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a b s t r a c t

Fractional (non-integer order) calculus can provide a concise model for the description
of the dynamic events that occur in biological tissues. Such a description is important
for gaining an understanding of the underlying multiscale processes that occur when, for
example, tissues are electrically stimulated or mechanically stressed. The mathematics
of fractional calculus has been applied successfully in physics, chemistry, and materials
science to describe dielectrics, electrodes and viscoelastic materials over extended ranges
of time and frequency. In heat and mass transfer, for example, the half-order fractional
integral is the natural mathematical connection between thermal or material gradients
and the diffusion of heat or ions. Since the material properties of tissue arise from the
nanoscale and microscale architecture of subcellular, cellular, and extracellular networks,
the challenge for the bioengineer is to develop new dynamic models that predict
macroscale behavior from microscale observations and measurements. In this paper we
describe three areas of bioengineering research (bioelectrodes, biomechanics, bioimaging)
where fractional calculus is being applied to build these new mathematical models.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

The complexity of all living systems is expressed in the structure and function of each cell and tissue. Thus, the biological
functions of cardiac muscle, articular cartilage and the spinal cord, for example, are embedded in the three-dimensional
structure of each tissue’s cells, extracellularmatrix, and overall anatomical organization. In the heart, tight electrical contacts
between cardiac cells ensure that the pacemaker signals are distributed sequentially to the atria and ventricles; in the knee,
the multiple layers within hyaline cartilage distribute transient loads by the rapid movement of ions and water; while
in the axons of the spinal cord, sensory input and reflexes are expressed via electrical signals – action potentials – that
are directed through complex neural networks. The physiologist seeks to understand such complex behavior by gently
probing the cell and tissue environment and by developing mathematical models that describe the resulting perturbations
(e.g., ECG changes, gait variation, evoked potential latency). These mathematical models are typically constructed using
linear differential equations (LDE) and provide a means for predicting the time variation of the experimentally measured
fields, forces and flows that regulate biomechanical, neural and hormonal processes [1].
For many physiological systems LDE models are highly successful (e.g., action potential propagation, blood oxygenation

and filtration, and feedback control of insulin secretion) and thesemodels provide the basis for our understanding of normal
physiological homeostatis, as well as the changes in system dynamics that bring on or are the consequences of disease.
Physiological models describe events both at the molecular level (ion transport, gas diffusion, vesicle formation) and at
the organ level (blood clearance, oxygen uptake/gram tissue, muscle tension). As a consequence, much current work in
biophysics and physiology is directed at interconnecting molecular process with accurate models of organ (brain, heart,
and muscle) function by developing new models that span the intermediate levels of structure between the centimeter
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Fig. 1. Illustration of the relationship between the principal kinds of models used for describing complex systems. For conventional linear time-invariant
causal (LTIC) models the governing differential equations take on only integer order.

dimensions of gross anatomy and the submicron resolution of histology. In building multiscale models one can try either to
employ as much anatomical and histological knowledge as possible – building a highly complex structure with hundreds of
components (organelles,membranes, cells, extracellularmatrix, etc.) – or to deal empiricallywith the complexity by defining
probabilistic, chaotic or fractal measures (fractal dimensions, Lyapunov exponents, non-Gaussian probability distributions)
that capture important features of the observed behavior [2,3]. A diagram illustrating some of the relationships between
these approaches is shown in Fig. 1. In this figure the models are characterized on the X-axis by their degree of linearity
and on the Y -axis with respect to their deterministic nature. Linear time-invariant causal (LTIC) system models cluster in
the first quadrant, while stochastic, probabilistic models fall in the fourth quadrant [4]. In this representation the methods
of fractional calculus (linear, deterministic) bundle together in Fig. 1 within the LTIC systemmodels where they interpolate
between the integer order differential operators and extend conventional dynamics to fractional order [5]. In practice, it
is our belief that such fractional calculus models with differential equations of order α and β can describe more complex
biological systems by extending the scales (time and space) over which the models are effective and thus expand the range
of phenomena under study [6].
Just as bioinformatics seeks to construct better models connecting gene expression with protein structure and function,

bioengineering strives to develop new mathematical tools for describing the complexity of cells and tissues. We might
expect that increasing system complexity and connectivity will simply addmore nodes and branches to systemmodels and
networks. This is the case in molecular dynamics where improvedmolecular detail provides new information about protein
folding and function. But such detailed models are generally intra-molecular and can only predict dynamic behavior for a
fraction of a microsecond. Thus, a key bottleneck in modelling complex systems is the trade-off between resolution in space
and time. As system complexity grows, we must increase the size of our data arrays and the computational speed of our
computers; or alternatively, we must restrict our models to single molecules or to processes occurring on extremely short
time scales.
In science and engineering, as in finance, one does not usually get something for nothing. If with increasing complexity

conventional LTIC models fail to capture essential details, and if non-linear models exhibit a narrow range of applicability,
then what features of fractional order calculus models lead us to believe in their increased relevance to complex systems?
First, fractional order models extend our concepts of differentiability and incorporate non-local and systemmemory effects
through fractional order space and time derivatives [7]. These features allow us to model phenomena across multiple time
and space scales without having to partition the problem into smaller and smaller compartments. The extent to which
a fractional order model will span multiple scales (the nanoscale, microscale, mesoscale, and macroscale) is based on an
underlying presumption that fractional derivatives can limn or capture salient features of complex tissue structure. Thus,
we overcome the need to define the tissue properties at each level (or unit cell) of our model; they are embedded in an
assumed fractal structure. Currentwork in fractional calculus is directed at answering the questions ofwhere andwhen such
models are valid, but we note that themultiscale patterns observed inmuscle fibers (actin, myosin, filaments, fibrils, fibers),
tendon (collagen, tropocollagen, fibrils, fibers, fascicles), and nerve fibers (small, medium, large diameter axons) provide
a structural rationale for our hypothesis that multiscale structure is effectively encoded in fractional order operations and
that the resulting dynamics are expressed through fractional order differential equations.
The extension of linear systemsmodels to include fractional ordermethods requires learning a newmathematical tool; a

toolwithwhich there are substantial issues associatedwith identifying the appropriate initial conditions and in selecting the
proper definition of fractional integration to be used for a given problem [8–11]. Thus, moving to fractional order techniques
is not as smooth a transition as that which arises when onemoves from an ordinary to a partial derivative, or from a single to
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Fig. 2. A drawing of the complex, multiscale neural pathways (hair cells, axons, synapses, neurons) in the vestibular apparatus of the inner ear (adapted
from [14]).

a multiple integral. A better metaphor, perhaps, would be the extension of the Riemann integral to the Stieltjes or Lebesgue
integral, but even that generalization of integralmeasure does not quite capture the yin and yang of the relationship between
fractional calculus and ordinary calculus. One probably has to go as far as Dirac did in inventing the so-called Dirac delta
function (or as Heaviside did in inventing and applying to transient analysis the step function) to appreciate the full range
of operations affected.
For example, in conventional calculus the derivative of a unit step function or of a Dirac delta function is not strictly

defined; this shortcoming is circumvented in generalized function calculus by defining a generalized — everywhere
differentiable — function. In fractional calculus, discontinuous functions such as the unit step and the Dirac delta can be
evaluated (as can other discontinuous, even fractal functions), but on the other hand, some of the simple properties of
differentiation are lost (e.g., the derivative of the product of two functions). Thus, in applying fractional calculus one must
always be on guard to check that the desiredmathematical operations – and the sequences of these operations – are allowed.
Despite these restrictions, fractional order models are now being applied to a wide range of problems in bioengineering.

In this paper I will first consider a general model of vestibulo-oculomotor system that provides a rationale for fractional
dynamics as a distributed relaxation process, and then describe briefly examples from three areas of bioengineering: (i) the
electrical impedance of the electrode–tissue interface (a key problem in pacemaker design), (ii) the stress–strain behavior of
arterial viscoelasticity and hysteresis (important predictors of heart disease), and (iii) the bulk elastic properties of normal
and cancerous breast tissue (malignant and benign). The goal is to illustrate how fractional calculus extends the conventional
R–C circuit, spring–dashpot, and simple exponential decay models in such a way that the dynamic behavior of the system
is more closely tracked over the range of observed physical and physiological variables.

2. Fractional dynamics model

A fractional order model is commonly used to describe the behavior of neural systems [6]. A simple example is the
vestibular-oculomotor system modeled by Anastasio [12,13] in the Laplace domain as sk or s−k, where 0 < k < 1. The
occurrence of sk behavior in the transfer functions for the neural components of vestibulo-oculomotor systems suggests that
its putative role in sensory adaptation reflects a need to control or monitor the underlying biological, physical, or chemical
mechanisms. The occurrence of power law transient and dynamic behavior in non-living systems (dielectrics, viscoelastic
materials, and electrochemical reactions) implies that the fundamentalmechanism is not unique to the anatomical structure
or neurological connections of living systems, but most likely reflects diffusion and spatially distributed processes. Thus,
the subthreshold behavior of axons, which mimic at their most basic level lossy (RC) transmission lines with fractional
impedance relationships, could play a role in understanding synapse complexity, dendritic convergence and generator
potential initiation. For example, the convergence of unmyelinated afferent and efferent nerve fibers in the vestibular
neuroepithelium has been suggested as an anatomical site where summation of excitatory and inhibitory postsynaptic
potentials can occur (see Fig. 2).
In a paper on distributed relaxation processes in sensory adaptation, John Thorson and Marguerite Biederman-

Thorson [14] reviewed earlier interpretations for fractional dynamics (non-linear spring, transmission line, and Gaussian
distribution of exponential rate constants), which they found, for the most part, to provide an incomplete explanation for
the wide dynamic range of sensory adaptations. They subsequently suggested a model based on the weighted summation
of exponentials, which as the number of elements increases toward infinity describes fractional order dynamic behavior.
This concept has more recently been used by Anastasio [13] to approximate fractional order operators in his analysis of the
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vestibulo-ocular system. The basic idea developed by Thorson andBiederman-Thorson is to represent a power law relaxation
decay in time (e.g., t−k, where 0 < k < 1) by a sum of exponentials weighted in an appropriate manner. Starting with the
integral definition of the gamma function [6],

0(k) =
∫
∞

0
xk−1e−xdx, k > 0, (2.1)

if we let x = ta, where t is assumed to be a parameter greater than zero, then we can solve for t−k to yield

t−k =
1
0(k)

∫
∞

0
ak−1e−atda. (2.2)

This integral can be interpreted as the Laplace transform of the function ak−1/0(k). Hence, we see that (2.2) provides a
representation for the power law decay as a weighted integral of exponentials. Thus, between the values of a and a + da
there exists an exponential e−at with aweight, ak−1/0(k). Here a has the units of (s)−1, and can be viewed as a rate constant.
The overall power law relaxation given by (2.2) is the summation of all these contributions for the entire range of possible
rate constants. In order to convert this time domain representation into amodel for fractional operationswe take the Laplace
transform of both sides of (2.2). Since

L
{
t−k
}
=
0(1− k)
s1−k

, k < 1, (2.3)

and assuming that we can interchange the order of integration for a and t we obtain

sk−1 =
1

0(k)0(1− k)

∫
∞

0

ak−1

s+ a
da, (2.4)

which is the Stieltjes transform of ak−1/0(k)0(1− k). Finally, solving for sk and if we let a = 1/τ where τ is the relaxation
time corresponding to a particular value of awe obtain

sk =
1

0(k)0(1− k)

∫
∞

0
τ−k

(
τ s

τ s+ 1

)
dτ
τ
. (2.5)

Thus, in this interpretation, we see that the fractional derivative operator is represented as an integral or summation of
Laplace domain terms each of which correspond to a high-pass filter, and by a similar derivation the fractional integral
operator is expressed in terms of an integral of low-pass filters [6]. This is a unifying hypothesis for interpreting themeaning
of a fractional order operator because it extends in a natural way the usual progression of modeling linear systems as a
series of exponentials. In general, as the complexity of a model increases, typically we increase the degree of the integer
order transfer function. Fractional order transfer functions capture some of this complexity in their very definition so fewer
individual elements of each subsystem have to be assumed and approximated.

3. Bioengineering applications

Distributed relaxation processes appear to be common in cells and tissues. Therefore, it should not be surprising to see
that fractional calculus canplay an important role in describing the input–output behavior of biological systems. The physical
foundations for this behavior may be sought in the fractal or porous structure of the system components or in the physical
characteristics of its surfaces and interfaces. Much work [7] is ongoing to develop a direct link between fractal models
of molecules, surfaces, and materials and the fractional kinetics or dynamics of the resulting behavior (polymerization
electrochemical reactions, viscoelastic relaxation).
A major attribute of fractional dynamic models is that they interpolate between the known integer order behavior by

extending the transfer function models from rational algebraic functions of the Laplace transform parameter s to irrational
functions f (s) involving fractional powers of s. This is a natural approach that extends the traditional Laplace transform
methods of linear systems analysis [6]. Thus, the fractional dynamics hypothesis is accessible to the engineer and scientist
through both Laplace and Fourier techniques (for s = jω where j is the square root of minus one and ω is the angular
frequency in radians/s). In the following we consider three examples that illustrate aspects of this approach.
Fractional order circuit elements, such as, the impedance: Z = Z0/(s)α or Z = Z0/(jω)α , where 0 < α < 1, have long been

recognized as providing a useful model for the transient and the sinusoidal steady state frequency response of dielectrics,
biological tissues and bioelectrodes — for a review see the work of Magin and Ovadia [15,6], and a recent book Grimnes and
Martinsen [16]. Fractional order circuit elements can be used to develop an electrical circuit model of complex processes,
such as, the electrode–cardiac tissue interface of a pacemaker electrode (Fig. 3). A lumped element circuit model for the
cardiac tissue/electrode interface is given in Fig. 4. Such models are essential for designing cardiac pacemakers, which must
continuously monitor the electrical activity of the heart, and when needed, deliver missing or delayed signals. Fractional
calculus appears in the model through the fractional order (or constant phase, Z = Z0ωαej arctan(πα/2)) circuit element ZD
that governs diffusion limited electrochemical reactions at the surface of the electrode.
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Fig. 3. A drawing of the tissue–electrode interface between cardiac muscle cells and an implanted electrode (redrawn from [15]).
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Fig. 4. Tissue–electrode circuit model. RB is the bulk tissue resistance, Ra1 and Ra2 are electrode access resistances, θ is the charge transfer resistance, C is
the dipole layer capacitance and ZD is the fractional Warburg impedance.

If we assume that C , the dipole layer capacitance, is small enough that its reactance can be neglected in comparison with
ZD, then the tissue–electrode equivalent circuit reduces to a resistor in series with ZD, which can be approximated by two
constant phase elements in series. Thus, in the Laplace domain, the overall impedance can be written as

z(s) =
v(s)
i(s)
= R+

1
sαCα
+

1
sβCβ

. (3.1)

The corresponding impedance plane plot for (3.1) is shown in Fig. 5 for the simple case of α = 1/2 and β = 1. Such plots
match the data measured in experimental studies by Ovadia and Zavitz, [17]. The transient voltage response of this circuit
to a step in applied current, such as the leading edge of a pacemaker pulse, is described in the time domain by

V (t) = I0R+
I0tα

Cα0(1+ α)
+

I0tβ

Cβ0(1+ β)
, (3.2)

which gives a power law response that corresponds to that observed in heart stimulation experiments [18].
Thus, we observe that the basic cardiac tissue electrode impedance can be represented by a series combination of a

resistor and two fractional lumped circuit elements. The overall transfer function for thismodel corresponds to the following
fractional differential equation:

Cα
dαV (t)
dtα

= RCα
dα I(t)
dtα

+ I(t)+
Cα
Cβ

dα−β I(t)
dtα−β

, (3.3)

if we assume α > β and set all initial conditions to zero.
We can use the correspondence between RC electric circuits and viscoelastic networks of springs and dashpots to

construct similar fractional order dynamic models for the biomechanical properties of tissues [19]. For example, [20]
have modelled the elastic properties of the aorta, in vivo in a Merino sheep, using a fractional order generalization of the
relationship between stress σ(t) and strain ε(t). Their generalized Voigt model consists of a spring in parallel with two
‘‘springpots’’ of fractional order α and β . The governing fractional order differential equation is

σ(t) = E0ε(t)+ η1
dαε(t)
dtα

+ η2
dβε(t)
dtβ

, (3.4)

where E0 is the elastic constant for a spring, and η1 and η2 represent the viscosities of two springpots in parallel with the
spring. From this equation the complexmodulus E∗(ω) can be defined for sinusoidal signals as the ratio of stress to strain by

E∗(ω) =
σ(ω)

ε(ω)
= E0 + η1(jω)α + η2(jω)β . (3.5)
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Fig. 5. Impedance plane plot for two constant phase element impedances in series with a resistor. In this example, we set R = Cα = Cβ = 1, and α = 1/2,
β = 1 (redrawn from [17]).
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Fig. 6. Vector diagram (complex plane plot) of (3.5) for in vivo modulus data from an aorta under control conditions and following application of a
vasoconstrictive agent phenylephrine (redrawn from, [21]). In this figure, for the control data we have used E0 = 393 kPa, α = 0.20, η1 = 32.6 kPa sα ,
β = 0.84, and η2 = 1.07 kPa sβ ; and for the muscle activation with phenylephrine we have used E0 = 411 kPa, α = 0.11, η1 = 82.2 kPa sα , β = 0.80,
and η2 = 2.73 kPa sβ .

The real part of E∗(ω) is defined as the storage modulus and the imaginary part of E∗(ω) is the loss or dissipation modulus.
The storage modulus characterizes the elastic property of the arterial wall while the loss modulus describes the tissue’s
ability to absorb energy. Both properties change with frequency and govern the pulsatile oscillations of the vessel walls that
help to maintain blood pressure in health and disease. This model was found by Craiem and Armentano to give a better fit
to in vivo data recorded from 2 to 30 Hz than a Voigt model (single spring in parallel with a dashpot) or a fractional Voigt
(single spring in parallel with single springpot). A vector plot in the complex plane of the complex modulus for this study is
shown in Fig. 6.
In particular, the model (3.5) captures the changes that arise in vessel wall elasticity when a vascular constriction is

induced by the local administration of phenylephrine. The authors conclude that the α springpot appears to describe
the stretching of the elastic fibers of the aorta (α is close to zero), while the β springpot seems to represent a structural
viscous behavior (β closer to 1). As expected the elastic contribution increases – α decreases from 0.20 to 0.11 – following
administration of phenylephrine, while the loss term is relatively unchanged (0.84 to 0.80). Thus, for a complex multiscale
tissue such as the arterial wall, the fractional order model is able to characterize the important features of its dynamic
behavior. This research group has also applied this model to describe the viscoelastic properties of an arterial specimen
from humans [21]. In addition, a very similar fractional order Voigt model was recently shown to fit the elastic modulus and
creep response data recorded from the membrane of a single red blood cell membrane [22].
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Fig. 7. Plot of benign (+) and malignant (�) breast tumor MRE data for 39 patients. These data are replotted from [23].

Fractional ordermodels have also been used by [23] to fit magnetic resonance elastography (MRE) data for breast tumors.
In this technique,MRI is used to image low frequency (50–1500Hz) shearwave oscillations in the breast. Thewavelength and
attenuation of the vibrations directly reflect the elastic shear modulus and the viscosity of the tissue through the complex
wave vector: k(ω) = β(ω)+jα(ω). InMRE these tissue properties aremapped into an elastogram image through an assumed
model of the tissue’s mechanical properties — usually a purely elastic spring with zero loss, or a Voigt spring/dashpot
model. In his study, Sinkus assumed a power law increase in attenuation with excitation frequency, α(ω) = α0ωy (where
0 < y < 1), and invoked causality via the Hilbert transform to obtain the propagation constant as β(ω) = tan(πy/2)α0ωy.
Thus, k(ω) can be written as

k(ω) = α0ωye−jπ/2
√
1+ (tan(πy/2))2. (3.6)

We know that k(ω) is related to the complex shear modulus G∗(ω) through

k(ω) = ω
√
ρ/G∗(ω), and G∗(ω) =

∣∣G∗(ω)∣∣ ejθ , (3.7)
so the modulus and phase can be written, where γ = 2− 2y, as∣∣G∗(ω)∣∣ = ρωγ /α20 (1+ χ2) , and θ = tan−1(Gl/Gd) = πy χ = tan(πy/2). (3.8)
The advantage of this model is that it does not specify a particular Maxwell, Voigt, or Kelvin rheological model, but simply
assumes an underlying fractional order dynamics, ωy, and then estimates the fractional power law parameters y and α0
from the MRE data. Sinkus first verifies this model for a tissue mimicking breast phantom at a fixed frequency of 65 Hz, and
then applies the model to human breast tissue by measuring the dynamic modulus at 65, 75, 85, and 100 Hz. A complex
plane plot of Gd and Gl gives a straight line with a y value of approximately 0.13 for normal tissue. Analysis of 39 malignant
and 29 benign tumors using this method gives a clear separation of the tumors from the normal (and fibrotic) breast tissue,
and furthermore separates the malignant from the benign tumors when individual cases are plotted in a graph (Fig. 7) of y
versus α0 (an increase in specificity of about 20% at 100% sensitivity). In earlier studies this group was not able to classify
breast tumors on the basis of Gd and Gl alone, so this model provides a significant improvement in cancer detection.
In the three examples considered here, fractional order models were found to provide better fits to electrical and

mechanical measurements made on living tissue. Such studies need replication, but these findings provide useful examples
of cases where an extension of the ‘‘standard’’ integer order dynamic models of circuits and mechanical systems is
warranted. Also, the careful work of Heymans [24] on the dynamicmeasurement of viscoelasticity in polymers and other so-
called ‘‘long-memory’’ materials demonstrates how to derive fractional order material properties from experimental data.
Fractional order dynamic models of complex, multiscale systems account for anomalous dynamic behavior in most cases
through a simple extension of the order of the operations from integer to fractional. Perhaps, in the future, the development
of integrated space and time domain fractional order models will become a more standard component of linear systems
analysis, at least as it is applied to living systems. A recent model by Bates [25] shows how power law stress adaptation in
lung tissue can be explained through a sequential recruitment model of parallel Maxwell elements (each simply a spring
in series with a dashpot). Such models naturally include the history or memory of past states embedded in the dynamics.
Clearly, when the structure in living systems is fractal, or when the measured signals exhibit anomalous properties, one
should suspect that the dynamics might best be expressed by fractional order models. Much remains to be done in the
future, and we look to the philosopher Henri Bergson to provide inspiration, for, as Bergson [26] noted in his 1911 work
Creative Evolution, ‘‘Whenever anything lives, there is, open somewhere, a register in which time is being inscribed’’.
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4. Conclusions

Fractional calculus models provide a relatively simple way to describe the physical and electrical properties of complex,
heterogeneous, and composite biomaterials. There is a multiscale generalization inherent in the definition of the fractional
derivative that accurately represents interactions occurring over a wide range of space or time. Thus, we can avoid excessive
segmentation or compartmentalization of tissues into subsystems or subunits — a system reduction that often creates more
computational and compositional complexity than can be experimentally evaluated. Finally, fractional calculus models
suggest new experiments and measurements that can shed light on the meaning of biological system structure and
dynamics. Thus, by applying fractional calculus to model the behavior of cells and tissues, we can begin to unravel the
inherent complexity of individualmolecules andmembranes in away that leads to an improved understanding of the overall
biological function and behavior of living systems.
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