model is

flexible enough to incorporate such variations.
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