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Abstract

Every set X with a binary operation satisfying (x · y) · (x · z) = (y · x) · (y · z) corresponds to a solution
of the quantum Yang–Baxter equation if the left multiplication is bijective [W. Rump, A decomposition
theorem for square-free unitary solutions of the quantum Yang–Baxter equation, Adv. Math. 193 (2005)
40–55]. The same equation becomes a true statement of propositional logic if the binary operation is in-
terpreted as implication. In the present paper, L-algebras, essentially defined by the mentioned equation,
are introduced and studied. For example, Hilbert algebras, locales, (left) hoops, (pseudo) MV-algebras, and
l-group cones, are L-algebras. The main result states that every L-algebra admits a self-similar closure. In
a further step, a structure group G(X) is associated to any L-algebra X. One more equation implies that the
structure group G(X) is lattice-ordered. As an application, we characterize the L-algebras with a natural
embedding into the negative cone of an l-group. In particular, this implies Mundici’s equivalence between
MV-algebras and unital abelian l-groups, and Dvurečenskij’s non-commutative generalization.
© 2008 Elsevier Inc. All rights reserved.
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Introduction

For a set X with a binary operation X × X
.→ X, let M(X) denote the free monoid over X

(with product written as juxtaposition). We show (Theorem 2) that the binary operation · admits
a unique extension to M(X) such that the equations

ab · c = a · (b · c), (A)
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a · bc = (
(c · a) · b)

(a · c) (S)

and 1 · a = a hold for all a, b, c ∈ M(X). We prove that if the equation

(x · y) · (x · z) = (y · x) · (y · z) (L)

holds for all x, y, z ∈ X, it carries over to M(X).
Eq. (L) occurs in two rather different contexts. In [34], we call X a cycle set if it satisfies (L)

so that the left multiplication y �→ x · y is bijective for all x ∈ X. By [34], Proposition 1, cycle
sets correspond to a class of solutions of the quantum Yang–Baxter equation. On the other hand,
Eq. (L) arose in algebraic logic [7,35]. If the elements of X are viewed as propositions, and x · y
is interpreted as implication x → y, Eq. (L) becomes a true statement in classical or intuitionistic
logic, as well as in other logical systems like Łukasiewicz’ infinite-valued propositional logic
[10,11].

Algebraically, the logic of Łukasiewicz is represented by MV-algebras [10,22]. D. Mundici
[29] proved that the category of MV-algebras is equivalent to that of abelian l-groups (the “l”
stands for “lattice ordered”) with a strong order unit. An extension to non-commutative l-groups
was pursued by several authors [9,16,19,20,26,32,33] (see also Bosbach [7] who studied similar
questions two decades earlier). These papers deal with two negations (or two types of logical
implication) which causes some complication. We will show that one implication suffices, and
that few concepts are well-suited to characterize pseudo MV-algebras and other logical systems
embeddable into an l-group. In this sense, the occurrence of two implications signifies that an l-
group includes a dual pair of logical systems with implication according to the natural connection
between its positive and its negative cone. An analogous phenomenon arises in the theory of cycle
sets (see [34], Proposition 2).

Assume that X satisfies (L). We call an element 1 ∈ X a logical unit if 1 · x = x and x · x =
x · 1 = 1 holds for all x ∈ X. Such an element 1 is necessarily unique and represents a true
proposition. If 1 ∈ X exists and x · y = y · x = 1 implies x = y (i.e. equivalent propositions are
equal), we call X an L-algebra. It will be our main concern in this article to associate a structure
group G(X) to any L-algebra X and analyse the case where G(X) is an l-group. Moreover, it
will turn out that the concept of L-algebra is fundamental in the sense that various algebraic
structures, even with several operations like Heyting algebras, (one-sided) hoops, (pseudo) MV-
algebras or l-group cones, are definable as L-algebras (so that the other operations are uniquely
determined by the implication).

In Section 1, we show that surjective morphisms between L-algebras can be described by
ideals. We call an L-algebra X self-similar if every left multiplication y �→ x ·y maps the downset
↓x bijectively onto the whole X. For a self-similar L-algebra X, these bijections ↓x

∼→ X are
isotone with respect to the partial order x � y :⇔ x · y = 1. We show that self-similarity of an
L-algebra can be described by equations, e.g., by the above Eqs. (A) and (S) together with the
hoop equation

(a · b)a = (b · a)b. (H)

This means that a self-similar L-algebra (X, ·) has a unique operation (x, y) �→ xy such that (A),
(S), and (H) hold (Theorem 1).

We prove that every L-algebra X admits a minimal embedding into a self-similar L-algebra
S(X), the self-similar closure of X. Furthermore, S(X) is a ∧-semilattice with a ∧ b = (a · b)a.
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We obtain S(X) from M(X) by factoring out a certain congruence relation. Since by virtue
of (H), S(X) satisfies the left Ore condition, it has a quotient group G(X), and there is a natural
map

q : X → G(X).

We call G(X) the structure group of X.
Thus every L-algebra X is related to a group G(X). The map q has a logical meaning, namely,

q(x) = q(y) holds if and only if x and y are equipollent in S(X). If X has a smallest element 0
(= “false”), equipollence in X means that x and y have the same negation: x · 0 = y · 0. Note,
however, that S(X) cannot have a smallest element unless X = {1}.

Besides the self-similar closure, a second main concept is necessary to relate L-algebras to
l-groups. We call an L-algebra X semiregular if the equation

(
(x · y) · z) · ((y · x) · z) = (

(x · y) · z) · z (R)

holds in X, or equivalently, if S(X) satisfies

a(b ∧ c) = ab ∧ ac.

We show that the structure group G(X) of a semiregular L-algebra X is an l-group (Theorem 4),
so that q induces an L-algebra morphism X → G(X)− into the negative cone of G(X). In this
way, we obtain a characterization of L-algebras isomorphic to or embeddable into the negative
cone of an l-group. In particular, we characterize L-algebras equivalent to pseudo MV-algebras
[16,20].

Using the concept of self-similarity, the commutative case becomes particularly simple. First,
the inequality � in (R) is equivalent to

x · (y · x) = 1 (K)

and implies that G(X) is a partially ordered group. Now S(X) is commutative if and only if X

satisfies the identities (K) and

(x · y) · y = (y · x) · x

known from the theory of BCK-algebras [25]. Such L-algebras X coincide with those which can
be embedded into the negative cone of an abelian l-group, and then G(X)− coincides with S(X).
In particular, this gives a new method to relate an MV-algebra X to an abelian l-group (cf. [29]).
If X is Boolean, the embedding X ↪→ G(X) is uniquely determined by the l-group G(X) which
is a Specker group in this case.

We briefly discuss Hilbert algebras as special L-algebras. For example, the open sets of a topo-
logical space X form a Hilbert algebra O(X). We characterize the semiregular Hilbert algebras,
i.e. those for which the structure group is an l-group.
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1. L-Algebras

Let (X,→) be a magma, i.e. a set X with a binary operation →. An element e ∈ X will be
called a logical unit if

x → x = x → e = e; e → x = x (1)

holds for all x ∈ X. If e, e′ are logical units, then e = e → e = e′. Thus a logical unit is necessarily
unique. We henceforth denote it by 1. If we interpret x → y as “x implies y,” Eq. (1) characterizes
the truth value e = 1 = “true.” We call (X,→) a cycloid if it satisfies

(x → y) → (x → z) = (y → x) → (y → z). (L)

This equation holds in classical and intuitionistic logic, and also in logics based on a continuous
t-norm [17,23], among which the Łukasiewicz infinite-valued logic [10] forms an important
special case. On the other hand, cycloids with bijective left multiplication correspond to a class
of solutions of the quantum Yang–Baxter equation [34].

Definition 1. Let (X,→) be a unital cycloid, i.e. a cycloid with a logical unit. We call I ⊂ X an
ideal if the following hold for all x, y ∈ X:

1 ∈ I, (I0)

x, x → y ∈ I ⇒ y ∈ I, (I1)

x ∈ I ⇒ (x → y) → y ∈ I, (I2)

x ∈ I ⇒ y → x, y → (x → y) ∈ I. (I3)

Property (I3) can be dropped if X satisfies

x → (y → x) = 1 (K)

which holds for every BCK-algebra [12,25]. In fact, assume that (K) holds, and x ∈ I . Then
y → x ∈ I follows by (I1) since x → (y → x) = 1 ∈ I .

Proposition 1. Let (X,→) be a unital cycloid. Every ideal I defines a congruence

x ∼ y :⇔ x → y, y → x ∈ I. (2)

Conversely, every congruence ∼ defines an ideal I := {x ∈ X | x ∼ 1}.

Proof. For a given ideal I , we have to show that (2) is an equivalence such that x ∼ y implies
(z → x) ∼ (z → y) and (x → z) ∼ (y → z). From (I0) we get x ∼ x, while the symmetry
of ∼ follows by definition. Assume that x ∼ y ∼ z. Then (I3) gives (x → y) → (x → z) =
(y → x) → (y → z) ∈ I . Hence (I1) yields x → z ∈ I . Thus ∼ is an equivalence.

Assume that x ∼ y. Then (z → x) → (z → y) = (x → z) → (x → y) ∈ I , whence
(z → x) ∼ (z → y) by symmetry. To prove (x → z) ∼ (y → z), we show first that

u, (u → v) → w ∈ I ⇒ v → w ∈ I (3)
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holds for u,v,w ∈ X. By (L) and (I3), the premise of (3) gives (v → (u → v)) → (v → w) =
((u → v) → v) → ((u → v) → w) ∈ I . Therefore, (I1) and (I3) together with u ∈ I yields v →
w ∈ I . This proves (3). Using (I2), we get ((x → y) → (x → z)) → (y → z) = ((y → x) →
(y → z)) → (y → z) ∈ I , and thus (3) gives (x → z) → (y → z) ∈ I . So ∼ is a congruence.

Conversely, let ∼ be a congruence. Then (I0) trivially holds. Assume that x, x → y ∈ I . Then
1 ∼ x and therefore, y ∼ (1 → y) ∼ (x → y) ∼ 1. This gives (I1). To prove (I2) and (I3), let
x ∈ I . Then (x → y) ∼ (1 → y) ∼ y, and thus ((x → y) → y) ∼ (y → y) ∼ 1. Furthermore,
we have (y → x) ∼ (y → 1) ∼ 1 and (x → y) ∼ (1 → y) ∼ y, whence (y → (x → y)) ∼
(y → y) ∼ 1. �

In particular, the ideal {1} defines the congruence

x ∼ y ⇔ x → y = y → x = 1. (4)

If this congruence (4) reduces to equality for a unital cycloid X, we call X an L-algebra. Thus
L-algebras provide the semantics for a rather general type of logic. We introduce the relation

x � y :⇔ x → y = 1. (5)

Proposition 2. Let (X,→) be an L-algebra. Then (5) is a partial order on X, and the implication

y � z ⇒ x → y � x → z (6)

holds for all x, y, z ∈ X. Furthermore, X satisfies (K) if and only if

x � y ⇒ y → z � x → z (7)

holds for x, y, z ∈ X.

Proof. Assume y � z, i.e. y → z = 1. Then (x → y) → (x → z) = (y → x) → (y → z) = 1,
which yields (6). In particular, this implies that (5) is transitive, and thus a partial order. If (K)
holds, then x � y yields y → z � (y → x) → (y → z) = (x → y) → (x → z) = x → z. Con-
versely, let (7) be satisfied. Then y = 1 gives z � x → z, whence (K) follows. �
Corollary 1. For an L-algebra X, there is a bijective correspondence between ideals and con-
gruences ∼ for which X/∼ is an L-algebra.

Proof. According to Proposition 1, each ideal comes from the congruence it defines. Con-
versely, any congruence ∼ defines an ideal which leads to the congruence x ≈ y ⇔ (x → y) ∼
(y → x) ∼ 1. Thus ∼ and ≈ coincide if and only if X/∼ is an L-algebra. �

For an ideal I of an L-algebra X, the L-algebra X/∼ of Corollary 1 will be denoted by X/I .

Corollary 2. Let X be an L-algebra, and x, y ∈ X. Then x = y if and only if x → z = y → z for
all z ∈ X.
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Proof. The latter condition implies x → y = y → y = 1 and y → x = x → x = 1, hence
x = y. �

From now on, we write x · y instead of x → y. For an element x of an L-algebra (X, ·), we
define the downset

↓x := {y ∈ X | y � x}. (8)

Definition 2. We call an L-algebra (X, ·) self-similar if for each x ∈ X, the left multiplication
y �→ x · y induces a bijection ↓x

∼→ X.

Note. For a self-similar L-algebra X, the bijections ↓x
∼→ X are isotone. In fact, Proposition 2

shows that it is monotone increasing. Conversely, if y, z � x and x · y � x · z, then y · z =
(y · x) · (y · z) = (x · y) · (x · z) = 1.

In Section 3, we will show that every L-algebra admits a natural embedding into a self-similar
one.

2. Self-similarity

We show first that self-similar L-algebras admit a natural monoid structure.

Definition 3. A monoid H with an additional binary operation · will be called a left hoop if the
following are satisfied for a, b, c ∈ H .

a · a = 1, (E)

ab · c = a · (b · c), (A)

(a · b)a = (b · a)b. (H)

The monoid operation is expressed by juxtaposition. If this operation is commutative, H turns
into a hoop, a structure introduced and studied by Büchi and Owens [6], and further investigated
by several authors [4,5,17]. One-sided hoops were studied earlier by Bosbach [8] under a differ-
ent name.

Proposition 3. Every left hoop H gives rise to an L-algebra (H, ·).
Proof. From (H) and (A), we get (L), and (H) also implies that the relation a � b :⇔ a · b = 1
is antisymmetric. Thus we only have to show that 1 is a logical unit. First, we have (1 · a) · a =
(1 ·a)1 ·a = (1 ·a) · (1 ·a) = 1. Hence 1 ·a = ((1 ·a) ·a)(1 ·a) = (a · (1 ·a))a = (a1 ·a)a = a for
all a ∈ H . Therefore, we get a · 1 = (1 · a) · 1 = (1 · a)1 · 1 = (a · 1)a · 1 = (a · 1) · (a · 1) = 1. �

Axiom (A) of a left hoop H shows that

ab � c ⇔ a � b · c (9)

holds for a, b, c ∈ H . Therefore, H is completely determined by its underlying L-algebra struc-
ture. In other words, left hoops form a special class of L-algebras. Our next result shows that
self-similar L-algebras belong to this class.
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Theorem 1. Every self-similar L-algebra is a left hoop.

Proof. Let H be a self-similar L-algebra, and let a, b ∈ L. Then the restriction of c �→ b · c to
↓b is a bijection ↓b

∼→ H . We define ab ∈↓b to be the inverse image of a. Thus ab is uniquely
determined by

ab � b; b · ab = a. (10)

We show first that this product is associative. For a, b, c ∈ H , we have a(bc) � bc � c and
(ab)c � c. Therefore, a(bc) = (ab)c is equivalent to c · a(bc) = c · (ab)c, i.e. c · a(bc) = ab.
By Proposition 2, we have c · a(bc) � c · bc = b. Hence c · a(bc) = ab is equivalent to b · (c ·
a(bc)) = a. Now b · (c · a(bc)) = (c · bc) · (c · a(bc)) = (bc · c) · (bc · a(bc)) = 1 · a = a. This
proves that H is a semigroup. Furthermore, a · 1a = 1 implies that a � 1a � a, whence 1a = a.
Since a1 = 1 · a1 = a, we infer that H is a monoid.

Now (A) follows by ab · c = (ab · b) · (ab · c) = (b · ab) · (b · c) = a · (b · c). Therefore, we
get (a · b)a · c = (a · b) · (a · c) = (b · a) · (b · c) = (b · a)b · c. By Corollary 2 of Proposition 2,
this yields (H). �

For a, b ∈ H , we define

a ∧ b := (a · b)a. (11)

Like in the commutative case [3], this is an infimum.

Proposition 4. For a left hoop H , every pair a, b ∈ H admits an infimum (11), and

a · (b ∧ c) = (a · b) ∧ (a · c) (12)

holds for a, b, c ∈ H .

Proof. By (A), we have (a ·b)a � a, b. Suppose that c � a, b. Then c = (c ·a)c = (c ·b)c. Hence
c = (c ·a)c = (c ·a)(c ·b)c = ((c ·b)c ·a)(c ·b)c = ((b ·c)b ·a)(c ·b)c = ((b ·c) · (b ·a))(b ·c)b =
((b · a) · (b · c))(b · a)b = ((a ∧ b) · c)(a ∧ b) � a ∧ b.

By symmetry, the inequality � of (12) reduces to a · (b ∧ c) � a · b, which follows by Propo-
sition 2. The inequality � of (12) can be put into ((a ·b)∧ (a · c))a � b∧ c. Hence, by symmetry,
it suffices to show that ((a · b)∧ (a · c))a � b. If we switch a to the right-hand side, this becomes
(a · b) ∧ (a · c) � a · b, which is obvious. �

Our next result yields a characterization of self-similarity.

Proposition 5. For a left hoop H , and a ∈ H , the following are equivalent.

(a) The map b �→ ba is injective.
(b) The map b �→ a · b is surjective.
(c) a · ba = b for all b ∈ H .
(d) ba · ca = b · c for all b, c ∈ H .
(e) a · bc = ((c · a) · b)(a · c) holds for all b, c ∈ H .
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Proof. (a) ⇒ (c): By (H), we have (a · ba)a = (ba · a)ba = (b · (a · a))ba = ba.
(c) ⇒ (d): ba · ca = b · (a · ca) = b · c.
(d) ⇒ (b): This follows if we set b = 1.
(b) ⇒ (a): Assume that ba = ca. Then ba · d = ca · d , and thus b · (a · d) = c · (a · d) for all

d ∈ H . Hence b · e = c · e for all e ∈ H . By Corollary 2 of Proposition 2, this implies that b = c.
So we have shown that (a)–(d) are pairwise equivalent. To include (e), assume that (b) holds.

Then (a ·bc) · (a ·d) = (bc ·a) · (bc ·d) = (b · (c ·a)) · (b · (c ·d)) = ((c ·a) ·b) · ((c ·a) · (c ·d)) =
((c · a) · b) · ((a · c) · (a · d)) = ((c · a) · b)(a · c) · (a · d) holds for b, c, d ∈ H , whence (e) follows.
Conversely, (e) implies (c) if we set c = a. �
Corollary 1. A left hoop H is self-similar if and only if the equivalent conditions of Proposition 5
hold for all a ∈ H .

Proof. By definition, self-similarity implies (b) of Proposition 5. Conversely, let the equivalent
statements of Proposition 5 be satisfied. Then Proposition 5(c) shows that the map ρa : H →↓a

with ρa(b) := ba has a retraction λa :↓a → H with λa(b) := a · b. Therefore, Eq. (11) yields
ρa = λ−1

a . �
Corollary 2. For a self-similar left hoop H ,

(a ∧ b)c = ac ∧ bc (13)

holds for a, b, c ∈ H .

Proof. This follows immediately by Proposition 5(d). �
Corollary 3. Let I be an ideal of a self-similar L-algebra H . Then H/I is again self-similar,
and the natural map p : H → H/I is a monoid homomorphism.

Proof. By Theorem 1, H is a left hoop. For a, b ∈ H , we have p(a) = p(b · ab) = p(b) · p(ab).
Hence H/I is self-similar by Proposition 5(b). So we get p(a) = p(b) ·p(a)p(b). Since p(ab) �
p(b), this gives p(ab) = p(a)p(b). �

For a self-similar left hoop H , Proposition 5(d) yields, in particular,

a � b ⇔ ac � bc (14)

for a, b, c ∈ H . Here, the implication “⇒” even holds for arbitrary left hoops. The left-hand
version of (14) is more delicate. We start with

Proposition 6. A left hoop H satisfies (K) if and only if

b � c ⇒ ab � ac (15)

holds for a, b, c ∈ H .
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Proof. Assume (K) and b � c. Then (9) and Proposition 2 imply a � c · ac � b · ac, and thus
ab � ac. Conversely, let (15) be satisfied. Then c = 1 yields ab � a, whence a � b · a. �

The converse of (15) will be treated in Section 4.

3. The self-similar closure

The following construction is based on the equations

ab · c = a · (b · c), (A)

a · bc = (
(c · a) · b)

(a · c) (S)

which occurred in the previous section. The 1-cocycle condition (S) characterizes self-similarity
by Proposition 5.

Let (X, ·) be an arbitrary magma. We denote the free monoid over X by M(X).

Theorem 2. Let (X, ·) be a magma. The binary operation of X admits a unique extension to
M(X) such that (A), (S), and 1 · a = a hold for all a, b, c ∈ M(X).

Proof. For b = c = 1, condition (S) turns into a · 1 = ((1 · a) · 1)(a · 1), i.e. (1 · a) · 1 = 1.
Thus if 1 · a = a, this gives a · 1 = 1. By induction, the binary operation of X uniquely extends
to a map M(X) × X

.→ X which satisfies (A). Using this map, we inductively define a map
X × M(X)

.→ M(X) by x · 1 := 1 and

x · ya := (
(a · x) · y)

(x · a) (16)

for x, y ∈ X and a ∈ M(X). Substituting a = 1, we infer that (16) extends the binary operation
of X. Let us show that

x · ab := (
(b · x) · a)

(x · b) (17)

holds for x ∈ X and a, b ∈ M(X). We proceed by induction. For a = 1, Eq. (17) is trivial. So let
us assume that (17) holds for a given a. For any y ∈ X, it follows that x · (ya)b = x · y(ab) =
((ab ·x) ·y)(x ·ab) = ((a · (b ·x)) ·y)((b ·x) ·a)(x ·b) = ((b ·x) ·ya)(x ·b). Thus (17) is verified.

Now the map X × M(X)
.→ M(X) uniquely extends to an operation

M(X) × M(X)
.→ M(X)

such that (A) holds in M(X). By construction, this operation on M(X) is compatible with
M(X) × X

.→ X. So we have proved that the claimed extension M(X) × M(X)
.→ M(X) is

unique, and it remains to be shown that our construction of it satisfies (S).
We start with the case c ∈ X. Then (S) trivially holds for a = 1. Assume that (S) has been

verified for some a ∈ M(X). For any x ∈ X, we then get

xa · bc = x · (a · bc) = x · ((c · a) · b)
(a · c) = ((

(a · c) · x) · ((c · a) · b))(
x · (a · c))

= ((
(a · c) · x)

(c · a) · b)
(xa · c) = (

(c · xa) · b)
(xa · c)
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by virtue of (17). So we have verified (S) for a, b ∈ M(X) and c ∈ X. Furthermore, (S) holds
for c = 1. For our final induction, assume that (S) holds for a given c ∈ M(X). Then a · b(cy) =
a · (bc)y = ((y · a) · bc)(a · y) = ((c · (y · a)) · b)((y · a) · c)(a · y) = ((cy · a) · b)(a · cy). This
completes the proof of (S). �
Note. Equations which hold in X, need not extend to M(X). For example, if X = ∅, then
(M(X), ·) is never commutative since 1 · x = x = 1 = x · 1 holds for any x ∈ X. The next result
shows that Eq. (L) is exceptional.

Proposition 7. If X is a cycloid, then M(X) is a cycloid.

Proof. Assume that X is a cycloid. We show first that

(x · y) · (x · c) = (y · x) · (y · c) (18)

holds for x, y ∈ X and c ∈ M(X). The case c = 1 is trivial. Assume that Eq. (18) holds for some
c ∈ M(X). For any z ∈ X, we then have (x ·y) · (x · cz) = (x ·y) · ((z ·x) · c)(x · z) = (((x · z) · (x ·
y)) · ((z ·x) ·c))((x ·y) · (x ·z)), where ((x ·z) · (x ·y)) · ((z ·x) ·c) = ((z ·x) · (z ·y)) · ((z ·x) ·c) =
((z · y) · (z · x)) · ((z · y) · c) = ((y · z) · (y · x)) · ((z · y) · c). This shows that (x · y) · (x · cz) is
symmetric in x and y. Thus (18) is proved.

Next we show that

(a · y) · (a · c) = (y · a) · (y · c) (19)

holds for y ∈ X and a, c ∈ M(X). For a = 1, this is true. Thus let (19) be satisfied for some
a ∈ M(X), and let x ∈ X. Then (xa · y) · (xa · c) = (x · (a · y)) · (x · (a · c)) = ((a · y) · x) ·
((a · y) · (a · c)) = ((a · y) · x) · ((y · a) · (y · c)) = ((a · y) · x)(y · a) · (y · c) = (y · xa) · (y · c).
This proves (19).

Finally, we prove

(a · b) · (a · c) = (b · a) · (b · c) (20)

for a, b, c ∈ M(X), which trivially holds for b = 1. Assume that (20) holds for a particular
b ∈ M(X), and let y ∈ X. Using (19), this gives (a · yb) · (a · c) = ((b · a) · y)(a · b) · (a · c) =
((b ·a)·y)·((a ·b)·(a ·c)) = ((b ·a)·y)·((b ·a)·(b ·c)) = (y ·(b ·a))·(y ·(b ·c)) = (yb ·a)·(yb ·c).
The proof is complete. �

Let (X, ·) be a magma. By Theorem 2, the unit element 1 ∈ M(X) satisfies a · 1 = 1 and
1 · a = a for all a, but it is not a logical unit. To make this possible, we introduce the following
equivalence in M(X).

a ≈ b :⇔ ∀ c, d ∈ M(X): (c · a) · d = (c · b) · d. (21)

Proposition 8. The equivalence relation (21) is a congruence (with respect to both operations)
in M(X).
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Proof. Assume that a ≈ b, and let e ∈ M(X) be arbitrary. Note first that with c = 1, Eq. (21)
implies a ·d = b ·d for all d . In particular, a · e = b · e. Furthermore, (c · (e ·a)) ·d = (ce ·a) ·d =
(ce · b) · d = (c · (e · b)) · d yields e · a ≈ e · b. Next, we have (c · ae) · d = ((e · c) · a)(c · e) · d =
((e · c) · a) · ((c · e) · d) = ((e · c) · b) · ((c · e) · d), which yields ae ≈ be by symmetry. Finally,
(c · ea) · d = ((a · c) · e)(c · a) · d = ((a · c) · e) · ((c · a) · d) = ((b · c) · e) · ((c · b) · d), which
gives ea ≈ eb. �

For a magma (X, ·), we define

S(X) := M(X)/≈. (22)

Proposition 9. Let (X, ·) be a magma with a logical unit e. Then 1 is a logical unit of S(X), and
the natural map X → S(X) carries e to 1.

Proof. We show first that a · e = e and e · a = a holds in M(X). For a = 1, these equations are
trivial. Proceeding by induction, we assume that they hold for some a ∈ M(X). For any x ∈ X,
we then have ax ·e = a · (x ·e) = a ·e = e, and e ·xa = ((a ·e) ·x)(e ·a) = xa, which proves both
equations. For c, d ∈ M(X), this yields (c ·e) ·d = (c ·1) ·d , whence e ≈ 1. It remains to be shown
that a · a = 1 holds in S(X). For a = 1, this is obvious. Assume that the equation is true for some
a ∈ S(X), and let x ∈ X be given. Then xa · xa = x · (a · xa) = x · ((a · a) · x)(a · a) = x · x = 1.
Hence 1 is a logical unit in S(X). �
Definition 4. We define a morphism f : X → Y between L-algebras X,Y to be a map which
satisfies f (1) = 1 and f (x · y) = f (x) · f (y) for all x, y ∈ X. If f is an inclusion X ↪→ Y ,
we call X an L-subalgebra of Y . In case H is a self-similar L-algebra with an L-subalgebra X

which generates H as a monoid, we call H a self-similar closure of X.

Theorem 3. Let X be an L-algebra. Then the natural morphism X → S(X) is injective, and up
to isomorphism of left hoops, S(X) is the unique self-similar closure of X.

Proof. By Propositions 7 and 9, S(X) is a cycloid with a logical unit. Let us show that S(X)

satisfies the hoop equation (H). Thus let a, b ∈ M(X) be given. We have to verify that (c · (a ·
b)a) ·d = (c · (b ·a)b) ·d holds for c, d ∈ M(X). Now (c · (a ·b)a) ·d = ((a ·c) · (a ·b))(c ·a) ·d =
((c · a) · (c · b))(c · a) · d = ((c · a) · (c · b)) · ((c · a) · d) = ((c · b) · (c · a)) · ((c · b) · d), which
exhibits the symmetry in a and b. Thus (H) is verified. Hence S(X) is a left hoop.

From Proposition 5(e), we infer that S(X) is self-similar. Corollary 2 of Proposition 2 implies
that the natural map X → S(X) is injective. This proves that S(X) is a self-similar closure of X.

Suppose that there is another self-similar closure H of X. Then X ↪→ H has a unique exten-
sion e : M(X) → H to the free monoid M(X). Since X generates H as a monoid, e is surjective
with e(1) = 1. By Theorem 1 and Proposition 5, H satisfies (A) and (S). Let us show by in-
duction that e(x · b) = e(x) · e(b) holds for x ∈ X and b ∈ M(X). For b = 1, this is trivial.
Thus assume that it holds for some b and let y ∈ X. Then e(x · by) = e((y · x) · b)e(x · y) =
(e(y · x) · e(b))e(x · y) = ((y · x) · e(b))(x · y) = x · e(b)y = e(x) · e(by). Next we show that
e(a · b) = e(a) · e(b) holds for arbitrary a, b ∈ M(X). While this is trivial for a = 1, assume that
it holds for a particular a, and let x ∈ X. Then e(ax · b) = e(a · (x · b)) = e(a) · e(x · b) =
e(a) · (e(x) · e(b)) = e(a)e(x) · e(b) = e(ax) · e(b). Thus e(a · b) = e(a) · e(b) holds for



W. Rump / Journal of Algebra 320 (2008) 2328–2348 2339
a, b ∈ M(X). Therefore, Corollary 2 of Proposition 2 implies that the map e induces a sur-
jective morphism f : S(X) → H . By Corollary 1 of Proposition 2, it remains to be shown that
Kerf := {a ∈ S(X) | f (a) = 1} is trivial. Suppose that a ∈ Kerf and a = 1. Then a = xb for
some x = 1 in X. So we get f (x) = f (b) · f (x)f (b) = f (b) · f (xb) = f (b) · 1 = 1, a contra-
diction. Thus f is an isomorphism of L-algebras. �

In the sequel, we will regard an L-algebra X as an L-subalgebra of S(X). So we can use the
monoid structure of S(X) to form expressions of elements in X.

Let us define a KL-algebra to be an L-algebra which satisfies (K). In the next section, we
will use the following

Proposition 10. Let X be a KL-algebra. Then S(X) is a KL-algebra.

Proof. We show first that x · (b ·x) = 1 holds for x ∈ X and b ∈ S(X). For b = 1, this is obvious.
Suppose that it holds for some b ∈ S(X). For any x ∈ X, this implies that x · (by · x) = x · (b ·
(y · x)) = (x · (y · x)) · (x · (b · (y · x))) = ((y · x) · x) · ((y · x) · (b · (y · x))) = 1. This proves the
claim.

Now let us prove a · (b ·a) = 1 for all a, b ∈ S(X). While this is trivial for a = 1, let us assume
that it holds for a particular a. For any x ∈ X, we then get

ax · (b · ax) = ax · ((x · b) · a)
(b · x) = a · (x · ((x · b) · a)

(b · x)
)

= a · (((b · x) · x) · ((x · b) · a))(
x · (b · x)

) = a · (((b · x) · x)
(x · b) · a)

= 1. �
4. The structure group of an L-algebra

Recall that a monoid M is said to fulfil the left Ore condition if for each pair of elements
a, b ∈ M , there are c, d ∈ M with ca = db. Thus every left hoop is left Ore. If, in addition,
ac = bc implies that there is some d ∈ M with da = db, we can form a quotient group Q(M)

consisting of formal fractions a−1b with a, b ∈ M (see, e.g., [18, Chapter I]). For a, b, c ∈ M , the
equation a−1b = (ca)−1(cb) holds in Q(M), and the left Ore condition guarantees that in this
way, two arbitrary fractions can be transformed into those with a common denominator. They are
defined to be equal in Q(M) if the common denominator can be chosen such that the numerators
become equal in M .

By (14), every self-similar left hoop H admits a quotient group Q(H).

Definition 5. Let X be an L-algebra. We define the structure group of X to be the quotient group
G(X) := QS(X) of the self-similar closure S(X).

The morphism X ↪→ S(X) → QS(X) gives a natural map

q : X → G(X) (23)

with

q(x) = q(y) ⇔ ∃c ∈ S(X): cx = cy. (24)
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Definition 6. Let X be an L-algebra. We call x, y ∈ X equipollent if x · z = y · z holds for some
z � x, y. If x is equipollent to 1, we say that x is dense. The set of dense elements of X will be
denoted by D(X).

Proposition 11. Let X be an L-algebra. Assume that x · z = y · z with z � x, y. Then x · t = y · t
holds for any t � z.

Proof. We use the embedding X ↪→ S(X). Thus it suffices to show that x · t = (z · t)(x · z). In
fact, x · t = x · (z ∧ t) = x · (z · t)z = ((z · x) · (z · t))(x · z) = (z · t)(x · z). �
Remark. Proposition 11 shows that if X has a smallest element 0 (= “false”), equipollence of
x and y just means that x and y have the same negation x · 0 = y · 0. Definition 6 expresses
this property without reference to 0. In particular, dense elements x ∈ X can be conceived as
“essentially true” statements, i.e. those whose double negation is “true.”

Now we can determine the fibers of the map (23).

Proposition 12. Let X be an L-algebra, and x, y ∈ X. Then q(x) = q(y) if and only if x and y

are equipollent in S(X).

Proof. Assume that q(x) = q(y). Then cx = cy for some c ∈ S(X). Hence d := cx � x, y sat-
isfies x · d = c = y · d by Proposition 5(c). Conversely, let x, y be equipollent in S(X). Thus
x · d = y · d for some d ∈ S(X) with d � x, y. Therefore, c := x · d satisfies cx = d = cy. �

For a KL-algebra X, we define a partial order on G(X) as follows.

a−1b � a−1c :⇔ ∃e ∈ S(X): eb � ec. (25)

Proposition 13. Let X be a KL-algebra. With (25), the structure group G(X) becomes a par-
tially ordered group such that the map (23) is monotone.

Proof. Assume that a−1b � a−1c with a, b, c ∈ S(X). Then eb � ec for some e ∈ S(X). For
any d ∈ S(X), Proposition 6 implies that (e · d)eb � (e · d)ec, whence (d · e)db � (d · e)dc. This
shows that (25) is a well-defined relation on G(X). Using the Ore condition, it is readily seen
that (25) gives a partial order on G(X).

Next we show that our assumption a−1b � a−1c implies that a−1bu−1v � a−1cu−1v for
any u,v ∈ S(X). Using (H), we find r, s, t ∈ S(X) with rb = su and rc = tu, which gives
bu−1 = r−1s and cu−1 = r−1t . Thus we have to show that (ra)−1sv � (ra)−1tv. By assump-
tion, (ra)−1(rb) � (ra)−1(rc). So there exists some e ∈ S(X) with erb � erc. Hence esu � etu,
and thus es � et by Proposition 5(d). Consequently, esv � etv, which proves the claim.

It remains to verify u−1va−1b � u−1va−1c. If u−1va−1 = d−1e, this means that d−1eb �
d−1ec. Since (ea)−1(eb) � (ea)−1(ec), this follows immediately. �
Definition 7. We call an L-algebra X semiregular if the equation(

(x · y) · z) · ((y · x) · z) = (
(x · y) · z) · z (R)

holds for x, y, z ∈ X.
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Proposition 14. The inequality � in (R) is equivalent to (K).

Proof. If (K) is satisfied, then z � (y · x) · z. Hence � in (R) follows by Proposition 2. The
converse follows if we set y = 1 in (R). �

Note that (R) implies the linearity condition for BCK-algebras [31]:

(y · x) · z �
(
(x · y) · z) · z.

In terms of S(X), Eq. (R) can be stated as follows.

Proposition 15. An L-algebra X is semiregular if and only if

x(y ∧ z) = xy ∧ xz (26)

holds in S(X) for all x, y, z ∈ X.

Proof. First, we have

zx · zy = z · (x · zy) = z · ((y · x) · z)(x · y) = ((
(x · y) · z) · ((y · x) · z))(z · (x · y)

)
.

Using (H), we get zx ∧ zy = (zx · zy)zx = (((x · y) · z) · ((y · x) · z))(z · (x · y))zx = (((x · y) · z) ·
((y · x) · z))((x · y) · z)(x · y)x = (((x · y) · z) ∧ ((y · x) · z))(x ∧ y). Therefore, Proposition 5(a)
implies that Eq. (26) is equivalent to(

(x · y) · z) ∧ (
(y · x) · z) = z.

Assuming (K), this reduces to (((x · y) · z) · ((y · x) · z))((x · y) · z) � z, which is equivalent to
the inequality � in (R). Together with Proposition 14, this completes the proof. �

Next we show that Eq. (26) carries over to S(X).

Proposition 16. An L-algebra X is semiregular if and only if S(X) is semiregular.

Proof. By Theorem 3, the left hoops S(X) and S(S(X)) coincide. Therefore, we have to show
that in case X is semiregular, Eq. (26) holds for all x, y, z ∈ S(X). Thus let (26) be satisfied for
x, y, z ∈ X. By induction, this immediately implies that (26) holds for arbitrary x ∈ S(X). Using
this, we show that

a(b ∧ z) = ab ∧ az (27)

holds for a, b ∈ S(X) and z ∈ X. For b = 1, this follows by Propositions 10 and 14. Thus assume
that (27) holds for a particular b, and assume that y ∈ X. Then Corollary 2 of Proposition 5
yields a(bx ∧ z) = a(z · bx)z = a((x · z) · b)(z · x)z = a((x · z) · b)(x · z)x = a(b ∧ (x · z))x =
(ab∧a(x ·z))x = abx∧a(x ·z)x = abx∧a(x∧z) = abx∧ax∧az = (ab∧a)x∧az = abx∧az,
where ab � a holds by (K). This proves (27). Now the same argument, applied to z instead of b,
shows that Eq. (26) holds for all x, y, z ∈ S(X). �
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Proposition 17. Let H be a semiregular self-similar L-algebra. Then D(H) is an ideal, and two
elements of H are mapped to the same element in H/D(H) if and only if they are equipollent.

Proof. We show first that D(H) is an ideal. By Proposition 14, it suffices to verify (I0)–(I2).
Now (I0) is trivial. Thus let a and a · b be dense. By Proposition 12 and (H), we can assume
that ca = c(a · b) = c for some c ∈ H . Therefore, Proposition 15 yields (ca · cb)ca = ca ∧
cb = c(a ∧ b) = c(a · b)a = ca, whence ca · cb = 1 by Proposition 5(a). Thus c = ca � cb. By
Proposition 14, we have c � b · c, which gives cb � c. So we get cb = c, which proves (I1).

To verify (I2), it is enough to show that ca = c implies c((a ·b) ·b) = c. From (26) and (K), we
get c((a · b) · b)(a ∧ b) = c((a · b) · b)(a · b)a = c((a · b)∧ b)a = cba = c(1 ∧ b)a = (c ∧ cb)a =
(c · cb)ca = (ca · cb)ca = ca ∧ cb = c(a ∧ b). Now Proposition 5(a) proves the claim.

For a, b, c ∈ H , Proposition 15 gives c(a · b)a = c(a ∧ b) = ca ∧ cb. Hence ca � cb ⇔
c(a · b)a = ca ⇔ c(a · b) = c by Proposition 5(a). Using (H), it follows that a, b are equipollent
if and only if a · b and b · a are dense. �

Now we are ready to characterize the converse of the implication (15).

Proposition 18. Let H be a semiregular self-similar L-algebra. Then D(H) = 1 if and only if

b � c ⇔ ab � ac (28)

holds for a, b, c ∈ H .

Proof. Assume first that D(H) = 1 and ab � ac. By Propositions 5 and 15, this yields b · c =
1 ⇔ a(b · c) = a ⇔ a(b · c)b = ab ⇔ a(b ∧ c) = ab ⇔ ab ∧ ac = ab ⇔ ab � ac. Conversely,
let (28) be satisfied. If a ∈ D(H), then Proposition 12 implies that ca = c for some c ∈ H .
Therefore, c1 � ca gives 1 � a, whence a = 1. �
5. l-Group cones

A partially ordered group G is said to be an l-group if its underlying poset is a lattice. Since
left and right multiplication are isotone, the equations

a(b ∧ c) = ab ∧ ac; (a ∧ b)c = ac ∧ bc (29)

hold in every l-group G. As a �→ a−1 is antitone, we have

(a ∨ b)−1 = a−1 ∧ b−1 (30)

for all a, b ∈ G. The submonoids G+ := {a ∈ G | a � 0} and G− := {a ∈ G | a � 0} are called
the positive cone and the negative cone, respectively. For the basic theory of l-groups, we refer
the reader to monographs like [1,2,14,21].

The negative cone G− of an l-group G can be regarded as a left hoop with

a · b := ba−1 ∧ 1. (31)

Furthermore, G− is self-similar since a · ba = b, and G− is semiregular by Proposition 15. Thus
S(G−) = G−, and the structure group of G− is G itself. As G− is left cancellable, D(G−) = 1.
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Definition 8. We call an L-algebra X regular if X is semiregular and for elements x � y in X,
there exists some z � x in X with z · x = y.

For example, the negative cone G− of an l-group G is regular: For x � y in G−, the element
z := y−1x ∈ G− satisfies z � x and z · x = y. Therefore, G− is self-similar and regular with
D(X) = 1. Now we are able to prove the converse.

Theorem 4. Let X be a semiregular L-algebra. Then the structure group G(X) is an l-group. The
map q : X → G(X) induces a morphism q− : X → G(X)− of L-algebras, and q− is injective if
and only if D(X) = 1.

Proof. By Proposition 16, S(X) is semiregular. Proposition 17 implies that D(S(X)) is an ideal
of S(X) such that S(X)/D(S(X)) consists of the equipollence classes of S(X), i.e. the fibers of
S(X) → G(X) by Proposition 12. Corollary 3 of Proposition 5 implies that S(X)/D(S(X)) is a
semiregular self-similar left hoop. Since S(X)/D(S(X)) is isomorphic to a submonoid of G(X),
we have D(S(X)/D(S(X))) = 1. Hence S(X)/D(S(X)) can be regarded as a subposet of G(X)

by Proposition 18. From Proposition 15, we thus infer that G(X) is a ∧-semilattice with

a−1b ∧ a−1c = a−1(b ∧ c)

for a, b, c ∈ S(X). Therefore, Proposition 13 implies that G(X) is an l-group. For a, b ∈
S(X)/D(S(X)), the equation (a · b)a = a ∧ b yields a · b = (a ∧ b)a−1 = ba−1 ∧ 1. Hence
(23) induces an L-algebra morphism q− : X → G(X)−.

If q− is injective, then D(X) ⊂ D(S(X)) = 1. Conversely, assume that D(X) = 1. We have to
show that D(S(X)) = 1. Now every a ∈ D(S(X)) satisfies ca = c for some c ∈ S(X). Suppose
that a = 1. Then c = 1. So we have c = xd for some x ∈ X and d ∈ S(X). By Proposition 11,
this gives x = d ·xd = d ·xda = ((da ·d) ·x)(d ·da) = x(d ·da). Thus if d ·da = 1, the equation
ca = c can be replaced by x(d ·da) = x. Otherwise, d ·da = 1, which yields d � da � d . Hence,
by induction, we can assume without loss of generality that c = x. So we get an equation xyb = x

for some x, y ∈ X, y = 1, and b ∈ S(X). This gives 1 = x · xyb = ((b · x) · xy)(x · b) � x · b.
Therefore, x · b = 1, and thus 1 = (b · x) · xy = ((y · (b · x)) · x)((b · x) · y) � (b · x) · y, which
yields (b · x) · y = 1 and (y · (b · x)) · x = 1. So we obtain b · x � y and y · (b · x) � x � b.
Hence x � b · x � y and x � y · x � y · (b · x) � x. Thus y ∈ D(X), contrary to our assumption
y = 1. �
Corollary 1. An L-algebra X is isomorphic to the negative cone of an l-group if and only if X

is self-similar and regular with D(X) = 1.

Proof. The necessity is obvious. Conversely, let X be self-similar and regular with D(X) = 1.
Then we have an embedding of L-algebras X = S(X) ↪→ G(X)−, and every element of G(X)−
is of the form y−1x with x, y ∈ X. Hence x � y. Since X is regular, there is some z � x in X

with z · x = y. Therefore, x = z ∧ x = (z · x)z = yz, which gives y−1x = z ∈ X. �
For an element u < 1 of an l-group G, the interval [u,1] in G is an L-subalgebra of G−. The

following result characterizes pseudo MV-algebras (cf. [16]) as a particular class of L-algebras.

Corollary 2. An L-algebra X is regular with a smallest element 0 and D(X) = 1 if and only if
X is isomorphic to an interval [u,1] in an l-group.
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Proof. Assume first that X = [u,1] in an l-group G. Then X is semiregular with smallest ele-
ment u and D(X) = 1. For x � y in X, the element y−1x belongs to X and satisfies y−1x � x

and y−1x · x = y. Hence X is regular. Conversely, let X be regular with a smallest element 0 and
D(X) = 1. By Theorem 4, the structure group G(X) is an l-group, and X can be regarded as an
L-subalgebra of [0,1] ⊂ G(X). Suppose that a ∈ [0,1] � X. Then a = bx for some x ∈ X and
b ∈ S(X). Hence 1 = 0 · bx = ((x · 0) · b)(0 · x) = (x · 0) · b, which gives 0 � x · 0 � b. So by
induction, we can assume that b ∈ X. Therefore, since X is regular, there exists some z ∈ X with
z · 0 = b · (x · 0), i.e. 0z−1 = b · 0x−1 = 0x−1b−1 ∧ 1 = 0a−1 ∧ 1 = 0a−1. Thus a = z ∈ X. �

In accordance with [33], we call an L-algebra X satisfying the equivalent conditions of Corol-
lary 2 a GMV-algebra. Note that in [19,20] and [32,33], such an algebra X is defined to be a
monoid with two negations (or equivalently, two types of implication), while our concept requires
only one implication. The monoid structure of a GMV-algebra is obtained by the following

Corollary 3. Every GMV-algebra X is a left hoop with bijective negation x �→ x · 0.

Proof. We use the embedding X = [0,1] ⊂ G(X) and define a binary operation X × X
∗→ X by

x ∗ y := xy ∨ 0. (32)

Then (x ∗ y) ∗ z = (xy ∨ 0)z ∨ 0 = xyz ∨ 0z ∨ 0 = xyz ∨ 0 holds for x, y, z ∈ X. Furthermore,
(x ∗ y) · z = z(xy ∨ 0)−1 ∧ 1 = z(y−1x−1 ∧ 0−1) ∧ 1 = zy−1x−1 ∧ 1 = (zy−1 ∧ 1)x−1 ∧ 1 =
x · (y · z), and (x · y) ∗ x = (yx−1 ∧ 1)x ∨ 0 = (y ∧ x) ∨ 0 = y ∧ x. Hence (X,∗) is a left hoop.
Since X is regular with D(X) = 1, the map x �→ x · 0 is bijective. �

Let us briefly consider the commutative case. Note that an L-algebra which satisfies

(x · y) · y = (y · x) · x (33)

can be regarded as a commutative BCK-algebra [25]. Our next result gives a new interpretation
of this terminology.

Proposition 19. Let X be an L-algebra. Then S(X) is commutative if and only if X satisfies (K)
and Eq. (33). If S(X) is commutative, S(X) ∼= G(X)−, and

a ∨ b = (a · b) · b (34)

holds for a, b ∈ S(X).

Proof. In S(X) we have

xy · yx = x · (y · yx) = x · ((x · y) · y)
(y · x) = ((

(y · x) · x) · ((x · y) · y))(
x · (y · x)

)
.

This proves the first statement. Now let S(X) be commutative. Then S(X) is semiregular by
Proposition 15 and Corollary 2 of Proposition 5, and D(S(H)) = 1 by Proposition 5(a). There-
fore, Theorem 4 implies that S(X) can be identified with an L-subalgebra of G(X)−. For
a, b ∈ S(X), this yields (a · b) · b = b(ba−1 ∧ 1)−1 ∧ 1 = b(ab−1 ∨ 1) ∧ 1 = a ∨ b. Thus if
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a � b, then b · a � a and (b · a) · a = b, which proves that S(X) is regular. By Corollary 1 of
Theorem 4, it follows that S(X) ∼= G(X)−. �
Remark. By Gispert and Mundici [22], an MV-algebra is a commutative monoid X with an
involutive map x �→ x∗ (the negation) such that 0 := 1∗ satisfies x0 = 0, and

x(xy∗)∗ = y(yx∗)∗ (35)

holds for all x, y ∈ X. We define

x · y := (xy∗)∗. (36)

Then (35) turns into the hoop equation (H), and xx∗ = x(x0∗)∗ = 0(0x∗)∗ = 0, which gives
x ·x = 1. Furthermore, xy ·z = (xyz∗)∗ = (x(y ·z)∗)∗ = x ·(y ·z). Thus X is a hoop with smallest
element 0 and x∗ = x · 0. Using Proposition 19, it is easily checked that an MV-algebra is the
same as an L-algebra with smallest element 0 such that S(X) is commutative. If restricted to this
special case, Corollary 2 of Theorem 4 yields an alternative proof of Mundici’s equivalence [29]
between MV-algebras and unital abelian l-groups.

Definition 9. We call an element s � 1 of an l-group G singular (cf. [2, 11.2]) if s = ab with
a, b ∈ G− implies that a ∨ b = 1. We say that u � 1 is a strong unit if for any a ∈ G, there is
some n ∈ N with un � a.

A Boolean algebra X can be regarded as an MV-algebra with idempotent multiplication. Our
next theorem shows that for a Boolean algebra X, the embedding X ↪→ G(X) is uniquely deter-
mined by the abelian l-group G(X).

Theorem 5. For an l-group G, there is at most one singular strong unit s � 1. If such an s

exists, G is archimedean, and the interval [s,1] is a Boolean algebra with structure group G.
Conversely, every Boolean algebra arises in this way.

Proof. Let s � 1 be singular, and let u � 1 be a strong unit in G. Assume that un � s with n � 2.
Then s = (s ∨u)a with a = (s ∨u)−1s � 1. Hence s ∨u∨a = 1, and thus un−1s ∨un ∨un−1a =
un−1. Since un−1a = un−1(s−1 ∧ u−1)s � un−2s � s, we get un−1 � s. Hence, by induction,
u � s. This proves that a singular strong unit is unique.

Now let s � 1 be a singular strong unit. Since every conjugate of s is also a singular strong
unit, we infer that s belongs to the center of G. To show that G is archimedean, let a, b ∈ G− be
such that b � an for all n ∈ N. Then there is some m ∈ N with sm � an for all n. We choose m

to be a power of 2. For m = 2k, this gives sk(sk ∧ an) = sm ∧ skan � a2n ∧ skan = an(an ∧ sk),
hence sk � an for all n. Thus, by induction, we obtain s � an for all n ∈ N. Now for any a ∈
[s,1], we have s = a(a−1s) with a−1s � 1. Hence a ∨ a−1s = 1, and thus a2 ∨ s = a. Therefore,
s � a2 implies that a2 = a, i.e. a = 1. This proves that G is archimedean. Since archimedean
l-groups are commutative, we infer that B := [s,1] is an MV-algebra. By Eq. (32), the above
equation a2 ∨ s = a for a ∈ B means that the elements of B are idempotent, i.e. B is Boolean.

Finally, let B be a Boolean algebra. As an MV-algebra, B = [0,1] in G(B), and it remains to
show that 0 ∈ G(B) is singular. Thus let 0 = ab with a, b � 1 hold in G(B). Then a = 0b−1 ∧1 =
b · 0, whence a ∨ b = 1. �
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Remark. The structure group G(B) of a Boolean algebra B is a Specker group, i.e. an l-group
generated as a group by its singular elements (see, e.g., [13,27]). By Nöbeling’s theorem [30],
G(B) is free as an abelian group, i.e. G(B) ∼= Z

(C) for a suitable subset C of B .

We conclude with some further examples of L-algebras.

Example 1. Let Ω be a partially ordered set, and Ω̂ := Ω ∪ {1}, where x < 1 for all x ∈ Ω . We
can regard Ω̂ as a KL-algebra by defining

x · y :=
{

1 if x � y,

y if x � y
(37)

for all x, y ∈ Ω̂ . In fact, (37) implies that 1 is a logical unit, and it is easily verified that Ω̂ is a
KL-algebra. Recall that Ω is said to be a tree if ↓x is a chain for any x ∈ Ω .

Proposition 20. Let Ω be a partially ordered set. Then

(a) Ω̂ is self-similar ⇔ Ω = ∅.
(b) Ω̂ is semiregular ⇔ Ω is a tree.
(c) Ω̂ is a left hoop ⇔ Ω is linear.
(d) D(Ω̂) = 1 ⇔ Ω is an antichain.

Proof. (a) For any x ∈ Ω , there is no y ∈ Ω̂ with x · y = x. Hence Ω cannot be self-similar
unless Ω = ∅.

(b) Suppose that x, y ∈ Ω are incomparable, and x, y < z for some z ∈ Ω . Then (R) is violated
for these x, y, z. Conversely, let Ω be a tree, and x, y, z ∈ Ω̂ . If x and y are incomparable, then
(R) becomes (y · z) · (x · z) = (y · z) · z, which holds if z = 1 or x � z < 1. If x � z, then y � z,
and the equation is valid. In case x � y, the Eq. (R) holds by virtue of (K), while (R) is trivial for
x > y.

(c) Suppose that x, y ∈ Ω are incomparable, and Ω̂ is a left hoop. Then xy < x and xy < y,
which yields x � xy = y · xy, a contradiction. Conversely, let Ω be linear. Then xy := x ∧ y

makes Ω̂ into a hoop.
(d) An element x ∈ Ω̂ is dense if and only if there exists some y � x with x ·y = y, i.e. y < x.

Thus x is dense if and only if x is not minimal. �
By Theorem 4, the map q : Ω̂ → G(Ω̂) is injective if and only if Ω is an antichain. If Ω is

an antichain, then S(Ω̂) is commutative, and G(Ω̂) is the free abelian group generated by Ω .

Example 2. It is easily checked that an L-algebra X is a (dual) BCK-algebra [25] if and only if

x · (y · z) = (y · x) · z (C)

holds for all x, y, z ∈ X. Such algebras have been studied by Traczyk [35]. For any x ∈ X, it then
follows [35] that the L-subalgebra {y · x | y ∈ X} of X is an MV-algebra.
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Example 3. By Example 2 and [28], a Hilbert algebra [15] is an L-algebra X which is left
self-distributive, i.e. for which

x · (y · z) = (x · y) · (x · z) (38)

holds for all x, y, z ∈ X. As logical systems, Hilbert algebras characterize the implications which
satisfy the deduction theorem (see [24]).

For a poset Ω , the L-algebra Ω̂ of Example 1 is a Hilbert algebra. Furthermore, the set O(X)

of open sets of a topological space X is a complete Heyting algebra, hence a Hilbert algebra,
with

U · V := X � U � V . (39)

Proposition 21. A Hilbert algebra X is semiregular if and only if

(x · y) ∨ (y · x) = 1 (40)

holds for all x, y ∈ X.

Proof. Assume that X is semiregular, and x · y, y · x � z. Then (R) yields z = 1. Conversely, let
(40) hold. For x, y, z ∈ X, we have (x · y) · z � ((y · x) · z) · ((x · y) · z) = (x · y) · (((y · x) · z) · z),
which gives x · y � ((x · y) · z) · (((y · x) · z) · z) =: t . Furthermore, y · x � ((y · x) · z) · z � t .
Hence (40) yields t = 1. Therefore, with a := (x · y) · z and b := (y · x) · z, Eq. (38) gives
(a · b) · (a · z) = a · (b · z) = t = 1. Whence (R) follows. �
Remark. In the self-similar closure S(X), the defining equation (38) for a Hilbert algebra X can
be written as xy · z = (x ∧ y) · z. While z is restricted to X, this does not imply that S(X) is
commutative. By Proposition 19, S(X) is commutative if and only if X satisfies Eq. (33). Such
Hilbert algebras X are equivalent to implicative BCK-algebras [25]. As in the preceding remark,
the structure group G(X) of an implicative BCK-algebra X is a Specker l-group, and X then
consists of the singular elements in the negative cone of G(X).
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