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We study the non-linear gravitational collapse of dark matter into
halos through numerical N-body simulations of Lemaître–Tolman–
Bondi void models. We extend the halo mass function formalism to
these models in a consistent way. This extension not only com-
pares well with the simulated data at all times and radii, but it also
gives interesting clues about the impact of the background shear
on the growth of perturbations. Our results give hints about the
possibility of constraining the background shear via cluster num-
ber counts, which could then give rise to strong constraints on gen-
eral inhomogeneous models, of any scale.

� 2012 Elsevier B.V. Open access under CC BY-NC-ND license. 
1. Introduction

Lemaître–Tolman–Bondi (LTB) void models have been proposed as a viable alternative to dark
energy. In these models one considers the possibility that we might live inside a large underdense
region (a void) and that the apparent accelerated expansion of the Universe is only due to a misinter-
pretation of the observations in terms of a homogeneous background [6,32,33] in which the expansion
rate is the same everywhere. The coincidence problem of KCDM (why now?) is substituted in these
models by a violation of the Copernican Principle (why here?), since, in order to accommodate the
observational constraints coming from the isotropy of the CMB and the matter distribution, the
position of the observer is restricted to be very close (�1%) to the center of a highly spherical void.
However, their ability to explain away many evidences for dark energy without any dark component
has made LTB models a very attractive possibility.
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It has been shown [1,9,10] that a gigaparsec-sized void can reproduce reasonably well the dis-
tance–redshift relation deduced from current type Ia supernovae data. However, when these are com-
bined with other cosmological probes, LTB models run into trouble. In particular, these models tend to
predict a very high kSZ effect, due to the background contribution [11,34,36]. Also measurements of
the local expansion rate combined with the full CMB power spectrum seem to be incompatible, the
former being too low in LTB models [4,23], and more recently it has been shown that the latest
BAO and SNe-Ia data show some tension too [37].

Nevertheless, research along these lines has been very fruitful: these models have made us recon-
sider a non-standard approach to cosmology, using the machinery developed around them we have
been able to consider observational effects due to the presence of large voids in a KCDM cosmology
[18,21,29], and we now understand much better the evolution of perturbations in an inhomogeneous
background [7,24,35].

In a previous paper [2] we presented the first N-body simulations of LTB models, focusing on ensur-
ing that the background evolution was correctly reproduced. In the present work we have performed
the first study of halo statistics of one of the higher resolution simulations, and give predictions
regarding the non-linear accretion of dark matter halos in void models. We will focus solely on the
mass function and present a simple modification to the Press–Schechter theory allowing to accommo-
date and explain the effects introduced by using an LTB void model.

The main interest of this approach is not just the characterization of halo abundances in LTB models,
but a means to potentially distinguish whether the background space–time is FRW or not. Here dark
matter halos act as probes of the growth of density perturbations and their mass function was extremely
sensitive to the presence of a finite background shear in large inhomogeneous voids of the LTB type.

Moreover, we believe that smaller voids created due to the usual non-linear gravitational collapse
associated with the cosmic web must also induce similar effects in the halo mass function, although at
much smaller scales. If the approach used in the present work were applicable to these smaller voids,
the reported contribution from the background shear could be included in the study of environmental
effects on halo formation [14,22].

2. Theory

2.1. The LTB metric

The Lemaître–Tolman–Bondi metric describes spaces with maximally symmetric (spherical) two-
dimensional surfaces, and is given by
ds2 ¼ �dt2 þ A02ðt; rÞ
1� kðrÞdr2 þ A2ðt; rÞdX2; ð1Þ
for a matter source with negligible pressure and no anisotropic stress (Tl
v ¼ �qMðt; rÞd

l
0 d0

v). The func-
tion A(t, r) acts as an r-dependent scale factor. It is easy to see that in this framework the rates of
expansion in the longitudinal (r) and transverse (h, /) directions are, in general, different (HT � _A=A,
HL ¼ _A

0
=A0). With this setup, the Einstein equations can be written as an effective Friedmann equation

for a fixed r:
H2
Tðt; rÞ ¼ H2

0ðrÞ
"
XðrÞ A3

0ðrÞ
A3ðt; rÞ

þ ð1�XðrÞÞ A2
0ðrÞ

A2ðt; rÞ

#
; ð2Þ
where A0(r) � A(t0, r) can be gauged to A0(r) � r, H0(r) � HT (t0, r) and X(r) is the ratio between the
average matter density inside a sphere of radius r and the critical density at that radius, and acts as
an effective r-dependent matter parameter.

The density profile of our simulated void follows the constrained-GBH model [10]. In it the free
function X(r) is parametrized by the central underdensity Xin, the void radius r0 and the width of
the transition void-background Dr/r0. The other free function H0(r) is fixed by requiring a homoge-
neous Big Bang. This means that the void is a pure growing mode that disappears at very high redshift
[35]. We fix the underlying Friedmann–Robertson–Walker cosmology outside the void to be



Fig. 1. Normalized shear parameter e for the simulated LTB model.
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Einstein–de Sitter. For a more thorough discussion of the LTB metric and the constrained-GBH model,
we refer the reader to [9,10].

2.2. Linear perturbations and shear

Although the equations describing perturbation theory in LTB models exist [7], we do not yet have
a good understanding of their implications. The main problem arises from the background not being
homogeneous, and therefore the perturbations cannot be split into irreducible representations of
SO(3) with decoupled equations. In particular, the scalar modes couple to the vector and tensor modes
through the background shear tensor. The background shear can be quantified as a normalized shear-
to-expansion ratio
e �

ffiffiffiffiffiffiffiffiffiffiffi
2
3

R2

H2

s
¼ HT � HL

2 HT þ HL
; ð3Þ
where R2 = RijR
ij is the square of the background shear, and H the expansion parameter of a congru-

ence of comoving geodesics (see [12] for further details). For voids of practical interests this shear
parameter is usually small (in particular for the simulated model e [ 0.06, see Fig. 1). Hence one
would think that background shear effects can be neglected, in which case the equations for the den-
sity perturbations reduce, at a fixed radius r, to those of an FRW universe with the corresponding
effective cosmological parameters at that r. We write this solution as
d0ðt; rÞ / DðXðrÞ;Aðt; rÞ=A0ðrÞÞ; ð4Þ
where
DðX; aÞ � 5
2

Xh2HðX; aÞ
Z a

0

da0

½a0ðX; a0Þ�3

¼ a � F1 1;2;
7
2

;
X� 1

X
a

� �
ð5Þ
is the growth factor in an Open CDM universe with matter parameter X, with 2F1(a, b ; c ; z) the Gauss
hypergeometric function. The full density perturbation equation has the form [7,25]
€dþ 2HT
_dþ ð4 _HT þ 6H2

TÞd ¼ OðR
2; d2Þ: ð6Þ
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In the small shear limit, R ? 0, we propose the following Ansatz as an approximate solution
daðt; rÞ ¼ d0ðt; rÞð1þ a�ðt; rÞÞ; ð7Þ

where the parameter a could, in principle, depend mildly on (t, r), and possibly also on the cosmolog-
ical parameters.

2.3. The mass function in LTB models

Most of the information about the non-linear accretion of dark matter halos is encoded in the mass
function n(M) dM: the comoving number density of halos with mass M 2 (M, M + dM). The first the-
oretical description of the mass function was developed by Press and Schechter [27] (PS hereon) and
later re-derived and extended by Bond et al. in the so-called excursion set formalism [5]. Within this
framework the abundance of halos can be predicted as the abundance of points in space in which the
linear density contrast d smoothed over a scale corresponding to the mass M has crossed the spherical
collapse threshold dc = 1.686. Although the PS prediction describes qualitatively well the mass func-
tion, it fails to reproduce its details (overpredicting the density of low mass objects and underpredict-
ing massive ones). Nevertheless it is a remarkable achievement that one can estimate the abundance
of non-linear structures using only linear perturbation theory and the assumption that d is Gaussian-
distributed. The PS formula has been perfected using ellipsoidal collapse and empirical parametriza-
tions [28,31], so that n(M) can be calculated to very good accuracy, often using one of the main results
from this formalism: the mass function should be a universal (cosmology-independent) function of
the variance of the linear density contrast field r(M, z) [15]. Here we will use
nðM; zÞ ¼ qM

M
gðrÞ

���� d ln r
dM

����; ð8Þ
where r � r(M, z) and g(r) is given by [26]:
gðrÞ � abvb þ 2cv2ð1þ av2Þ
ð1þ avbÞ2

expð�cv2Þ:

ða; b; cÞ ¼ ð1:529;0:704;0:412Þ; v � dc=r
We have also tried other parametrizations of the mass function [28,31] and checked that our results
did not depend significantly on this choice.

We follow the same rationale in order to calculate the mass function of halos at a given r and t in an
LTB model: since the simulated void arises from a purely growing mode (i.e., the Big Bang time is
homogeneous), and perturbations grow in a self-similar fashion, it is reasonable to assume that, in or-
der to calculate the variance of dM at (t, r), we should rescale the variance rout(M, z) of the density per-
turbations outside the void, by a factor
f ðt; rÞ ¼ daðt; rÞ
daðt; r !1Þ

; ð9Þ
where the density contrast is computed theoretically according to Eq. (7), and evaluated in Fig. 2, with
and without the shear correction. Thus, our model for the mass function n(M, z, r) at a given radius r is
Eq. (8) with r(M, z) substituted by rout(M, z) f(t, r).

Note however, that our main results will be quoted in terms of the cumulative mass function with-
in a sphere of radius r centered at the origin of the LTB patch:
nð> M; < r; zÞ � 3
4p r3

Z r

0
r02dr0

Z 1

M
dM0 nðM0; r0; zÞ; ð10Þ
since this observable has better statistics.

3. The simulation and the halo catalog

A more detailed description of the simulation we have used can be found in [2] (simulation H). It
has 9603 particles in a box of size L = 2400 Mpc h�1, which sets the mass resolution to mp = 4.2 �



Fig. 2. Cumulative mass function for halos inside spheres of different radii compared with the theoretical prediction without
the background shear correction (a = 0, top panel) and with a first-order shear correction, where a = 2 " r, t (bottom panel).
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1012M� h�1. The simulated void has a size of r0 = 1100 Mpc, a transition width of Dr/r0 = 0.3 and an
underdensity of Xin = 0.25 (see Section 2.1). The background cosmology is Einstein–de Sitter
(X = 1) with hout = 0.43. The small-scale perturbations are set using a power spectrum with ns = 1
and r8 = 0.9. It must be noted that an LTB void with these parameters is in fact ruled out, since the
supernovae and baryon acoustic oscillation data seems to be mutually in conflict given a particular
LTB profile [37]. We only use this simulation with a large background shear as a toy model to test
our Ansatz about the mass function. The technique used to simulate LTB voids is based on setting
the initial conditions (ICs) appropriately by modifying the IC generator to take into account the
large-scale perturbation induced by the presence of the void. This must be done at a high enough red-
shift so that the void can be regarded as a linear perturbation. A modified version of the 2LPT code [8]
was used for this stage. Once the ICs are set, they are plugged into Gadget2 [30], which we run in pure
tree-mode.

The halo catalog has been extracted using the AMIGA halo finder AHF [13,17]. It maps the particle
content to an adaptively smoothed density field and locates the position of possible halos as local
overdensities. Once the gravitationally bound particles around these have been extracted, the extent
and mass of each halo is computed as:



Fig. 3. (Top) Dependence of n2
N (Eq. (12)) with the value of the shear correction term a at different r and t. (Bottom) Best-fit

value of a for different radii and redshifts, showing a mild evolution with r.
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MðrvirÞ ¼
4p
3

r3
virqc �; ð11Þ
where we have used D = 200 as a collapse threshold (e.g., [16]).
4. Results

Once the halos have been identified, we can compute n(>M, <r, z) merely by counting the number of
halos with mass above M inside a sphere of radius r and dividing by the comoving volume of this
sphere. The results are shown in Fig. 2. It is easy to see (top panel) that, while approximating the
growth of perturbations by its 0th order in e (Eq. (4)) yields a reasonably good fit at small and large
radii (where the background shear vanishes), it fails to reproduce the halo abundances at intermediate
radii. In the bottom panel we can see, however, that adding a non-zero first-order correction (Eq. (7))
solves this problem. Furthermore, we have found that this correction seems to be almost independent
of r and t, with a � 2.

We have quantified the goodness-of-fit of our approach (with and without the shear correction
term) using the measure:



Table 2
Goodness - of - fit of our theoretical approach with and without a first - order shear correction for
different redshifts (summing over all radii).

z n2
N (a = 0) n2

N (a = 2)

0 1.620 0.072
0.2 1.163 0.065
0.35 1.411 0.042
0.5 0.667 0.047
1 3.494 0.824

Table 1
Goodness - of - fit of our theoretical approach with and without a first - order shear correction
for different radii at z = 0. Similar results hold at all other redshifts (see Table 2).

r (Mpc) n2
N (a = 0) n2

N (a = 2)

300 0.093 0.112
600 0.682 0.104
900 8.321 0.173
1200 2.394 0.047
1500 1.474 0.072
1800 0.478 0.050
2100 0.177 0.032
2400 0.095 0.061
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n2
Nðr; zÞ �

1
N � 1

XN

i

nð> Mi; < r; zÞ � niðrÞ
nð> Mi; < r; zÞ

� �2

: ð12Þ
Here n(>M, <r, z) is given in Section 2.3, ni(r) is the cumulative mass function obtained from the sim-
ulation for a mass Mi within a sphere of radius r, and N is the number of mass bins. Fig. 3 (top panel)
shows the value of n2

N for different choices of a at different r and z. A value of a � 2, found as the med-
ian of the best-fit values for all the calculated curves, gives a good fit in all cases with only a very mild
dependence on r and t (shown on the bottom panel of Fig. 3). The improvement due to the shear-cor-
rection term can also be seen in Table 1, in which we have calculated the goodness-of-fit with and
without the shear correction for different radii at z = 0. Table 2 shows the same result for different red-
shifts summing over all radii. This improvement is especially evident at intermediate radii, where e is
larger and therefore its effects more important.

It would be extremely interesting to investigate whether and how the value of a depends on the
cosmological parameters: if this parameter turned out to be independent of the void model, one
should be able to predict its value from some approximation in perturbation theory. However, this
is work in progress and we defer the presentation of it to future work that will also make use of better
resolved simulations.
5. Discussion and conclusions

We have extracted the halo content from an LTB N-body simulation and analyzed the halo abun-
dances at different masses and radii. The main conclusions from this study are:

	 The theoretical description of the halo mass function in FRW cosmologies can be fully extended to
LTB void models by adding just one parameter (a) that accounts for the effect of the background
shear on the evolution of matter density perturbations.
	 The value of this parameter (�2) seems to be constant in time and only mildly dependent on the

position in the void. Whether this value depends weakly on the void model is still work in progress.
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If the shear correction turns out to be practically independent of the void model parameters, halo
abundances could potentially be used to constrain the amount of background shear, a crucial test for
general inhomogeneous cosmological models. A toy model that has been considered in the past in
connection with LTB scenarios, and which could benefit from our analysis of background shear, is
the Swiss-cheese model [3,19,20]. We leave such investigation for the future. It is also worthwhile
exploring whether our results apply to voids of astrophysical scales, of tens of Mpc, since they could
have an effect on the modeling of the environmental dependence of dark matter halo properties, as
well as the backreaction of non-linear gravitational collapse on the background evolution.
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