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Abstract

Price’s Law states that linear perturbations of a Schwarzschild black hole fall off as t−2�−3 for t → ∞
provided the initial data decay sufficiently fast at spatial infinity. Moreover, if the perturbations are initially
static (i.e., their time derivative is zero), then the decay is predicted to be t−2�−4. We give a proof of t−2�−2

decay for general data in the form of weighted L1 to L∞ bounds for solutions of the Regge–Wheeler equa-
tion. For initially static perturbations we obtain t−2�−3. The proof is based on an integral representation of
the solution which follows from self-adjoint spectral theory. We apply two different perturbative arguments
in order to construct the corresponding spectral measure and the decay bounds are obtained by appropriate
oscillatory integral estimates.
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1. Introduction and main result

In General Relativity, the dynamics of spacetime is governed by Einstein’s equation which, in
the absence of matter, takes the form

Rμν(g) = 0

where Rμν(g) is the Ricci tensor of the Lorentz metric g. Exact solutions (i.e., solutions which
are known in closed form) include the free flat Minkowski spacetime as well as the Schwarzschild
metric and, more generally, the Kerr solution. The Schwarzschild solution is spherically symmet-
ric and corresponds to a nonrotating black hole whereas rotating black holes are described by the
axially symmetric Kerr spacetime. A fundamental mathematical problem in General Relativity is
the understanding of the stability of these solutions. The stability of the flat Minkowski spacetime
under small perturbations was shown in the seminal work of Christodoulou and Klainerman [15]
in the late 1980’s. A simpler proof was later developed by Lindblad and Rodnianski [37]. How-
ever, we are very far from understanding the dynamics near a black hole. Yet, latest experimental
setups are crucially dependent on such an analysis, in order to observe gravitational waves (see
for example [21,23,24,22] and references therein). Most efforts are now focused on understand-
ing the linear dynamics and stability of such solutions, see e.g. [32,7] and references therein, as
well as [43]. The mathematical aspects of the problem will be discussed below in more detail. We
also refer the reader to the survey [20] which gives an excellent overview of recent developments
in the field from the mathematical perspective.

1.1. Wave evolution on the Schwarzschild manifold

As a first approximation to the linear stability problem of a nonrotating black hole one may
consider the wave equation on a fixed Schwarzschild background. One is then typically interested
in decay estimates for the evolution. To simplify things even more, one restricts the analysis to
the exterior region of the black hole which, however, is physically reasonable: such a model
describes a black hole subject to a small external perturbation by a scalar field—a situation
which, with a more realistic matter model, is certainly relevant in an astrophysical context. In
order to formulate the problem we choose coordinates such that the exterior region of the black
hole can be written as (t, r, (θ,φ)) ∈ R × (2M,∞) × S2 with the metric

g = −F(r) dt2 + F(r)−1 dr2 + r2(dθ2 + sin2 θ dφ2)
where F(r) = 1 − 2M

r
and, as usual, M > 0 denotes the mass. We now introduce the well-known

Regge–Wheeler tortoise coordinate r∗ which (up to an additive constant) is defined by the relation

F = dr

dr∗
.

In this new coordinate system, the outer region is described by (t, r∗, (θ,φ)) ∈ R × R × S2,

g = −F(r) dt2 + F(r) dr2∗ + r2(dθ2 + sin2 θ dφ2) (1)
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with F as above and r is now interpreted as a function of r∗. Explicitly, r∗ is computed as

r∗ = r + 2M log

(
r

2M
− 1

)
.

Generally, the Laplace–Beltrami operator on a manifold with metric g is given by

�g = 1√|det(gμν)|
∂μ

(√∣∣det(gμν)
∣∣gμν∂ν

)

and thus, for the metric g in (1), we obtain

�g = F−1
(

−∂2
t + 1

r2
∂r∗
(
r2∂r∗
))+ 1

r2
�S2 .

By setting ψ(t, r∗, θ,φ) = r(r∗)ψ̃(t, r∗, θ,φ) and writing x = r∗, the wave equation �gψ̃ = 0 is
equivalent to

−∂2
t ψ + ∂2

xψ − F

r

dF

dr
ψ + F

r2
�S2ψ = 0. (2)

The mathematically rigorous analysis of this equation has been initiated by Wald [58], how-
ever, the first complete proof of uniform boundedness of solutions is due to Kay and Wald [34].
Recently, Dafermos and Rodnianski have found a more robust method to prove boundedness
of solutions based on vector field multipliers that capture the so-called red-shift effect [18], see
also [20] for a survey and generalizations of these results. The goal of our present work is to
prove L1 to L∞ decay estimates for Eq. (2). Different types of decay estimates have been proved
before. Local decay estimates, based on multipliers generalizing the Morawetz estimates, were
initiated in [8,10,9]. Later, a similar approach was used in [17,11,18,19,38] to prove both local
decay estimates and pointwise decay in time based on conformal type identities. In [42,41,55,39]
it is shown how to apply such estimates to obtain Strichartz type decay estimates. We also men-
tion the recent work [3]. After submission of the present paper, Tataru announced a proof of
the sharp pointwise t−3 decay for general data without symmetry assumptions, see [54]. More-
over, his result also applies to the more complicated case of rotating Kerr black holes. In fact,
in the follow-up paper [27] we also obtain pointwise t−3 decay on Schwarzschild for general
data. We will discuss this below in more detail. Our results differ from the above in certain
respects: the methods we use are based on constructing the Green’s function and deriving the
needed estimates on it. Previous works in this direction include mainly the series of papers [29,
30,28] where the first pointwise decay result for Kerr black holes has been proved, see also [35]
and [36] for Schwarzschild. In our approach, we freeze the angular momentum � or, in other
words, we project onto a spherical harmonic. More precisely, let Y�,m be a spherical harmonic
(that is, an eigenfunction of the Laplacian on S2 with eigenvalue −�(�+1)) and insert the Ansatz
ψ(t, x, θ,φ) = ψ�,m(t, x)Y�,m(θ,φ) in Eq. (2). This yields the Regge–Wheeler equation

∂2
t ψ�,m − ∂2

xψ�,m + V�,σ (x)ψ�,m = 0
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with σ = 1 where

V�,σ (x) =
(

1 − 2M

r(x)

)(
�(� + 1)

r2(x)
+ 2Mσ

r3(x)

)

is known as the Regge–Wheeler potential. In the present work, we obtain decay estimates for
solutions of this equation. However, before we explain our results in more detail, we further
motivate the study of the Regge–Wheeler equation by considering more general black hole per-
turbations.

1.2. Other types of black hole perturbations

The wave equation on the Schwarzschild manifold describes the time evolution of linearized
scalar field perturbations of a black hole. Of course, not all physically relevant situations are
covered by this simple model since it ignores the underlying tensorial structure altogether.
Eventually, one is interested in perturbing fields of higher spin, in particular gravitational per-
turbations. However, as a remarkable fact, the Regge–Wheeler equation is also relevant in this
context. This follows from a reduction procedure that goes back to Regge and Wheeler [49] as
well as Zerilli [59], see also [57] and [14]. We will briefly sketch how this comes about. In or-
der to study gravitational perturbations, one considers a perturbed Schwarzschild metric g̃ of the
form

g̃ = −e2(ν+δν) dt2 + e2(ψ+δψ)(dφ − δω dt − δq2 dr − δq3 dθ)2

+ e2(μ2+δμ2) dr2 + e2(μ3+δμ3) dθ2

where the various coefficients are allowed to depend on t , r , θ and e2ν = e−2μ2 = 1 − 2M
r

,
eμ3 = r , eψ = r sin θ (we follow the notation of [14]). It can be shown (see [14]) that this Ansatz
is sufficiently general. One then requires the metric g̃ to satisfy the linearized Einstein vacuum
equations, i.e., one linearizes Rμν(g̃) = 0 with respect to the perturbations δν, δψ , etc. It turns out
that one has to distinguish between so-called axial (δω, δq2, δq3) and polar (δν, δψ, δμ1, δμ2)
perturbations, depending on the behavior of the metric under the reflection φ �→ −φ. After a
lengthy calculation and separation of the θ -dependence one arrives at

∂2
t ψ� − ∂2

xψ� +
(

1 − 2M

r(x)

)(
�(� + 1)

r2(x)
− 6M

r3(x)

)
ψ� = 0

where ψ� is an auxiliary function which completely determines the axial perturbations, see [14]
for details. Thus, ψ� satisfies the Regge–Wheeler equation with σ = −3. In the case of polar
perturbations, Zerilli [59] has derived an analogous equation with a more complicated effective
potential. However, Chandrasekhar [13] (see also [14]) has found a transformation involving dif-
ferential operations that relates this equation to the one for axial perturbations. As a consequence,
the Regge–Wheeler equation provides a fairly complete description of gravitational perturbations
with a fixed angular momentum parameter �. Moreover, we mention the fact that the Regge–
Wheeler equation with parameter σ = 0 appears in the study of electromagnetic perturbations
of Schwarzschild black holes, i.e., if one considers the Einstein–Maxwell system and linearizes
around the Reissner–Nordström solution with zero charge. We do not comment on this further
but simply refer the reader to the literature, see [14] and references therein. As a consequence,
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the study of the Regge–Wheeler equation can provide valuable information on the stability of
Schwarzschild black holes under various types of perturbations and it is truly remarkable that
such a unified approach is available.

1.3. Decay estimates for the Regge–Wheeler equation

The most salient feature of the Regge–Wheeler potential is that it decays exponentially as
x → −∞ which corresponds to approaching the black hole, whereas for x → ∞, it falls off
as x−2. Strictly speaking, this is only true for � > 0. The case � = 0 is exceptional and we
consider it separately in the companion paper [26] where we obtain the sharp t−3 decay as
predicted by Price’s Law. Consequently, in this paper, we focus on � > 0 which, unless otherwise
stated, will be assumed throughout. For � > 0 the potential has inverse square decay and it is well
known [25] that this fall-off behavior is in some sense critical for the scattering theory. In order
to explain this we define the Schrödinger operator H�,σ by

H�,σ f = −f ′′ + V�,σ f

and recall that the Jost solutions f±(x,λ) are defined by H�,σ f±(·, λ) = λ2f±(·, λ) and
f±(x,λ) ∼ e±iλx as x → ±∞. The property V�,σ ∈ L1(R) is sufficient to guarantee the exis-
tence of these solutions, see [25], but the inverse square decay of V�,σ is critical in the sense
that at this power the Jost solutions typically are no longer continuous as λ → 0. Neverthe-
less, following [53], it is possible to perform a detailed spectral and scattering analysis of the
Schrödinger operator H�,σ . However, we emphasize that the present work differs considerably
from [53] due to the asymmetric decay properties of the potential V�,σ . Of particular importance
is the asymptotic behavior of the resolvent ((λ + i0) − H�,σ )−1 (and thus, of the Jost solutions
and their Wronskian) as λ → 0. This is a common feature in dispersive estimates, see [51]. In
particular, we are faced with the possibility of a zero energy resonance. However, it was already
observed earlier [49,16,44,57] that in the physically relevant cases such a zero energy resonance
does not occur (see also Lemma 6.3 below). Our approach is detailed enough to show rigorously,
for the first time, the decay estimates depending on the angular momentum of the initial data. In
his seminal work [44,45], see also [31,46], Price heuristically derived the decay rate in time at a
fixed point in space, and concluded that, depending on initial conditions, the decay rate is either
t−2�−3 or t−2�−2 where � is the angular momentum. This result is now referred to as Price’s
Law. There has been some confusion in the literature concerning the precise prediction of Price’s
Law. This has been clarified in Price and Burko [46]. If the initial data decay sufficiently fast at
spatial infinity then the pointwise decay in time is predicted to be t−2�−3. In the present paper
we give the first proof of an �-dependent decay rate. More precisely, we obtain a t−2�−2 estimate
which is one power off the sharp version of Price’s Law. However, we emphasize that our method
yields estimates in terms of the initial data and not just a pointwise decay law as is common in
the physics literature. To be more precise, we show that

∥∥wα cos(t
√

H�,σ )f
∥∥

L∞(R)
� C�,α〈t〉−α

(∥∥∥∥ f ′

wα

∥∥∥∥
L1(R)

+
∥∥∥∥ f

wα

∥∥∥∥
L1(R)

)
, (3)

∥∥∥∥wα

sin(t
√

H�,σ )√
H

f

∥∥∥∥ ∞
� C�,α〈t〉−α+1

∥∥∥∥ f

w

∥∥∥∥
1

(4)

�,σ L (R) α L (R)
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for all t � 0 where wα(x) := 〈x〉−α is a polynomial weight and, as usual, 〈x〉 := (1 +
|x|2)1/2. Here one has to require 1 � α � 2� + 3 and one needs to exclude4 (�, σ ) ∈
{(0,0), (0,−3), (1,−3)} which are exactly those cases where zero energy resonances do occur—
however, they are physically irrelevant due to a gauge freedom, cf. [14]. Observe that for
α = 2� + 3 we obtain precisely the aforementioned bound. It is also obvious from our approach
that the decay of initially static perturbations is better by one power of t as is reflected by our
cosine estimate. This is a general effect which is also present in Price’s prediction, cf. [46].

The proof of (3) and (4) is based on representing the solution as an oscillatory integral in the
energy variable λ, schematically one may write

ψ(t, x) =
∫

U(t, λ) Im
[
G�,σ

(
x, x′, λ

)]
f
(
x′)dx′ dλ

where U(t, λ) is a combination of cos(tλ) and sin(tλ) terms and G�,σ (x, x′, λ) is the kernel
(Green’s function) of the resolvent of the operator H�,σ . G�,σ (x, x′, λ) is constructed in terms
of the Jost solutions and we obtain these functions in various domains of the (x,λ) plane by
perturbative arguments: for |xλ| small we perturb in λ around λ = 0, whereas for |xλ| large we
perturb off of Hankel functions. This is done in such a way that there remains a small window
where the two different perturbative solutions can be glued together. One of the main technical
difficulties of the proof lies with the fact that we need good estimates for arbitrary derivatives of
the perturbative solutions. This is necessary in order to control the oscillatory integrals. The most
important contributions come from λ ∼ 0 and we therefore need to derive the exact asymptotics
of the Green’s function and its derivatives in the limit λ → 0. For instance, we prove that

Im
[
G�,σ (0,0, λ)

]= λP�

(
λ2)+ O

(
λ2�+1)

as λ → 0+ where P� is a polynomial of degree � − 1 (we set P0 ≡ 0) and the O-term satisfies
O(k)(λ2�+1) = O(λ2�+1−k) for all k ∈ N0. Our approach therefore yields further information on
the Green’s function and the fundamental solution of the wave equation on the Schwarzschild
manifold.

1.4. Interpretation of the result and further comments

For the relevant parameter values, i.e., (�, σ ) /∈ {(0,0), (0,−3), (1,−3)}, the Regge–Wheeler
potential V�,σ is positive, decays as described above, and has a unique nondegenerate maximum
at r = r0 which is known as the photon sphere. As a helpful analogy, consider a Newtonian
particle placed at r = r0 with vanishing kinetic energy but potential energy V�,σ |r=r0 . It will
remain at rest, but every slight perturbation will make it lose potential energy and gain kinetic
energy; the larger � is, the faster this will occur which reflects itself in the �-dependent decay
rates. In the context of the Schwarzschild geometry, the flow of null geodesics near r = r0 is
unstable and the dispersion provides a mechanism that spreads out the wave away from the
photon sphere. Moreover, the higher the angular momentum �, the faster the geodesics will pull
away leading to the accelerated decay provided by Price’s Law. Note carefully, however, that this
is counteracted by what can be viewed as a stabilizing effect of large �. Technically speaking, this

4 In fact, the case (�, σ ) = (0,0) is trivial since for these parameter values the Regge–Wheeler equation reduces to the
free wave equation on the line.
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reflects itself in the constant C�,α : the larger this constant is, the longer one has to wait before the
decay estimates become effective. It is important to note that our approach is essentially blind
to the local geometry, that is, the fine structure of the potential is irrelevant—only positivity, the
decay properties and the nonexistence of a zero energy resonance are used. This is in contrast
to the methods based on Morawetz type estimates. In particular, the phenomenon of trapping
does not play a role at this level—it simply enlarges the constants. However, eventually one
is interested in the overall decay which is obtained by summing the individual contributions
over all � and at this stage, of course, trapping becomes relevant since the �-dependence of the
constants is crucial for the summation. As a matter of fact, our proof produces a constant which
grows super-exponentially in �. Consequently, in order to be able to sum the estimates, a different
approach is necessary for large �. This issue is addressed in our paper [27] where a detailed
semiclassical asymptotic analysis is performed. The role of the semiclassical parameter h̄ is
played by �−1 (simply divide H�,σ by �2). In particular, such an analysis requires a careful
study of the spectral measure near the maximum of V�,σ and it is exactly at this point where the
instability of null geodesics at the photon sphere becomes crucial. As a consequence, in [27],
we show that the estimates for individual �’s can indeed be summed and thereby, we obtain the
sharp t−3 decay bound for general data with a loss of a finite number of angular derivatives.
We also remark that there are various formal approaches in the physics literature to find the
�-dependence of the constants, see in particular [4].

Let us finally mention that decay estimates like (3) and (4) play an important role in the current
theoretical and numerical analysis of black holes. For instance, they serve as a way to verify
various numerical schemes for solving the Einstein equations in the presence of black holes,
see e.g. [47,2,48,31,6,5,7,12,4,21,23,24,22] and references therein. For other recent theoretical
implications of the angular behavior see for example [4,6,40].

1.5. Notations and conventions

For a given smooth function f we denote by O(f (x)) a generic real-valued function that
satisfies |O(f (x))| � |f (x)| in a specified range of x which follows from the context. We write
OC(f (x)) if the function attains complex values. The symbol f (x) ∼ g(x) for x → a, where g

is smooth, means limx→a
f (x)
g(x)

= 1. Furthermore, the letter C (possibly with indices) denotes a
generic positive constant. We say that O(xγ ), γ ∈ R, behaves like a symbol, is of symbol type,
or has symbol character, if the k-th derivative satisfies O(k)(xγ ) = O(xγ−k). As usual, we use
the abbreviation 〈x〉 :=√1 + |x|2 and the symbol A � B means that there exists a C > 0 such
that A � CB . We also note that all of the functions we are going to construct will depend on
the parameters � and σ , however, in order to increase readability of the equations, we will omit
this dependence in the notation most of the time. The same comment applies to all implicit and
explicit constants. Finally, as already mentioned, we assume � > 0 unless otherwise stated.

2. Solutions of the Regge–Wheeler equation

2.1. Asymptotics of the potential

As explained in the introduction, linear perturbations of the Schwarzschild spacetime are de-
scribed by the Regge–Wheeler equation

ψtt − ψxx + V�,σ (x)ψ = 0
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where V�,σ is the Regge–Wheeler potential and x is the tortoise coordinate which is related to
the standard r-coordinate by

x = r + 2M log

(
r

2M
− 1

)
. (5)

V�,σ is given by

V�,σ (x) =
(

1 − 2M

r(x)

)(
�(� + 1)

r2(x)
+ 2Mσ

r3(x)

)

where r(x) is implicitly defined by Eq. (5). The valid range of the parameters is � ∈ N0 and
σ = −3,0,1. We start by obtaining the asymptotics of the potential V�,σ .

Lemma 2.1. The function x �→ r(x) has the asymptotic behavior r(x) = x(1 + O(x−1+ε)) for
x → ∞ and r(x) = 2M +O(ex/(2M)) for x → −∞ where ε ∈ (0,1) is arbitrary and the O-term
in the expression for x → ∞ behaves like a symbol.

Proof. The function r(x) is implicitly defined by x = r(x) + 2M log(
r(x)
2M

− 1) and thus, we
have r(x) → ∞ as x → ∞. This implies x ∼ r(x) and hence, r(x) ∼ x as x → ∞. We infer
that x − r(x) = 2M log(

r(x)
2M

− 1) ∼ 2M log r(x)
2M

∼ 2M log x
2M

and this shows x − r(x) = O(xε).
For the symbol behavior note that dx

dr
(r) = (1 − 2M

r
)−1 which implies that r ′(x) = 1 − 2M

r(x)
. The

claim now follows by induction.
For the case x → −∞ we have ex/(2M) = er(x)/(2M)(

r(x)
2M

− 1) ∼ e(
r(x)
2M

− 1) which shows
r(x) − 2M ∼ 2Mex/(2M)−1 and this implies the claim. �
Corollary 2.1. The Regge–Wheeler potential V�,σ has the asymptotic behavior

V�,σ (x) = �(� + 1)

x2

(
1 + O

(
x−1+ε

))
for x → ∞ and V�,σ (x) = O(ex/(2M)) for x → −∞ where ε ∈ (0,1) is arbitrary and the O-term
in the expression for x → ∞ behaves like a symbol.

Proof. Just insert the asymptotic expansions from Lemma 2.1 in the expression for V�,σ . For the
symbol behavior apply the Leibniz rule and Lemma A.1. �
2.2. Hilbert space formulation

We define the Schrödinger operator H�,σ on L2(R) with domain D(H�,σ ) := H 2(R) by

H�,σ f := −f ′′ + V�,σ f.

From the decay properties of V�,σ it follows that H�,σ is self-adjoint (see e.g. [56]). Furthermore,
integration by parts shows

(H�,σ f |f )L2(R) � (V�,σ f |f )L2(R) � 0
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since V�,σ � 0 for all � ∈ N0 if σ = 0,1. For gravitational perturbations (σ = −3) we have to
assume � � 2 to obtain V�,σ � 0 which we shall do from now on. We conclude that the spectrum
of H�,σ is purely absolutely continuous and we have σ(H�,σ ) = σac(H�,σ ) = [0,∞) (see [56])
provided that (�, σ ) /∈ {(0,−3), (1,−3)}. An operator formulation of the Regge–Wheeler equa-
tion is given by

d2

dt2
Ψ (t) + H�,σ Ψ (t) = 0

where Ψ : R → L2(R). Applying the functional calculus for self-adjoint operators, the solution Ψ

with initial data Ψ (0) = f and dΨ
dt

(0) = g is given by

Ψ (t) = cos(t
√

H�,σ )f + sin(t
√

H�,σ )√
H�,σ

g.

Thus, in order to obtain decay estimates for the solution, we have to understand the operators

cos(t
√

H�,σ ) and
sin(t

√
H�,σ )√

H�,σ

.

2.3. The spectral measure

Recall that the spectral theorem for self-adjoint operators asserts the existence of finite
complex-valued Borel measures μu,v such that, for u,v ∈ D(H�,σ ), we have

(H�,σ u|v)L2(R) =
∞∫

0

λdμu,v(λ).

The solution operator cos(t
√

H�,σ ) is then given by

(
cos(t
√

H�,σ )u|v)
L2(R)

=
∞∫

0

cos(t
√

λ )dμu,v(λ)

for u,v ∈ L2(R) and analogous for the sine evolution. The point is that the spectral measure can
be calculated in terms of the resolvent RH�,σ

(z) = (z − H�,σ )−1 of H�,σ . Indeed, for u ∈ L2(R)

set

Fu(z) := −(RH�,σ
(z)u|u)

L2(R)
=

∞∫
0

1

λ − z
dμu(λ)

where μu := μu,u and Im z > 0. Fu is the Borel transform of the measure μu and, since the
measure μu is purely absolutely continuous, we have

dμu(λ) = 1
lim Im

(
Fu(λ + iε)

)
dλ,
π ε→0+
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see [56] for the underlying theory of this. The measure μu,v can be reconstructed from μu by the
polarization identity, i.e., μu,v = 1

4 (μu+v −μu−v + iμu−iv − iμu+iv). Furthermore, the resolvent
is given by

RH�,σ
(z)u(x) =

∫
R

G�,σ

(
x, x′,

√
z
)
u
(
x′)dx′

where G�,σ is the Green’s function (we always choose the branch of the square root with
Im

√
z > 0 if Im z > 0) and thus, we have

dμu(λ) = − 1

π
lim

ε→0+

∫
R

∫
R

Im
[
G�,σ

(
x, x′,

√
λ + iε

)
u
(
x′)u(x)

]
dx′ dx dλ.

It is known (and, for the convenience of the reader, will be shown below) that the limit

G�,σ

(
x, x′,

√
λ
) := lim

ε→0+G�,σ

(
x, x′,

√
λ + iε

)
exists and satisfies supx,x′∈R |G�,σ (x, x′, λ)| � 1 for all λ � λ0 where λ0 > 0 is arbitrary. Thus,
if u ∈ L1(R) ∩ L2(R), we have

dμu(λ) = − 1

π

∫
R

∫
R

Im
[
G�,σ

(
x, x′,

√
λ
)
u
(
x′)u(x)

]
dx′ dx dλ

by Lebesgue’s theorem on dominated convergence and polarization yields

dμu,v(λ) = − 1

π

∫
R

∫
R

Im
[
G�,σ

(
x, x′,

√
λ
)]

u
(
x′)v(x)dx′ dx dλ

for all u,v ∈ L1(R)∩L2(R) since G�,σ (x, x′,
√

λ ) is symmetric in x and x′ for λ > 0 as follows
from the explicit form (see below).

2.4. Pointwise decay estimates

As follows from the discussion above, the functional calculus for self-adjoint operators yields
the representation

(
cos(t
√

H�,σ )f |v)
L2(R)

= − 2

π

∞∫
0

∫
R

∫
R

λ cos(tλ) Im
[
G�,σ

(
x, x′, λ

)]
f
(
x′)dx′ v(x) dx dλ

for f, v ∈ S(R) (the Schwartz space), where we have changed variables in the integration with
respect to λ. Our intention is to obtain an expression for [cos(t

√
H�,σ )f ](x) and thus, we have to

change the order of integration. However, note carefully that a simple argument based on Fubini’s
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theorem does not apply here since the integrals cannot be expected to converge absolutely. In
order to circumvent this difficulty, first observe that, for any N ∈ N, we have

N∫
1/N

∫
R

∫
R

∣∣λ cos(tλ) Im
[
G�,σ

(
x, x′, λ

)]
f
(
x′)v(x)

∣∣dx′ dx dλ � CN

which follows immediately from supx,x′∈R |G�,σ (x, x′, λ)| � CN for all λ � 1
N

, see Corollary 3.1
below. Thus, Fubini’s theorem yields at least

(
cos(t
√

H�,σ )f |v)
L2(R)

= − 2

π
lim

N→∞

∫
R

∫
R

N∫
1/N

λ cos(tλ) Im
[
G�,σ

(
x, x′, λ

)]
f
(
x′)dλdx′ v(x) dx.

Next, we distinguish between high and low energies by introducing a smooth cut-off χδ satisfying
χδ(λ) = 1 for λ ∈ [0, δ

2 ] and χ(λ) = 0 for λ � δ where δ > 0 is sufficiently small. In Section 8
below we prove the estimate

sup
x,x′∈R

∣∣∣∣∣
∞∫

0

λ cos(tλ) Im
[
G�,σ

(
x, x′, λ

)]〈x〉−α
〈
x′〉−α

χδ(λ)dλ

∣∣∣∣∣� 〈t〉−α (6)

where α ∈ N and α � 2� + 3. This bound is sufficient to conclude

lim
N→∞

∫
R

∫
R

N∫
1/N

λ cos(tλ) Im
[
G�,σ

(
x, x′, λ

)]
χδ(λ)f

(
x′)dλdx′ v(x) dx

=
∫
R

lim
N→∞

∫
R

N∫
1/N

λ cos(tλ) Im
[
G�,σ

(
x, x′, λ

)]
χδ(λ)f

(
x′)dλdx′ v(x) dx

by dominated convergence since f, v ∈ S(R). For the large energy part we show in Section 9
that, for any α ∈ N0,

sup
x∈R

∣∣∣∣∣ lim
N→∞

∫
R

N∫
1/N

λ cos(tλ) Im
[
G�,σ

(
x, x′, λ

)]〈x〉−α
〈
x′〉−α

φ
(
x′)[1 − χδ(λ)

]
dλdx′

∣∣∣∣∣
� 〈t〉−α

∫
R

(∣∣φ′(x′)∣∣+ ∣∣φ(x′)∣∣)dx′ (7)

which, by dominated convergence, implies
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lim
N→∞

∫
R

∫
R

N∫
1/N

λ cos(tλ) Im
[
G�,σ

(
x, x′, λ

)][
1 − χδ(λ)

]
f
(
x′)dλdx′ v(x) dx

=
∫
R

lim
N→∞

∫
R

N∫
1/N

λ cos(tλ) Im
[
G�,σ

(
x, x′, λ

)][
1 − χδ(λ)

]
f
(
x′)dλdx′ v(x)dx.

By adding up the two contributions and using the density of S(R) in L2(R), we arrive at the
representation

[
cos(t
√

H�,σ )f
]
(x) = − 2

π
lim

N→∞

∫
R

N∫
1/N

λ cos(tλ) Im
[
G�,σ

(
x, x′, λ

)]
dλf
(
x′)dx′

for f ∈ S(R) and the estimates (6), (7) imply the bound

∥∥wα cos(t
√

H�,σ )f
∥∥

L∞(R)
� 〈t〉−α

(∥∥∥∥ f ′

wα

∥∥∥∥
L1(R)

+
∥∥∥∥ f

wα

∥∥∥∥
L1(R)

)

for 1 � α � 2�+ 3 where wα(x) := 〈x〉−α . An analogous derivation applies to the sine evolution
and therefore, the proof of our result reduces to oscillatory estimates of the type (6) and (7).

2.5. The main theorem

The main result proved in this work is the following.

Theorem 2.1. Let (�, σ ) /∈ {(0,0), (0,−3), (1,−3)}, α ∈ N, 1 � α � 2� + 3 and set wα(x) :=
〈x〉−α . Then the solution operators for the Regge–Wheeler equation satisfy the estimates

∥∥wα cos(t
√

H�,σ )f
∥∥

L∞(R)
� C�,α〈t〉−α

(∥∥∥∥ f ′

wα

∥∥∥∥
L1(R)

+
∥∥∥∥ f

wα

∥∥∥∥
L1(R)

)

and ∥∥∥∥wα

sin(t
√

H�,σ )√
H�,σ

g

∥∥∥∥
L∞(R)

� C�,α〈t〉−α+1
∥∥∥∥ g

wα

∥∥∥∥
L1(R)

for all t � 0 and initial data f , g such that the right-hand sides are finite.

Remark 2.1. As usual, we prove Theorem 2.1 for Schwartz functions f,g ∈ S(R). The general
case is then obtained by a standard approximation argument.

Remark 2.2. For the convenience of the reader we make the behavior of the initial data near the
horizon more explicit by transforming back to the Schwarzschild r-coordinate. Recall that x =
r + 2M log( r

2M
− 1) which implies 〈x〉α � | log( r

2M
− 1)|α as r → 2M+. Thus, the polynomial

weights in x translate into logarithmic weights in r . Moreover, we have dx = (1 − 2M )−1 dr

r
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and this shows that the integrability condition near the horizon for initial data g(x) = g̃(r(x))

transforms as

0∫
−∞

∣∣g(x)
∣∣〈x〉α dx �

r0∫
2M

∣∣g̃(r)
∣∣∣∣∣∣log

(
r

2M
− 1

)∣∣∣∣α dr

1 − 2M
r

where r = r0 corresponds to x = 0.

We remark that our proof actually applies to more general situations like the analogous
problem in Hořava–Lifshitz gravity, cf. [33]. The only requirements on the potential are the
asymptotics of Corollary 2.1, the nonexistence of bound states and the nonexistence of a zero
energy resonance (see Definition 6.1 below).

3. Basic properties of the Green’s function

For the convenience of the reader we discuss some well-known properties of the Green’s
function (cf. [25,56]).

3.1. The Jost solutions

Recall that the Green’s function is constructed with the help of the Jost solutions f±(·, z)
which are defined by H�,σ f±(·, z) = z2f±(·, z) and the asymptotic behavior f±(x, z) ∼ e±izx as
x → ±∞. First we prove that the Jost solutions exist and that they are continuous with respect
to z in C+\{0} where C+ := {z ∈ C: Im z > 0}.

Lemma 3.1. For every z ∈ C+\{0} there exist smooth functions f±(·, z) satisfying

H�,σ f±(·, z) = z2f±(·, z)
and f±(x, z) ∼ e±izx for x → ±∞. Furthermore, for every x ∈ R, the functions f±(x, ·) and
f ′±(x, ·) are continuous in C+\{0}.

Proof. We only prove the assertion for f+ since the proof for f− is completely analogous. The
variation of constants formula shows that m+(x, z) := e−izxf+(x, z), if it exists, satisfies the
integral equation

m+(x, z) = 1 +
∞∫

x

K(x, y, z)m+(y, z) dy (8)

where K(x,y, z) = 1
2iz

(e2iz(y−x) − 1)V�,σ (y). Conversely, if we can show that Eq. (8) has a
smooth solution, we obtain existence of the Jost solution. However, Eq. (8) is a Volterra integral
equation with a kernel satisfying

∞∫
sup

x∈(a,y)

∣∣K(x,y, z)
∣∣dy � C

|z| ,
∞∫

sup
x∈(a,y)

∣∣∂xK(x, y, z)
∣∣dy � 1
a a
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for all z ∈ C+\{0} and any fixed a ∈ R (see Corollary 2.1) and thus, Lemma B.1 implies the
existence of a unique solution m+(·, z) satisfying ‖m+(·, z)‖L∞(a,∞) � eC/|z|. Furthermore, for
fixed z ∈ C+\{0}, we have

∞∫
a

sup
x∈(a,y)

∣∣∂k
xK(x, y, z)

∣∣dy � Ck

for all k ∈ N0 and thus, Lemma B.2 shows that m+(·, z) is smooth. For the continuity of m+(x, ·)
fix x ∈ (a,∞), z ∈ C+\{0} and note that

m+(x, z + h) − m+(x, z) = gh(x, z) +
∞∫

x

K(x, y, z + h)
[
m+(y, z + h) − m+(y, z)

]
dy

where

gh(x, z) :=
∞∫

x

[
K(x,y, z + h) − K(x,y, z)

]
m+(y, z) dy.

Now observe that ‖gh(·, z)‖L∞(a,∞) → 0 as h → 0 since ‖m+(·, z)‖L∞(a,∞) � eC/|z| and hence,
Lemma B.1 implies∣∣m+(x, z + h) − m+(x, z)

∣∣� ∥∥gh(·, z)
∥∥

L∞(a,∞)
eC/|z| → 0 for h → 0

which shows continuity of m+(x, ·) in C+\{0} as claimed. For the continuity of m′+(x, ·) simply
observe that

m′+(x, z) =
∞∫

x

∂xK(x, y, z)m+(y, z) dy

and the right-hand side of this equation is obviously continuous in z. �
3.2. The Wronskian W(f−(·,√z ), f+(·,√z ))

Having established existence of the Jost solutions we can now construct the Green’s function
and the standard procedure yields

G�,σ

(
x, x′,

√
z
)= f−(x′,√z )f+(x,

√
z )Θ(x − x′) + f−(x,

√
z )f+(x′,√z )Θ(x′ − x)

W(f−(·,√z ), f+(·,√z ))

for Im z > 0 where Θ denotes the Heaviside function. Clearly, W(f−(·,√z ), f+(·,√z )) �= 0 if
Im z > 0 since otherwise f−(·,√z ) would be an eigenfunction with eigenvalue z contradicting
the self-adjointness of H�,σ . However, it is not a priori clear whether the limit G�,σ (x, x′,√z )

for Im
√

z → 0+ exists. The following observation shows that problems can only occur at z = 0.
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Lemma 3.2. Let λ > 0. Then the limit

W(
√

λ ) := lim
ε→0+W

(
f−(·,√λ + iε ), f+(·,√λ + iε )

)
exists and is nonzero.

Proof. For brevity we write W(f−, f+)(z) instead of W(f−(·,√z ), f+(·,√z )) and likewise
for other Wronskians. By Lemma 3.1 we know that W(f−, f+) is continuous in C+\{0} and
hence, W(

√
λ ) exists for any λ > 0. Observe that f ′±(x,

√
λ ) ∼ ±i

√
λe±i

√
λx for x → ±∞

which follows immediately from the integral representation in the proof of Lemma 3.1. Thus,

W(f+, f+)(λ) = 2i
√

λ which shows that f+(·,√λ ) and f+(·,√λ) are linearly indepen-
dent for λ > 0. Hence, there exist A(λ) and B(λ) such that f−(x,

√
λ ) = A(λ)f+(x,

√
λ ) +

B(λ)f+(x,
√

λ). We conclude

2i
√

λ = W(f−, f−)(λ) = W(Af+ + Bf+,Af+ + Bf+)(λ)

= −2i
√

λ
∣∣A(λ)

∣∣2 + 2i
√

λ
∣∣B(λ)

∣∣2 (9)

which implies |B(λ)|2 � 1. However, we have

W(
√

λ) = W(f−, f+)(λ) = W(Af+ + Bf+, f+)(λ) = 2i
√

λB(λ) (10)

and thus, |W(
√

λ)| � 2
√

λ which finishes the proof. �
Corollary 3.1. The limit

G�,σ

(
x, x′,

√
λ
)= lim

ε→0+G�,σ

(
x, x′,

√
λ + iε

)
exists and satisfies

sup
x,x′∈R

∣∣G�,σ

(
x, x′,

√
λ
)∣∣� C

for all λ � λ0 where λ0 > 0 is arbitrary.

Proof. From Lemma 3.2 and the asymptotic behavior of the Jost solutions we immediately con-
clude

sup
x′<0, x>0

∣∣∣∣ f−(x′,
√

λ )f+(x,
√

λ)

W(f−(·,√λ ),f+(·,√λ))

∣∣∣∣� 1

for all λ � λ0 > 0. For the remaining cases use reflection and transmission coefficients A(λ),
B(λ) (see the proof of Lemma 3.2) to express f± in terms of f∓ and f∓. The asymptotic behavior
of A(λ) and B(λ) for λ → ∞ is given by Eqs. (10) and (9) and the claim follows. �
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4. Perturbative solutions for |xλ| small

In this section we obtain approximations to solutions of H�,σ f = λ2f for |xλ| small. The
solutions are constructed by perturbation in λ around λ = 0. We closely follow [53].

4.1. Zero energy solutions

We first consider zero energy solutions, i.e., solutions of H�,σ f = 0. By setting v(r) :=
f (x(r)), the eigenvalue problem H�,σ f = λ2f is equivalent to

−
(

1 − 2M

r

)
v′′ − 2M

r2
v′ +
(

�(� + 1)

r2
+ 2Mσ

r3

)
v = λ2

(
1 − 2M

r

)−1

v (11)

and it turns out that for λ = 0 this equation can be solved by special functions which will be
useful later on. However, the following result describes a fundamental system for H�,σ f = 0
without making use of explicit solutions.

Lemma 4.1. There exist smooth functions uj satisfying H�,σ uj = 0 for j = 0,1 with the bounds
u0(x) = (2� + 1)−1x�+1(1 + O(x−1+ε)) and u1(x) = x−�(1 + O(x−1+ε)) for all x � 1 where
ε ∈ (0,1) is arbitrary and the O-terms are of symbol type. The Wronskian is W(u0, u1) = −1.

Proof. Suppose for the moment that the solution u1 exists and define the function a by u1(x) =
x−�(1 + a(x)). Then H�,σ u1 = 0 is equivalent to

a′′(x) − 2�

x
a′(x) =

[
V�,σ (x) − �(� + 1)

x2

](
1 + a(x)

)
. (12)

Viewing this equation as an inhomogeneous equation for a′, applying the variation of constants
formula and integrating by parts, we obtain the integral equation

a(x) = 1

2� + 1

∞∫
x

(
y2�+1 − x2�+1)y−2�

[
V�,σ (y) − �(� + 1)

y2

](
1 + a(y)

)
dy. (13)

Therefore, if we can show that Eq. (13) has a smooth solution, we obtain existence of u1. How-
ever, Eq. (13) is a Volterra integral equation of the form

a(x) =
∞∫

x

K(x, y) dy +
∞∫

x

K(x, y)a(y) dy

with a kernel K satisfying |∂k
x ∂l

yK(x, y)| � Ck,ly
−2+ε−k−l for 1 � x � y and an arbitrary

ε ∈ (0,1) (cf. Corollary 2.1). Therefore, Lemma B.2 implies the existence of a unique smooth
solution a ∈ L∞(1,∞) and Eq. (13) shows that in fact |a(x)| � x−1+ε for x � 1. Furthermore,
the first derivative of a is given by

a′(x) =
∞∫

∂xK(x, y)
(
1 + a(y)

)
dy
x
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and this implies |a′(x)| � x−2+ε for x � 1. The estimates for the higher derivatives follow from
Eq. (12), the Leibniz rule and a simple induction.

For the second solution u0 we use the Wronskian condition

1 = W(u1, u0) =
(

u0

u1

)′
u2

1

which yields

u0(x) = u1(x)

x∫
x1

u−2
1 (y) dy

where x1 > 0 is chosen so large that u1(x) > 0 for all x � x1. Note that u−2
1 (x) = x2�(1 + b(x))

for a suitable b satisfying |b(k)(x)| � Ck〈x〉−1+ε−k (apply the Leibniz rule and Lemma A.1).
Inserting the asymptotic expansion for u1 yields u0(x) = (2� + 1)−1x�+1(1 + O(x−1+ε)) where
the O-term behaves like a symbol. �

We construct another pair v0, v1 of zero energy solutions with specific asymptotic behavior
as x → −∞. This is considerably easier than the above construction for the solutions uj due to
the exponential decay of the Regge–Wheeler potential V�,σ (x) as x → −∞.

Lemma 4.2. There exist smooth functions vj for j = 0,1 satisfying H�,σ vj = 0 and v0(x) =
x(1 + O(x−1)) as well as v1(x) = 1 + O(x−1) for all x � −1 where the O-terms behave like
symbols under differentiation.

Proof. For x � −1 consider the Volterra equations

v0(x)

x
= 1 −

x∫
−∞

(
y2

x
− y

)
V�,σ (y)

v0(y)

y
dy

and

v1(x) = 1 −
x∫

−∞
(y − x)V�,σ (y)v1(y) dy

which have smooth solutions according to Lemma B.2 since the potential V�,σ (y) decays ex-
ponentially as y → −∞ (see Corollary 2.1). Obviously, we have the asymptotic behavior
v0(x) ∼ x, v1(x) ∼ 1 as x → −∞, vj behave like symbols under differentiation and satisfy
H�,σ vj = 0, as a straightforward calculation shows. �
Corollary 4.1. The solutions uj for j = 0,1 can be uniquely extended to all of R and we have
uj (x) = O(x) as x → −∞ where the O-term is of symbol type.
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Proof. Since the potential V�,σ is smooth on R, the solutions uj , originally defined on [1,∞)

only, can be uniquely extended to all of R by solving appropriate initial value problems. Since the
solution pair v0, v1 forms a fundamental system for the equation H�,σ f = 0, uj can be written
as a linear combination of v0, v1 on (−∞,−1] and everything follows from Lemma 4.2. �
4.2. Construction of the perturbative solutions

Next, by perturbing in λ around λ = 0, we obtain useful approximations to solutions of
H�,σ f = λ2f for |xλ| small.

Lemma 4.3. There exist constants x0, λ0, δ > 0 and smooth functions uj (·, λ) satisfying

H�,σ uj (·, λ) = λ2uj (·, λ)

for j = 0,1 and W(u0(·, λ), u1(·, λ)) = −1 such that uj (x,λ) = uj (x)(1 + aj (x,λ)) where

∣∣aj (x,λ)
∣∣� x2λ2

for all λ ∈ (0, λ0) and x ∈ [x0, δλ
−1] provided that � � 1. In the case � = 0 we have the weaker

bounds

∣∣a0(x,λ)
∣∣� x2λ2 and

∣∣a1(x,λ)
∣∣� xλ

in the above ranges of x and λ.

Proof. Let x0 > 0 be so large that u0(x) > 0 for all x � x0. A straightforward calculation shows
that, if the function h solves the integral equation

h(x,λ) = 1 − λ2

x∫
x0

[
u0(y)u1(y) − u2

0(y)
u1(x)

u0(x)

]
h(y,λ)dy, (14)

then u0(x,λ) := u0(x)h(x,λ) satisfies H�,σ u0(·, λ) = λ2u0(·, λ). Eq. (14) is a Volterra integral
equation

h(x,λ) = 1 +
x∫

x0

K(x,y,λ)h(y,λ)dy

where the kernel is of the form

K(x,y,λ) = λ2[y(1 + O
(
y−1+ε

))− x−2�−1y2�+2(1 + O
(
x−1+ε

)+ O
(
y−1+ε

))]



502 R. Donninger et al. / Advances in Mathematics 226 (2011) 484–540
for x, y � x0 and the O-terms are of symbol type (see Lemma 4.1). This shows |∂k
x ∂l

yK(x, y,

λ)| � Ck,ly
1−k−lλ2 for x0 � y � x and hence,

λ−1∫
x0

sup
{x: x0<y<x}

∣∣∂k
xK(x, y,λ)

∣∣dy � 1

for λ ∈ (0, λ0) and all k ∈ N0 where λ0 > 0 is arbitrary. Thus, Lemma B.2 shows that Eq. (14) has
a unique smooth solution h(·, λ) satisfying ‖h(·, λ)‖L∞(x0,λ

−1) � C for all λ ∈ (0, λ0). Therefore,
Eq. (14) implies |h(x,λ) − 1| � x2λ2 for λ ∈ (0, λ0) and x0 � x � λ−1.

Now choose δ > 0 and λ0 > 0 so small that |h(x,λ) − 1| � 1
2 for all λ ∈ (0, λ0) and x ∈

[x0, δλ
−1]. We use the Wronskian condition

−1 = W
(
u0(·, λ), u1(·, λ)

)= (u1(·, λ)

u0(·, λ)

)′
u2

0(·, λ)

to construct the second solution u1(x,λ), i.e.,

u1(x,λ) = u0(x,λ)

δλ−1∫
x

u−2
0 (y,λ) dy

which implies

a1(x,λ) = u0(x)

u1(x)

(
1 + a0(x,λ)

) δλ−1∫
x

u−2
0 (y)

(
1 + ã0(y,λ)

)
dy − 1 (15)

where ã0(y,λ) := (1 + a0(y,λ))−2 − 1 inherits the bound of a0. Now, by inserting the asymp-
totics of u0 from Lemma 4.1, we obtain

u0(x)

∞∫
x

u−2
0 (y) dy ∼ x−�

for x → ∞ and this shows

u1(x) = u0(x)

∞∫
x

u−2
0 (y) dy

since u1 is uniquely determined by the asymptotic behavior u1(x) ∼ x−� for x → ∞ (cf.
Lemma 4.1). Using this, Eq. (15) and the asymptotics of a0, ã0, we obtain
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a1(x,λ) = u0(x)

u1(x)

(
−

∞∫
δλ−1

u−2
0 (y) dy + a0(x,λ)

δλ−1∫
x

u−2
0 (y) dy

)

+ u0(x)

u1(x)

(
1 + a0(x,λ)

) δλ−1∫
x

u−2
0 (y)ã0(y,λ) dy

= O
(
x2�+1)[O(λ2�+1)+ O

(
x2λ2)(O(λ2�+1)+ O

(
x−2�−1))+ O

(
x−2�−1)O(x2λ2)]

= O
(
x2λ2)+ O

(
(xλ)2�+1)

which implies the claim. �
4.3. Estimates on the derivatives

Next, we study derivatives of the above constructed solutions.

Proposition 4.1. The functions aj for j = 0,1 from Lemma 4.3 are of symbol type, i.e.,

∣∣∂k
x ∂m

λ aj (x,λ)
∣∣� Ck,mx2−kλ2−m

for k,m ∈ N0 and λ ∈ (0, λ0), x ∈ [x0, δλ
−1] provided that � � 1 where x0, λ0, δ > 0 are con-

stants. In the case � = 0 we have the weaker bounds∣∣∂k
x ∂m

λ a0(x,λ)
∣∣� Ck,mx2−kλ2−m and

∣∣∂k
x ∂m

λ a1(x,λ)
∣∣� Ck,mx1−kλ1−m

in the above ranges of x and λ.

Proof. We use the notations from the proof of Lemma 4.3 and proceed by induction. We have to
consider mixed derivatives and therefore, we order the set N0 × N0 according to

(0,0), (1,0), (0,1), (2,0), (1,1), (0,2), . . .

which defines a bijection n : N0 × N0 → N0 by n(0,0) = 0, n(1,0) = 1, n(0,1) = 2, etc.
Now fix (k,m) ∈ N0 × N0 and assume that |∂l

x∂
j
λ (h(x,λ) − 1)| � Cl,j x

2−lλ2−j holds for all
(l, j) with n(l, j) � n(k,m) and λ ∈ (0, λ0), x ∈ [x0, λ

−1]. We have to show that this implies
|∂k′

x ∂m′
λ h(x,λ)| � Ck′,m′x2−k′

λ2−m′
, where n(k′,m′) = n(k,m) + 1. There are two possibilities:

Either (k′,m′) = (m + 1,0) (if k = 0) or (k′,m′) = (k − 1,m + 1). In the former case we have
with κl(x,λ) := ∂l

xK(x, y,λ)|y=x = O(x1−lλ2) (cf. Lemma B.2),

∂m+1
x h(x,λ) =

m∑
l=0

∂m−l
x

[
κl(x,λ)h(x,λ)

]+ x∫
x0

∂m+1
x K(x, y,λ)h(y,λ)dy.

Now observe that by assumption |∂m−l
x [κl(x,λ)h(x,λ)]| � x2−(m+1)λ2 for λ ∈ (0, λ0) and x ∈

[x0, λ
−1] and hence, |∂m+1h(x,λ)| � x2−(m+1)λ2. In the latter case we have, provided k � 2,
x
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∣∣∂m+1
λ ∂k−1

x h(x,λ)
∣∣=
∣∣∣∣∣
k−2∑
l=0

∂m+1
λ ∂k−2−l

x

[
κl(x,λ)h(x,λ)

]+ x∫
x0

∂m+1
λ

[
∂k−1
x K(x, y,λ)h(y,λ)

]
dy

∣∣∣∣∣
� x2−(k−1)λ2−(m+1)

by assumption. If k = 1 we have

∂m+1
λ h(x,λ) =

min{m+1,2}∑
j=1

(
m + 1

j

) x∫
x0

∂
j
λK(x, y,λ)∂

m+1−j
λ h(y,λ)dy

+
x∫

x0

K(x,y,λ)∂m+1
λ h(y,λ)dy

and thus, by assumption, the derivative ∂m+1
λ h(x,λ) satisfies a Volterra equation of the form

∂m+1
λ h(x,λ) = O

(
x2λ2−(m+1)

)+ x∫
x0

K(x,y,λ)∂m+1
λ h(y,λ)dy

and the basic estimate from Lemma B.1 yields |∂m+1
λ h(x,λ)| � x2λ2−(m+1) for all λ ∈ (0, λ0)

and x ∈ [x0, λ
−1].

For the second solution we use the representation

a1(x,λ) = u0(x)

u1(x)

(
−

∞∫
δλ−1

u−2
0 (y) dy + a0(x,λ)

δλ−1∫
x

u−2
0 (y) dy

)

+ u0(x)

u1(x)

(
1 + a0(x,λ)

) δλ−1∫
x

u−2
0 (y)ã0(y,λ) dy (16)

from the proof of Lemma 4.3 where, as before, ã0(x,λ) := (1+a0(x,λ))−2 −1. Lemma A.1 and
the Leibniz rule show that ã0 inherits the bounds of a0, i.e., |∂k

x ∂m
λ ã0(x,λ)| � Ck,mx2−kλ2−m for

all k,m ∈ N0 and λ ∈ (0, λ0), x ∈ [x0, λ
−1]. Thus, all functions on the right-hand side of Eq. (16)

behave like symbols under differentiation with respect to x and λ. Therefore, as in the proof of
Lemma 4.3, we have

a1(x,λ) = O
(
x2λ2)+ O

(
(xλ)2�+1)

where the O-terms are of symbol type which finishes the proof. �
4.4. Refined bounds for λ-derivatives

As a next step we prove a refinement of the estimates for the solution u0 which shows that we
can effectively trade λ−1 for x in the bounds for the λ-derivatives of a0.
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Lemma 4.4. The function a0(·, λ), defined by u0(x,λ) = u0(x)(1 + a0(x,λ)), satisfies the esti-
mates ∣∣∂2m

λ a0(x,λ)
∣∣� Cmx2m and

∣∣∂2m+1
λ a0(x,λ)

∣∣� Cmx2m+2λ

for all λ ∈ [0, λ0], x ∈ [x0, λ
−1] and m ∈ N0 where λ0 > 0 is a sufficiently small constant.

Proof. We use the notations from the proof of Proposition 4.1 and proceed by induction. The
case m = 0 has already been proved in Proposition 4.1. Now fix m ∈ N and assume that
|∂2j

λ (h(x,λ) − 1)| � Cjx
2j and |∂2j+1

λ (h(x,λ) − 1)| � Cjx
2j+2λ for j < m in the above range

of λ and x. According to the proof of Proposition 4.1, we have

∂2m
λ h(x,λ) =

(
2m

2

) x∫
x0

∂2
λK(x, y,λ)∂2m−2

λ h(y,λ)dy + 2m

x∫
x0

∂λK(x, y,λ)∂2m−1
λ h(y,λ)dy

+
x∫

x0

K(x,y,λ)∂2m
λ h(y,λ)dy

=
x∫

x0

O(y)O
(
y2m−2)dy +

x∫
x0

O(yλ)O
(
y2mλ

)
dy +

x∫
x0

K(x,y,λ)∂2m
λ h(y,λ)dy

= O
(
x2m
)+ x∫

x0

K(x,y,λ)∂2m
λ h(y,λ)dy

by assumption and the estimate in Lemma B.1 implies |∂2m
λ h(x,λ)| � x2m for λ ∈ [0, λ0] and

x ∈ [x0, λ
−1]. For the odd derivatives we proceed analogously and obtain

∂2m+1
λ h(x,λ) =

(
2m + 1

2

) x∫
x0

∂2
λK(x, y,λ)∂2m−1

λ h(y,λ)dy

+ (2m + 1)

x∫
x0

∂λK(x, y,λ)∂2m
λ h(y,λ)dy +

x∫
x0

K(x,y,λ)∂2m+1
λ h(y,λ)dy

=
x∫

x0

O(y)O
(
y2mλ

)
dy +

x∫
x0

O(yλ)O
(
y2m
)
dy +

x∫
x0

K(x,y,λ)∂2m+1
λ h(y,λ)dy

= O
(
x2m+2λ

)+ x∫
x0

K(x,y,λ)∂2m+1
λ h(y,λ)dy

by assumption and again, Lemma B.1 yields the claim. �
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Note that, by construction, we have u0(x0, λ) = u0(x0) and u′
0(x0, λ) = u′

0(x0) (see the proof
of Lemma 4.3) which shows in particular that u0(x0, λ) and u′

0(x0, λ) are smooth functions of λ.
Next, we prove similar bounds for the function a1 but unfortunately, the situation here is a bit
more complicated.

Lemma 4.5. Let u1(x,λ) = u1(x)(1 + a1(x,λ)) and x0, λ0, δ > 0 be as in Lemma 4.3. Then, for
all λ ∈ (0, λ0) and all x ∈ [x0, δλ

−1], we have the estimates∣∣∂2m
λ a1(x,λ)

∣∣� Cmx2m and
∣∣∂2m+1

λ a1(x,λ)
∣∣� Cmx2m+2λ

provided that m � � − 1. Furthermore, for higher derivatives we have the bounds∣∣∂2�+m
λ a1(x,λ)

∣∣� Cmx2�λ−m

for m ∈ N0 in the above ranges of x and λ.

Proof. The function a1(x,λ) is given by

a1(x,λ) = u0(x)

u1(x)

(
1 + a0(x,λ)

) δλ−1∫
x

u−2
0 (y)

(
1 + ã0(y,λ)

)
dy − 1

with ã0(x,λ) = (1 + a0(x,λ))−2 − 1, see Eq. (15). Thus, in view of Lemma 4.4 it suffices to
prove the claimed bounds for

h(x,λ) := u0(x)

u1(x)

δλ−1∫
x

u−2
0 (y)

(
1 + ã0(y,λ)

)
dy − 1.

For k ∈ N we have

∂k
λh(x,λ) = −u0(x)

u1(x)

k−1∑
j=0

dj

dλj

(
u−2

0

(
δλ−1)∂k−1−j

λ

(
1 + ã0(y,λ)

)∣∣
y=δλ−1δλ

−2)

+ u0(x)

u1(x)

δλ−1∫
x

u−2
0 (y)∂k

λ

(
1 + ã0(y,λ)

)
dy

and, by using the symbol behavior of ã0, we infer

u0(x)

u1(x)

k−1∑
j=0

dj

dλj

(
u−2

0

(
δλ−1)∂k−1−j

λ

(
1 + ã0(y,λ)

)∣∣
y=δλ−1δλ

−2)= O
(
x2�+1)O(λ2�+1−k

)
.

If k = 2m we have O(x2�+1)O(λ2�+1−k) = O(x2m) provided that m � �. If k = 2m + 1 we
obtain

O
(
x2�+1)O(λ2�+1−k

)= O
(
x2�+1−2�+2m+1λ

)= O
(
x2m+2λ

)
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provided that m � � − 1. In order to estimate the integral term note that ã0 inherits the bounds
of a0 from Lemma 4.4 as a consequence of the Leibniz rule and Lemma A.1. For even derivatives
we therefore have

u0(x)

u1(x)

δλ−1∫
x

u−2
0 (y)∂2m

λ

(
1 + ã0(y,λ)

)
dy = O

(
x2�+1) δλ−1∫

x

O
(
y−2�−2+2m

)
dy

= O
(
x2�+1)(O(λ2�+1−2m

)+ O
(
x−2�−1+2m

))
and, provided that m � �, we obtain O(x2�+1)O(λ2�+1−2m) = O(x2m) as before. For odd deriva-
tives we use ∂2m+1

λ ã0(y,λ) = O(y2m+2λ) and infer

u0(x)

u1(x)

δλ−1∫
x

u−2
0 (y)∂2m+1

λ

(
1 + ã0(y,λ)

)
dy = O

(
x2�+1) δλ−1∫

x

O
(
y−2�−2+2m+2λ

)
dy

= O
(
x2�+1)(O(λ2�−2m

)+ O
(
x−2�−1+2m+2λ

))
and O(x2�+1)O(λ2�−2m) = O(x2m+2λ) provided that m � � − 1. The claim for the higher
derivatives follows directly from the symbol behavior of the above O-terms. �

At this point it is convenient to introduce a new notation.

Definition 4.1. For N ∈ N0 we write f (x) = O2N(1) if, for a constant a > 0,

(1) f : (0, a) → R is smooth,
(2) |f (k)(x)| � Ck for k � 2N and all x ∈ (0, a),
(3) |f (2N+k)(x)| � Ckx

−k for all k ∈ N0 and x ∈ (0, a),
(4) limx→0+ f (2k−1)(x) = 0 for all 1 � k � N .

Similarly, we write f (x) = O2N+1(x) if, for a constant a > 0,

(1) f : (0, a) → R is smooth,
(2) |f (k)(x)| � Ck for k � 2N + 1 and all x ∈ (0, a),
(3) |f (2N+1+k)(x)| � Ckx

−k for all k ∈ N0 and x ∈ (0, a),
(4) limx→0+ f (2k)(x) = 0 for all 0 � k � N .

Note carefully that the crucial difference between O2N and O2N+1 is in condition (4). We also
use the symbols O2N+1 and O2N to denote generic real-valued functions with the respective
properties.

Corollary 4.2. Let u1(x,λ) and x0, λ0 > 0 be as in Lemma 4.3. Then we have u1(x0, λ) = O2�(1)

and u′ (x0, λ) = O2�(1) for all λ ∈ (0, λ0).
1
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Proof. The first assertion u1(x0, λ) = O2�(1) follows immediately from Lemma 4.5. For
the second one note that u0(x0) �= 0 and by construction we have −1 = u0(x0)u

′
1(x0, λ) −

u′
0(x0)u(x0, λ) which implies

u′
1(x0, λ) = u′

0(x0)u1(x0, λ) − 1

u0(x0)
= O2�(1)

by the first part. �
4.5. Extension of uj (x,λ) to negative values of x

Finally, we extend the solutions uj (x,λ) to negative values of x and prove appropriate esti-
mates.

Lemma 4.6. The functions uj (x,λ), j = 0,1, from Lemma 4.3 can be smoothly extended to
x ∈ [−λ−1, x0] for λ ∈ (0, λ0) where λ0 > 0 is a constant. Furthermore, in the above ranges of x

and λ, the function u0 satisfies the bounds∣∣∂m
λ u0(x,λ)

∣∣� Cm〈x〉m+1,

m ∈ N0, whereas for u1 we have the estimates∣∣∂m
λ u1(x,λ)

∣∣� Cm〈x〉m+1

if m � 2� and ∣∣∂2�+m
λ u1(x,λ)

∣∣� Cm〈x〉2�+1λ−m

for m ∈ N0.

Proof. The coefficients of the equation Hσ,�f = λ2f are smooth on R and thus, any solu-
tion of Hσ,�f = λ2f can be smoothly extended to all of R by solving an appropriate initial
value problem. Applying the variation of constants formula and noting that u0(x0, λ) = u0(x0),
u′

0(x0, λ) = u′
0(x0) shows that the solution u0(·, λ) satisfies the integral equation

u0(x,λ) = u0(x) + λ2

x0∫
x

[
v0(x)v1(y) − v0(y)v1(x)

]
u0(y,λ) dy,

see also Corollary 4.1, where v0, v1 are the smooth extensions to (−∞, x0] of the functions con-
structed in Lemma 4.2. This is a Volterra equation with a kernel K(x,y,λ) := λ2(v0(x)v1(y) −
v0(y)v1(x)). According to Lemma 4.2 we have the bound |K(x,y,λ)| � λ2(〈x〉 + 〈y〉) which
implies

x0∫
−1

sup
x∈(−λ−1,x0)

∣∣K(x,y,λ)
∣∣dy � 1
−λ



R. Donninger et al. / Advances in Mathematics 226 (2011) 484–540 509
and hence, Lemma B.1 and Corollary 4.1 show that |u0(x,λ)| � 〈x〉 for all λ ∈ (0, λ0) and
x ∈ [−λ−1, x0] where λ0 > 0 is the constant from Lemma 4.3. We proceed by induction. Fix
m ∈ N0 and assume that we have |∂l

λu0(x,λ)| � Cl〈x〉l+1 for all l � m in the above range of λ

and x. This implies

∂m+1
λ u0(x,λ) =

min{m+1,2}∑
l=1

(
m + 1

l

) x0∫
x

∂l
λK(x, y,λ)∂m+1−l

λ u0(y,λ) dy

+
x0∫

x

K(x, y,λ)∂m+1
λ u0(y,λ) dy

=
min{m+1,2}∑

l=1

O
(
λ2−l〈x〉2)︸ ︷︷ ︸
O(〈x〉l )

O
(〈x〉1+m+1−l

)+ x0∫
x

K(x, y,λ)∂m+1
λ u0(y,λ) dy

and the estimate from Lemma B.1 yields |∂m+1
λ u0(x,λ)| � 〈x〉m+2 as claimed. Note carefully

that the index l in the last sum is at most equal to 2 and therefore, we only estimate nonnegative
powers of λ here.

For the second assertion we proceed similarly and note that a straightforward calculation as
well as the variation of constants formula show that u1(·, λ) satisfies the Volterra equation

u1(x,λ) = u1(x0, λ)v′
1(x0) − u′

1(x0, λ)v1(x0)

W(v0, v1)
v0(x) − u1(x0, λ)v′

0(x0) − u′
1(x0, λ)v0(x0)

W(v0, v1)
v1(x)

+
x0∫

x

K(x, y,λ)u1(y,λ) dy.

According to Corollary 4.2 we have

u1(x,λ) = O2�(1)v0(x) + O2�(1)v1(x) +
x0∫

x

K(x, y,λ)u1(y,λ) dy

and, since vj (x) = O(〈x〉), we obtain |u1(x,λ)| � 〈x〉 for all x ∈ [−λ−1, x0] and λ ∈ (0, λ0) by
Lemma B.1. Again, we proceed by induction and first we consider the case m � 2�. If � = 0 there
is nothing left to prove, so we restrict ourselves to � � 1. Assuming that |∂l

λu1(x,λ)| � 〈x〉l+1

holds for all l � m and a fixed m � 2� − 1, we infer

∂m+1
λ u1(x,λ) = O

(〈x〉)+ min{m+1,2}∑
l=1

(
m + 1

l

) x0∫
x

∂l
λK(x, y,λ)∂m+1−l

λ u1(y,λ)︸ ︷︷ ︸
O(〈x〉)O(〈y〉m)

dy

+
x0∫

K(x,y,λ)∂m+1
λ u1(y,λ) dy
x
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= O
(〈x〉m+2)+ x0∫

x

K(x, y,λ)∂m+1
λ u1(y,λ) dy

and Lemma B.1 yields |∂m+1
λ u1(x,λ)| � 〈x〉m+2 for all x ∈ [λ−1, x0] and λ ∈ (0, λ0). The claim

for the higher derivatives follows by a similar induction. �
5. Perturbative solutions for |xλ| large

The solutions uj (·, λ) obtained by perturbing in energy cannot directly be matched with the
Jost solution f+(·, λ) since the approximations in Lemma 4.3 are valid for |xλ| small whereas
the behavior of f+(x,λ) is known only for fixed λ and x → ∞. Thus, we construct another set
of solutions to H�,σ f = λ2f by perturbing the potential.

5.1. Construction of the perturbative solutions

To do so, we first rescale the equation H�,σ f = λ2f by introducing a new independent vari-
able z := λx. Setting f̃ (z) := f (λ−1z), the equation H�,σ f = λ2f is equivalent to

f̃ ′′ +
(

1 − �(� + 1)

z2

)
f̃ = λ−2U�,σ

(
λ−1z
)
f̃ (17)

where U�,σ (x) := V�,σ (x) − �(�+1)

x2 . Now observe that the equation

f̃ ′′ +
(

1 − �(� + 1)

z2

)
f̃ = 0

has the fundamental system {√zJ�+1/2(z),
√

zY�+1/2(z)} where J�+1/2 and Y�+1/2 are the Bessel
functions [1]. Thus, for a small right-hand side of Eq. (17) we expect to obtain solutions of
Eq. (17) by perturbing the Bessel functions. According to Corollary 2.1, the right-hand side
satisfies the estimate λ−2U�,σ (λ−1z) � λ−2(λ−1z)−3+ε = λ−2x−3+ε for x → ∞. Thus, our ap-
proximation is expected to be good if λ−2x−3+ε is small. Smallness can be achieved by fixing
λ > 0 and letting x → ∞ which is required for the matching with the Jost solution f+. How-
ever, we can also enforce smallness by setting x = λ−1+ε (for a small ε > 0) and letting λ → 0.
For λ > 0 sufficiently small, we have |xλ| < δ and the matching with the solutions uj (·, λ) can
be done as well. As a result, we obtain a good approximation to the Jost solution f+(x,λ) at a
finite x for λ → 0.

Lemma 5.1. There exists a smooth solution φ�(·, λ) of Eq. (17) such that

φ�(z,λ) = β�

√
zH+

�+1/2(z)
(
1 + b�(z, λ)

)
where H+

�+1/2 := J�+1/2 + iY�+1/2 is the Hankel function and β� := i
√

π
2 ei� π

2 . For all λ ∈ (0,1),

the function b� satisfies the bounds ∣∣b�(z, λ)
∣∣� Cλ1−ε(2�+3)
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for all z ∈ [λε,1] and

∣∣b�(z, λ)
∣∣� Cz−2+ελ1−ε

for all z ∈ [1,∞) where ε ∈ (0, 1
2�+3 ) is arbitrary.

Proof. Set ϕ�(z) := β�
√

zH+
�+1/2(z) and observe that |ϕ�(z)| > 0 for all z > 0. Furthermore, we

have W(ϕ�,ϕ�) = −2i which follows by noting that ϕ�(z) ∼ eiz and ϕ′
�(z) ∼ ieiz for z → ∞.

A straightforward calculation shows that, if h satisfies the integral equation

h(z,λ) = 1 − 1

2i

∞∫
z

[
ϕ�(y)ϕ�(y) − ϕ2

� (y)
ϕ�(z)

ϕ�(z)

]
λ−2U�,σ

(
λ−1y

)
h(y,λ)dy, (18)

then φ�(z,λ) := ϕ�(z)h(z,λ) is a solution to Eq. (17). Eq. (18) is of the form

h(z,λ) = 1 +
∞∫
z

K(z, y,λ)h(y,λ)dy.

Recall the asymptotic behavior ϕ�(z) = c1β�z
�+1(1 + O(z)) + ic2β�z

−�(1 + O(z)) for z → 0
where c1, c2 are nonzero real constants and the O-terms are smooth (cf. [1]). Furthermore,
we have ϕ�(z) ∼ eiz as z → ∞ and |λ−2U�,σ (λ−1z)| � λ1−εz−3+ε for all λ, z > 0 with, say,
λ−1z � 1 (see Corollary 2.1). This shows that, for k ∈ N0,

∣∣∣∣
(

ϕ�

ϕ�

)(k)

(z)

∣∣∣∣� Ck

for all z � 0 and hence, |∂k
z K(z, y,λ)| � λ1−εy−3+ε(1 +y−2�) for all λ ∈ (0,1) and all y, z with

λε � z � y. Thus, we have

μ(λ) :=
∞∫

λε

sup
z∈(λε,y)

∣∣K(z, y,λ)
∣∣dy � λ1−ε(2�+3)

for all λ ∈ (0,1) and hence, μ := supλ∈(0,1) μ(λ) < ∞ provided that ε � 1
2�+3 . Apply-

ing Lemma B.2 we conclude that Eq. (18) has a unique smooth solution h(·, λ) satisfying
‖h(·, λ)‖L∞(λε,∞) � eμ for all λ ∈ (0,1). Thus, Eq. (18) implies

∣∣h(z,λ) − 1
∣∣� ∞∫

z

∣∣K(z, y,λ)
∣∣dy �

∞∫
z

λ1−εy−3+ε dy � λ1−εz−2+ε

for all λ ∈ (0,1) and all z ∈ [1,∞). Similarly, for z ∈ [λε,1], we have
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∣∣h(z,λ) − 1
∣∣� ∞∫

z

∣∣K(z, y,λ)
∣∣dy �

∞∫
z

λ1−εy−3+ε
(
1 + y−2�

)
dy

� λ1−ε
(
z−2+ε + z−2−2�+ε

)
� λ1−ε(2�+3)

as claimed. �
5.2. Estimates for the derivatives

Lemma 5.2. For all λ ∈ (0,1) and m,k ∈ N0, the function b� from Lemma 5.1 satisfies the
estimates ∣∣∂k

z ∂m
λ b�(z, λ)

∣∣� Ck,mz−kλ1−ε(2�+3)−m

for all z ∈ [λε,1] and ∣∣∂k
z ∂m

λ b�(z, λ)
∣∣� Ck,mz−2+ε−kλ1−ε−m

for all z ∈ [1,∞) where ε ∈ (0, 1
2�+3 ) is arbitrary.

Proof. The function h := 1 + b� satisfies the equation

h(z,λ) = 1 +
∞∫
z

K(z, y,λ)h(y,λ)dy

where

K(z, y,λ) := − 1

2i

[
ϕ�(y)ϕ�(y) − ϕ2

� (y)
ϕ�(z)

ϕ�(z)

]
λ−2U�,σ

(
λ−1y

)
and ϕ�(z) := β�

√
zH+

�+1/2(z), see the proof of Lemma 5.1. Recall the asymptotic behavior

ϕ�(z) = eiz(1 + OC(z−1)) for z → ∞ where the OC-term is of symbol type. On the other
hand, we have ϕ�(z) = c1β�z

�+1(1 + O(z)) + ic2β�z
−�(1 + O(z)) for z → 0 where c1, c2

are nonzero real constants and the O-terms are smooth (see [1]). Thus, by the Leibniz rule
and Lemma A.1, we have K(z, y,λ) = (1 − e2i(y−z))OC(y−3+ελ1−ε) for all 1 � z � y and
K(z, y,λ) = OC(y−3−2�+ελ1−ε) = OC(y−1λ1−ε(2�+3)) for λε � z � y � 1 where all O-terms
are of symbol type. Let n : N0 × N0 → N0 denote the bijection from the proof of Proposi-
tion 4.1. As before, we proceed by induction. Fix (k,m) ∈ N0 × N0 and suppose we have
|∂l

z∂
j
λ (h(z,λ) − 1)| � Cl,j z

−lλ1−ε(2�+3)−j for all (l, j) with n(l, j) � n(k,m) and λ ∈ (0,1),

z ∈ [λε,1]. We have to show that this implies |∂k′
z ∂m′

λ (h(z,λ) − 1)| � Ck′,m′z−k′
λ1−ε(2�+3)−m′

where n(k′,m′) = n(k,m) + 1. If k = 0 we have (k′,m′) = (m + 1,0) and, with κl(z, λ) :=
∂l
zK(z, y,λ)|y=z,

∂m+1
z h(z,λ) = −

m∑
l=0

∂m−l
z

[
κl(z, λ)h(z,λ)

]+ ∞∫
∂m+1
z K(z, y,λ)h(y,λ)dy,
z
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see Lemma B.2. By assumption we have |∂m−l
z [κl(z, λ)h(z,λ)]| � z−(m+1)λ1−ε(2�+3) for λ ∈

(0,1), z ∈ [λε,1] and this implies |∂m+1
z h(z,λ)| � z−(m+1)λ1−ε(2�+3). If k � 1 we have

(k′,m′) = (k − 1,m + 1) and

∂m+1
λ ∂k−1

z h(x,λ) = −
k−2∑
l=0

∂m+1
λ ∂k−2−l

z

[
κl(z, λ)h(z,λ)

]

+
∞∫
z

∂m+1
λ

[
∂k−1
z K(z, y,λ)h(y,λ)

]
dy. (19)

If k � 2, Eq. (19) and the assumption shows that |∂m+1
λ ∂k−1

z h(z,λ)| � z−(k−1)λ1−ε(2�+3)−(m+1)

for λ ∈ (0,1), z ∈ [λε,1]. If k = 1, Eq. (19) is of the form

∂m+1
λ h(z,λ) = OC

(
λ1−ε(2�+3)−(m+1)

)+ ∞∫
z

K(z, y,λ)∂m+1
λ h(y,λ)dy

by assumption and therefore, Lemma B.1 yields |∂m+1
λ h(z,λ)| � λ1−ε(2�+3)−(m+1) for λ ∈ (0,1)

and z ∈ [λε,1]. This proves the first estimate.
For the second estimate we proceed by an analogous induction and write

∞∫
z

K(z, y,λ)h(y,λ)dy =
∞∫

0

K(z,η + z,λ)h(η + z,λ) dη

=
∞∫

0

(
1 − e2iη

)
OC

(
(η + z)−3+ελ1−ε

)
h(η + z,λ) dη

for z � 1 where the OC-term is of symbol type. Thus, the assumption yields

∂m+1
z h(z,λ) = OC

(
z−2+ε−(m+1)λ1−ε

)+ ∞∫
z

K(z, y,λ)∂m+1
y h(y,λ)dy

and Lemma B.1 implies |∂m+1
z h(z,λ)| � z−2+ε−(m+1)λ1−ε for λ ∈ (0,1) and z � 1. Analo-

gously, we obtain

∂m+1
λ ∂k−1

z h(z,λ) = OC

(
z−2+ε−(k−1)λ1−ε−(m+1)

)+ ∞∫
z

K(z, y,λ)∂m+1
λ ∂k−1

y h(y,λ)dy

and again, Lemma B.1 yields |∂k−1
z ∂m+1

λ h(z,λ)| � z−2+ε−(k−1)λ1−ε−(m+1) for λ ∈ (0,1) and
z � 1 which finishes the proof. �
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6. Matching with the Jost solutions

In this section we match the Jost functions f±(·, λ) with the solutions uj (·, λ) which allows us
to calculate the asymptotic behavior of f±(·, λ) and W(f−(·, λ), f+(·, λ)) in the limit λ → 0+.

6.1. Matching with f+(·, λ)

Note that the solution φ� constructed in Lemma 5.1 has the asymptotic behavior φ�(z,λ) ∼ eiz

for z → ∞ which shows that f+(x,λ) = φ�(λx,λ). Thus, we have found a representation of the
Jost solution f+(x,λ) which is valid for all λ ∈ (0,1) and all x with λ−1+ε � x < ∞ with a
sufficiently small ε > 0. For given ε, δ > 0 we can always accomplish λ−1+ε � δλ−1 for all
λ ∈ (0, λ0) provided λ0 > 0 is chosen small enough. Thus, at x = λ−1+ε for λ sufficiently close
to 0, we can match the solutions f+(·, λ) and uj (·, λ) (see Lemma 4.3).

Lemma 6.1. The Wronskians c+
j (λ) := W(f+(·, λ), uj (·, λ)) for j = 0,1 have the asymptotic

behavior

c+
0 (λ) = iα0β�λ

−�
(
1 + O

(
λε
)+ iO

(
λε(2�+2)

))
and

c+
1 (λ) = α1β�λ

�+1(1 + O
(
λε
)+ iO

(
λ−2�ε

))
as λ → 0+ for a sufficiently small ε > 0 where αj are real nonzero constants and all O-terms
are of symbol type.

Proof. We have f+(x,λ) = β�

√
λxH+

�+1/2(λx)(1 + b�(λx,λ)) by Lemma 5.1. Note that
∂xb�(λx,λ) = λ∂zb�(λx,λ) as well as ∂λb�(λx,λ) = x∂zb�(λx,λ) + ∂λb�(λx,λ) and hence,
by Lemma 5.2 and the chain rule, we infer∣∣∂k

x ∂m
λ b�(λx,λ)

∣∣� Ck,mx−kλ1−ε(2�+3)−m

for all k,m ∈ N0. By the same reasoning we obtain the symbol character (with respect to differ-
entiation in x and λ) of the O-terms in

β�

√
λxH+

�+1/2(λx) = α1β�(λx)�+1(1 + O(λx)
)+ iα0β�(λx)−�

(
1 + O(λx)

)
where α0, α1 are nonzero real constants. This shows that

f+(x,λ) = (α1β�(λx)�+1 + iα0β�(λx)−�
)(

1 + OC

(
λ1−ε(2�+3)

))(
1 + O(λx)

)
where the O-terms are of symbol type and the representation is valid for all λ ∈ (0,1) and
all x ∈ [λ−1+ε, λ−1]. Differentiating this expression with respect to x and using the symbol
character of the O-terms we obtain

f ′+(x,λ) = ((� + 1)α1β�λ(λx)� − i�α0β�λ(λx)−�−1)(1 + OC

(
λ1−ε(2�+3)

))(
1 + O(λx)

)
.



R. Donninger et al. / Advances in Mathematics 226 (2011) 484–540 515
Evaluation at x = λ−1+ε yields

f+
(
λ−1+ε, λ

)= (α1β�λ
ε(�+1) + iα0β�λ

−ε�
)(

1 + O
(
λε
)+ iO

(
λ1−ε(2�+3)

))
and

f ′+
(
λ−1+ε, λ

)= ((� + 1)α1β�λ
1+ε� − i�α0β�λ

1−ε(�+1)
)(

1 + O
(
λε
)+ iO

(
λ1−ε(2�+3)

))
for ε > 0 sufficiently small. Furthermore, by Lemma 4.3, we have

u0(x,λ) = u0(x)
(
1 + O

(
x2λ2)), u′

0(x,λ) = u′
0(x)
(
1 + O

(
x2λ2))

and

u1(x,λ) = u1(x)
(
1 + O(xλ)

)
, u′

1(x,λ) = u′
1(x)
(
1 + O(xλ)

)
for all λ ∈ (0, λ0) and all x ∈ [x0, δλ

−1] where λ0, δ > 0 are sufficiently small and x0 > 0 is
sufficiently large. Thus, by choosing λ sufficiently close to 0, we obtain λ−1+ε ∈ [x0, δλ

−1] and
we can evaluate the above expressions at x = λ−1+ε which yields

u0
(
λ−1+ε, λ

)= (2� + 1)−1λ−�−1+ε(�+1)
(
1 + O

(
λ2ε
))

,

u′
0

(
λ−1+ε, λ

)= (� + 1)(2� + 1)−1λ−�+ε�
(
1 + O

(
λ2ε
))

,

u1
(
λ−1+ε, λ

)= λ�−ε�
(
1 + O

(
λε
))

,

u′
1

(
λ−1+ε, λ

)= −�λ�+1−ε(�+1)
(
1 + O

(
λε
))

by Lemma 4.1 and all O-terms are of symbol type. The claim now follows from a straightforward
computation. �
6.2. The Jost solution f−(·, λ) in the limit λ → 0+

The Jost solution f−(·, λ) satisfies the Volterra integral equation

f−(x,λ) = e−iλx −
x∫

−∞

sin(λ(y − x))

λ
V�,σ (y)f−(y,λ) dy

as can be seen from the definition and the variation of constants formula. The decay properties of
the potential V�,σ are crucial for the behavior of f±. Since V�,σ decays exponentially as x → −∞
(Corollary 2.1), the situation for f− is much simpler. In fact, f− behaves essentially as in the free
case V�,σ = 0.

Lemma 6.2. Let a ∈ R and λ0 > 0. Then the Jost solution f−(x,λ) = e−iλxm−(x,λ) exists
for all λ ∈ [−λ0, λ0] and, for m ∈ N0, we have the bounds |∂m

λ m−(x,λ)| � Cm as well as
|∂mm′ (x,λ)| � Cm for all x ∈ (−∞, a] and all λ ∈ [−λ0, λ0].
λ −
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Proof. According to Lemma 3.1, the function m−(x,λ) = eiλxf−(x,λ) satisfies the Volterra
equation

m−(x,λ) = 1 +
x∫

−∞
K(x,y,λ)m−(y,λ) dy (20)

where K(x,y,λ) := 1
2iλ

(e2iλ(y−x) − 1)V�,σ (y). Note the bound

∣∣∂m
λ K(x, y,λ)

∣∣� Cm|y − x|m+1
∣∣V�,σ (y)

∣∣
and thus, Lemma B.3 shows that the solution of Eq. (20) satisfies ‖∂m

λ m−(·, λ)‖L∞(−∞,a) � Cm

for all λ ∈ [−λ0, λ0] since V�,σ (y) decays exponentially as y → −∞ (Corollary 2.1). The es-
timate for the derivative m′−(x,λ) follows by differentiating Eq. (20) and using the bounds for
∂m
λ m−(x,λ). �

6.3. Zero energy resonances

Next we discuss the occurrence of resonances. First we give the precise definition of a zero
energy resonance.

Definition 6.1. We say that the operator H�,σ has a zero energy resonance if there exists a func-
tion f ∈ L∞(R) such that H�,σ f = 0.

Recall that the equation H�,σ f = 0 is equivalent to

−
(

1 − 2M

r

)
v′′ − 2M

r2
v′ +
(

�(� + 1)

r2
+ 2Mσ

r3

)
v = 0

where v(r) = f (x(r)) (see Eq. (11)). As already mentioned, solutions of this equation can be
given in terms of special functions and therefore, we even know the behavior of f−(x,0) for
x → ∞. This is crucial to see whether the operator H�,σ has a zero energy resonance or not. As
the following lemma shows, no resonances occur for scalar perturbations. However, in the case
of electromagnetic or gravitational perturbations one has to require � � 1 (which we do anyway)
or � � 2, respectively, in order to avoid resonances.

Lemma 6.3. Let (�, σ ) ∈ N0 ×{−3,0,1}\{(0,0), (0,−3), (1,−3)}. Then the zero energy Jost so-
lution has the asymptotic behavior f−(x,0) ∼ cx�+1 for x → ∞ where c is a nonzero constant.
In particular, there does not exist a function f ∈ L∞(R) that satisfies H�,σ f = 0.

Proof. As already mentioned, the equation H�,σ f = 0 is equivalent to

−
(

1 − 2M
)

v′′ − 2M

2
v′ +
(

�(� + 1)

2
+ 2Mσ

3

)
v = 0
r r r r
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where v(r) := f (x(r)). Set u(z) := z−(1+s)v(2Mz) where s := √
1 − σ (note that s is the spin

of the perturbing field, i.e., s ∈ {0,1,2}). Then the above equation is equivalent to

z(1 − z)u′′ + [c − (a + b + 1)z
]
u′ − abu = 0

where a = −� + s, b = � + 1 + s and c = 1 + 2s. This is the hypergeometric differential equa-
tion and we have the solution u(z) = 2F1(a, b; c; z) = 2F1(−� + s, � + 1 + s;1 + 2s; z) which
reduces to a polynomial of order � − s provided that � − s ∈ N0 (see [1]) and this is equivalent
to (�, σ ) /∈ {(0,0), (0,−3), (1,−3)}. The Frobenius indices for the hypergeometric differential
equation at the regular singular point z = 1 (which corresponds to r = 2M and hence, x → −∞)
are (0, c − a − b) = (0,0) (see [1]) which shows that u(1) �= 0 and hence, there exists a nonzero
constant c0 such that f−(x,0) = c0r(x)1+su(

r(x)
2M

). Since u is a polynomial of order � − s, we
obtain f−(x,0) ∼ c1x

�+1 for x → ∞ by Lemma 2.1 where c1 is a nonzero constant. �
Remark 6.1. Note that Lemma 6.3 is sharp in the sense that the operator H�,σ does indeed have
zero energy resonances if (�, σ ) ∈ {(0,0), (0,−3), (1,−3)}. The resonance functions f�,σ are
given by f0,0(x) = 1, f0,−3(x) = 1 − 3M

r(x)
and f1,−3(x) = 1

r(x)
as can be checked immediately.

Remark 6.2. In the scalar case (σ = 1), the hypergeometric function in the proof of Lemma 6.3
reduces to the Legendre polynomial P� and we have

f−(x,0) = r(x)

2M
P�

(
r(x)

M
− 1

)
.

6.4. Matching with f−(·, λ)

The above results are sufficient to match the Jost solution f−(·, λ) to the solutions uj (·, λ)

obtained in Lemma 4.3 by perturbing in energy. In what follows we will always assume that we
are in the nonresonant regime, i.e.,

(�, σ ) /∈ {(0,0), (0,−3), (1,−3)
}
.

Lemma 6.4. The Wronskians c−
j (λ) := W(f−(·, λ), uj (·, λ)) for j = 0,1 are of the form5

c−
j (λ) = O2�(1) + iO2�+1(λ)

for λ ∈ (0, λ0) where λ0 > 0 is a constant. Furthermore, we have c−
1 (0) �= 0.

Proof. According to Lemma 6.2, f−(x,λ) is smooth in λ around λ = 0 and by definition we
have f−(x,λ) = f−(x,−λ) for λ ∈ R. In particular, this implies Ref−(x0, λ) = O2�(1) and
Imf−(x0, λ) = O2�+1(λ) where x0 > 0 is the constant from Lemma 4.3. Repeating these argu-
ments for the derivative f ′−(x,λ), we similarly obtain Ref ′−(x0, λ) = O2�(1) and Imf ′−(x0, λ) =
O2�+1(λ). By construction (cf. Lemma 4.3), we have u0(x0, λ) = u0(x0), u′

0(x0, λ) = u′
0(x0).

5 See Definition 4.1.
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Combining this with Corollary 4.2 we obtain uj (x0, λ) = O2�(1) and u′
j (x0, λ) = O2�(1) for

j = 0,1. This shows

c−
j (λ) = O2�(1)

(
O2�(1) + iO2�+1(λ)

)= O2�(1) + iO2�+1(λ).

Suppose c−
1 (0) = W(f−(·,0), u1(·)) = 0. This is equivalent to f−(·,0) and u1 being linearly

dependent which implies that f−(x,0) = O(x−�) for x → ∞, a contradiction to Lemma 6.3. �
7. The spectral measure at zero energy

Recall that we are interested in estimating the integral

∞∫
0

λ cos(tλ) Im
[
G�,σ

(
x, x′, λ

)]〈x〉−α
〈
x′〉−α

dλ

and thus, we have to study the expressions

Im
f−(x′, λ)f+(x,λ)

W(f−(·, λ), f+(·, λ))
.

In this section we obtain estimates for λ → 0+ and, as will be clear afterwards, the decay proper-
ties for solutions of the Regge–Wheeler equation are completely determined by this asymptotic
behavior. In view of this, the following lemma is in fact the central result of our work.

We have to consider different ranges of x, x′ and λ separately and we start with estimates for
|λ|, |xλ| and |x′λ| small which turns out to be the most important case. For all λ ∈ (0, λ0) with a
sufficiently small constant λ0 > 0, we have the representation

f±(x,λ) = −c±
1 (λ)u0(x,λ) + c±

0 (λ)u1(x,λ)

where6 c±
j (λ) = W(f±, uj )(λ) (see Lemmas 6.1 and 6.4). Note carefully the slightly inconve-

nient fact that c±
0 (λ) is the coefficient of u1(·, λ) and not u0(·, λ)! It follows that

W(f−, f+)(λ) = c−
1 (λ)c+

0 (λ) − c−
0 (λ)c+

1 (λ).

We abbreviate

Ajk(λ) := Im

[
c−
j (λ)c+

k (λ)

c−
1 (λ)c+

0 (λ) − c−
0 (λ)c+

1 (λ)

]

and, since uj (·, λ) are real-valued, we have to study expressions of the form

A00(λ)u1(x,λ)u1
(
x′, λ
)
, A10(λ)u0(x,λ)u1

(
x′, λ
)
, etc.

6 From now on we write W(f±, uj )(λ) instead of W(f±(·, λ), uj (·, λ)).
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Lemma 7.1. The function Ajk is of the form

A00(λ) = O2�+1(λ) and Ajk(λ) = O
(
λ2�+1) if j + k � 1

for λ ∈ (0, λ0) where λ0 > 0 is a sufficiently small constant and the O-term behaves like a
symbol.

Proof. We have to distinguish four cases.
(1) For A00 we write

A00(λ) = Im

c−
0

c−
1
(λ)

1 − c−
0

c−
1

c+
1

c+
0
(λ)

.

According to Lemma 6.4 we have

c−
0

c−
1

(λ) = c−
0 (λ)c−

1 (λ)

|c−
1 (λ)|2 = O2�(1) + iO2�+1(λ)

|c−
1 (λ)|2

and, since |c−
1 (λ)|2 = O2�(1) + O2�+2(λ

2) = O2�(1) as well as |c−
1 (0)| �= 0, we infer

c−
0

c−
1
(λ) =

O2�(1) + iO2�+1(λ) with the help of Lemma A.1. Furthermore, Lemma 6.1 and Lemma A.1
yield

c+
1

c+
0

(λ) = −i
α1

α0
λ2�+1(1 + O

(
λε
)+ iO

(
λ−2�ε

))= O
(
λ2�+1−2�ε

)+ iO
(
λ2�+1)

where the O-terms are of symbol type. Applying Lemma A.1 again, we conclude

A00(λ) = Im
(O2�(1) + iO2�+1(λ))(1 + O(λ2�+1−2�ε) + iO(λ2�+1))

1 + O(λ2�+1−2�ε)

= O2�+1(λ) + O
(
λ2�+1)

for a sufficiently small ε and the O-term is of symbol type.
(2) For A10 we use the representation

A10(λ) = Im
1

1 − c−
0

c−
1

c+
1

c+
0
(λ)

= Im
1

1 + O(λ2�+1−2�ε) + iO(λ2�+1)

= Im
1 + O(λ2�+1−2�ε) + iO(λ2�+1)

1 + O(λ2�+1−2�ε)
= O
(
λ2�+1)

where all O-terms are of symbol type (use Lemma A.1).
(3) In order to estimate A01 first note that

W(f−, f+)(λ) = c−(λ)c+(λ) − c−(λ)c+(λ) = iα0β�cλ
−�
(
1 + O

(
λε
)+ iO

(
λε(2�+2)

))

1 0 0 1
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as follows straightforward from Lemmas 6.1 and 6.4 where c is a nonzero real constant and all
O-terms are of symbol type. However, this implies

A01(λ) = Im
i α1
α0c

λ2�+1(O(1) + iO(λ))(1 + O(λε) + iO(λ−2�ε))

1 + O(λε) + iO(λε(2�+2))

= Im
i α1
α0c

λ2�+1(O(1) + O(λε) + iO(λ−2�ε))(1 + O(λε) + iO(λε(2�+2)))

1 + O(λε)

= O(λ2�+1)

1 + O(λε)
= O
(
λ2�+1)

where all O-terms are of symbol type (see Lemma A.1).
(4) Finally, for A11 we proceed exactly as above and obtain

A11(λ) = Im
i α1
α0c

λ2�+1(O(1) + iO(λ))(1 + O(λε) + iO(λ−2�ε))

1 + O(λε) + iO(λε(2�+2))
= O
(
λ2�+1)

where the O-term behaves like a symbol. �
Remark 7.1. The fact that A00(λ) is somewhat exceptional is a direct consequence of the asym-
metric decay properties of the Regge–Wheeler potential. This phenomenon is not present in [52]
or [53].

8. Oscillatory integral estimates for small energies

In this section we obtain bounds for the oscillatory integrals that describe the time evolution
of solutions to the Regge–Wheeler equation. We distinguish different regimes, depending on
the ranges of x, x′ and λ and in this section we only consider the case |λ| small. As already
mentioned, the most important contribution comes from the regime |xλ| and |x′λ| small which
yields the decay rates stated in Theorem 2.1. The remaining cases can be treated very similar
to [53], however, for the sake of completeness we give explicit proofs for all of the following
statements.

8.1. Estimates for |xλ| and |x′λ| small

We will need the following result on oscillatory integrals.

Lemma 8.1. For an N ∈ N0 let ω(λ) = O2N+1(λ) and suppose there exists a constant λ0 > 0
such that ω(λ) = 0 for all λ � λ0. Then we have the estimates

∣∣∣∣∣
∞∫

0

λ cos(tλ)ω(λ)dλ

∣∣∣∣∣� C(ω)〈t〉−(2N+3),

∣∣∣∣∣
∞∫

sin(tλ)ω(λ)dλ

∣∣∣∣∣� C(ω)〈t〉−(2N+2)
0
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for all t � 0 where C(ω) can be estimated as

C(ω) � C max
{
‖ω‖L∞(0,∞), sup

λ>0

∣∣λjω(2N+1+j)(λ)
∣∣: j = 1,2,3

}
for an absolute constant C > 0.

Proof. We only prove the sine estimate since the proof for the cosine estimate is completely
analogous. It suffices to consider t � 1. (2N + 2)-fold integration by parts yields

∣∣∣∣∣
∞∫

0

sin(tλ)ω(λ)dλ

∣∣∣∣∣=
∣∣∣∣∣ 1

t2N+2

∞∫
0

sin(tλ)ω(2N+2)(λ) dλ

∣∣∣∣∣
since the boundary terms vanish thanks to ω(2m)(0) = 0 for m � N and the fact that ω(λ) = 0
for all λ � λ0. Thus, it suffices to show that

∣∣∣∣∣
∞∫

0

sin(tλ)ω(2N+2)(λ) dλ

∣∣∣∣∣� C

for a constant C independent of t . Let χ be a smooth cut-off satisfying χ(λ) = 1 for 0 � λ � 1
2

and χ(λ) = 0 for λ � 2. Then we have

∣∣∣∣∣
∞∫

0

sin(tλ)ω(2N+2)(λ)χ(tλ) dλ

∣∣∣∣∣=
∣∣∣∣∣

∞∫
0

sin(η)ω(2N+2)

(
η

t

)
χ(η)

dη

t

∣∣∣∣∣�
∞∫

0

∣∣∣∣ sin(η)

η
χ(η)

∣∣∣∣dη � 1

for all t � 1. Furthermore, by an additional integration by parts we obtain

∣∣∣∣∣
∞∫

0

sin(tλ)ω(2N+2)(λ)
[
1 − χ(tλ)

]
dλ

∣∣∣∣∣�
∣∣∣∣∣1t

∞∫
0

cos(tλ)ω(2N+3)(λ)
[
1 − χ(tλ)

]
dλ

∣∣∣∣∣
+
∣∣∣∣∣1t

∞∫
0

cos(tλ)ω(2N+2)(λ)tχ ′(tλ) dλ

∣∣∣∣∣
where the boundary term vanishes thanks to the cut-off and ω(2N+2)(λ) = 0 for all λ � λ0.
However, we have

∣∣∣∣∣1t
∞∫

0

cos(tλ)ω(2N+3)(λ)
[
1 − χ(tλ)

]
dλ

∣∣∣∣∣=
∣∣∣∣∣1t

∞∫
0

cos(η)ω(2N+3)

(
η

t

)[
1 − χ(η)

]dη

t

∣∣∣∣∣
� 1

t2

∞∫ ∣∣∣∣cos(η)
t2

η2

[
1 − χ(η)

]∣∣∣∣dη � 1
0
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as well as

∣∣∣∣∣1t
∞∫

0

cos(tλ)ω(2N+2)tχ ′(tλ) dλ

∣∣∣∣∣=
∣∣∣∣∣

∞∫
0

cos(η)ω(2N+2)

(
η

t

)
χ ′(η)

dη

t

∣∣∣∣∣
�

∞∫
0

∣∣∣∣cosη

η
χ ′(η)

∣∣∣∣dη � 1

since supp(χ ′) ⊂ [ 1
2 ,2]. �

Now we are ready to prove the first oscillatory integral estimate, valid for small λ and |xλ| � δ,
|x′λ| � δ where δ > 0 is sufficiently small. In what follows we denote by χδ a smooth cut-off
function supported in a δ-neighborhood of the origin, i.e.,

χδ(x) =
{

1 if |x| � δ
2 ,

0 if |x| � δ.

Lemma 8.2. Let α � 2� + 1 and δ > 0 be sufficiently small. Then we have the estimates

sup
x,x′∈R

∣∣∣∣∣
∞∫

0

λ cos(tλ) Im

[
f−(x′, λ)f+(x,λ)

W(f−(·, λ), f+(·, λ))

]
〈x〉−α

〈
x′〉−α

χδ(λ)χδ(xλ)χδ

(
x′λ
)
dλ

∣∣∣∣∣
� 〈t〉−(2�+3)

and

sup
x,x′∈R

∣∣∣∣∣
∞∫

0

sin(tλ) Im

[
f−(x′, λ)f+(x,λ)

W(f−(·, λ), f+(·, λ))

]
〈x〉−α

〈
x′〉−α

χδ(λ)χδ(xλ)χδ

(
x′λ
)
dλ

∣∣∣∣∣� 〈t〉−(2�+2)

for all t � 0.

Proof. We set ω(x, x′, λ) := A00(λ)u1(x,λ)u1(x
′, λ)〈x〉−α〈x′〉−αχδ(λ)χδ(xλ)χδ(x

′λ). Ac-
cording to Lemmas 7.1 and 4.5, we have ω(x, x′, λ) = O2�+1(λ) for fixed x, x′. Combining
Lemmas 4.3, 4.5 and 4.6, we obtain |∂2�+m

λ u1(x,λ)| � Cm〈x〉2�+1λ−m for m ∈ N0, λ ∈ (0, δ)

and x ∈ [−δλ−1, δλ−1]. This implies

∣∣∂2�+2
λ ω

(
x, x′, λ

)∣∣� 〈x〉2�+1−α
〈
x′〉2�+1−α

λ−1,

and, analogously,

∣∣∂2�+3
λ

[
ω
(
x, x′, λ

)]∣∣� 〈x〉2�+1−α
〈
x′〉2�+1−α

λ−2,∣∣∂2�+4[ω(x, x′, λ
)]∣∣� 〈x〉2�+1−α

〈
x′〉2�+1−α

λ−3

λ
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for all λ > 0 and x, x′ ∈ R. Finally, ω(λ) = 0 for λ � δ. Thus, Lemma 8.1 yields

sup
x,x′∈R

∣∣∣∣∣
∞∫

0

λ cos(tλ)ω
(
x, x′, λ

)
dλ

∣∣∣∣∣� 〈t〉−(2�+3) and

sup
x,x′∈R

∣∣∣∣∣
∞∫

0

sin(tλ)ω
(
x, x′, λ

)
dλ

∣∣∣∣∣� 〈t〉−(2�+2)

for all t � 0. For the remaining cases assume j + k � 1 and set

ω
(
x, x′, λ

) := Ajk(λ)uj ′(x,λ)uk′
(
x′, λ
)〈x〉−α

〈
x′〉−α

χδ(λ)χδ(xλ)χδ

(
x′λ
)
.

According to Lemmas 7.1 and 4.3, we have ω(x, x′, λ) = O(λ2�+1)O(〈x〉�+1)O(〈x′〉�+1)

where the O-terms behave like symbols (use Proposition 4.1 and Lemma 4.6). In particular,
ω(x, x′, λ) = O2�+1(λ) for fixed x, x′ and

∣∣∂2�+2
λ ω

(
x, x′, λ

)∣∣� 〈x〉�+1−α
〈
x′〉�+1−α

λ−1,

as well as

∣∣∂2�+3
λ

[
ω
(
x, x′, λ

)]∣∣� 〈x〉�+1−α
〈
x′〉�+1−α

λ−2,∣∣∂2�+4
λ

[
ω
(
x, x′, λ

)]∣∣� 〈x〉�+1−α
〈
x′〉�+1−α

λ−3

for all λ > 0 and x, x′ ∈ R. Thus, as before, applying Lemma 8.1 yields the claim. �
Remark 8.1. Obviously, by performing fewer integrations by parts (cf. the proof of Lemma 8.1),
one may obtain weaker decay bounds (in t). By doing so, however, one can relax the decay
requirements (in x) of the data, that is, the index α in Lemma 8.2 can be chosen smaller. To be
more precise, one obtains the additional bounds, valid for α ∈ N, α � 2� + 1,

sup
x,x′∈R

∣∣∣∣∣
∞∫

0

λ cos(tλ) Im

[
f−(x′, λ)f+(x,λ)

W(f−(·, λ), f+(·, λ))

]
〈x〉−α

〈
x′〉−α

χδ(λ)χδ(xλ)χδ

(
x′λ
)
dλ

∣∣∣∣∣� 〈t〉−α−2

and

sup
x,x′∈R

∣∣∣∣∣
∞∫

0

sin(tλ) Im

[
f−(x′, λ)f+(x,λ)

W(f−(·, λ), f+(·, λ))

]
〈x〉−α

〈
x′〉−α

χδ(λ)χδ(xλ)χδ

(
x′λ
)
dλ

∣∣∣∣∣� 〈t〉−α−1

for all t � 0.

Remark 8.2. Note that the sine estimate from Lemma 8.2 is the main obstacle to proving better
decay. The remaining oscillatory estimates of Sections 8 and 9 below are consistent with faster
decay.
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8.2. Estimates for |xλ| and |x′λ| large

For the remaining small energy contributions it is useful to note that, for λ ∈ R, f±(x,−λ) =
f±(x,λ) by definition of the Jost solutions. This implies G�,σ (x, x′,−λ) = G�,σ (x, x′, λ) and
hence, the real part Re[G�,σ (x, x′, λ)] is an even function of λ whereas the imaginary part
Im[G�,σ (x, x′, λ)] is odd. Thus, we have

∞∫
0

λ cos(tλ) Im
[
G�,σ

(
x, x′, λ

)]
dλ = 1

2

∫
R

λ cos(tλ)G�,σ

(
x, x′, λ

)
dλ

and similarly for the sine evolution. This shows that we can replace the imaginary part of
G�,σ (x, x′, λ) by G�,σ (x, x′, λ) itself in the oscillatory integrals and change the domain of inte-
gration from λ > 0 to λ ∈ R. Furthermore, recall

W(f−, f+)(λ) = c−
1 (λ)c+

0 (λ) − c−
0 (λ)c+

1 (λ) = cλ−�
(
1 + OC

(
λε
))

(21)

for a nonzero constant c where the O-term is of symbol type. This has been shown in the proof
of Lemma 7.1.

In order to deal with terms that involve f−(x′, λ) for x′ � 0 and f+(x,λ) for x � 0 we
have to consider reflection and transmission coefficients. For λ �= 0, the functions f+(·, λ) and
f+(·, λ) are linearly independent which shows that there exist coefficients a(λ) and b(λ)7 such
that f−(x,λ) = a(λ)f+(x,λ) + b(λ)f+(x,λ). This representation implies |b(λ)|2 − |a(λ)|2 = 1
(cf. the proof of Lemma 3.2) and thus, f+(x,λ) = −a(λ)f−(x,λ)+ b(λ)f−(x,λ). Furthermore,
we have W(f−, f+)(λ) = b(λ)W(f+, f+)(λ) = 2iλb(λ) which is equivalent to

b(λ)

W(f−, f+)(λ)
= 1

2iλ
. (22)

Similarly, we obtain W(f−, f+)(λ) = −2iλa(λ) and therefore,

a(λ)

W(f−, f+)(λ)
= − W(f−, f+)(λ)

2iλW(f−, f+)(λ)
.

However, from Lemma 6.1 and W(f−, f+)(λ) = c−
1 (λ)c+

0 (λ) − c−
0 (λ)c+

1 (λ) it follows that

W(f−, f+)(λ)

W(f−, f+)(λ)
= c + OC

(
λε
)

where c is a nonzero constant and the O-term is of symbol type and hence,

a(λ)

W(f−, f+)(λ)
= cλ−1(1 + OC

(
λε
))

. (23)

7 In order to avoid confusion, we remark that the coefficients a and b are not exactly the same as A and B in the proof
of Lemma 3.2 but they are related by a(λ) = A(λ2) and b(λ) = B(λ2).
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Lemma 8.3. Let α ∈ N0 and δ > 0 sufficiently small. Then we have the estimates

sup
x,x′∈R

∣∣∣∣
∫
R

λ cos(tλ)
f−(x′, λ)f+(x,λ)

W(f−, f+)(λ)
〈x〉−α

〈
x′〉−α

χδ(λ)
(
1 − χδ(xλ)

)(
1 − χδ

(
x′λ
))

dλ

∣∣∣∣� 〈t〉−α

and

sup
x,x′∈R

∣∣∣∣
∫
R

sin(tλ)
f−(x′, λ)f+(x,λ)

W(f−, f+)(λ)
〈x〉−α

〈
x′〉−α

χδ(λ)
(
1 − χδ(xλ)

)(
1 − χδ

(
x′λ
))

dλ

∣∣∣∣� 〈t〉−α+1

for all t � 0.

Proof. Let |λ| � δ, x � 0, x′ � 0 and |λx|, |λx′| � δ
2 . We set m±(x,λ) := e∓iλxf±(x,λ). Ac-

cording to Lemma 6.2, we have the bound |∂m
λ m−(x,λ)| � Cm for all x � 0 and m ∈ N0.

Furthermore, since λ is small, we have

m+(x,λ) = e−iλxφ�(λx,λ) = (1 + OC

(
(λx)−1))(1 + b�(λx,λ)

)
by Lemma 5.1 and the asymptotics of the Hankel function where the O-term is of symbol
type. By Lemma 5.2 and the chain rule, we have the estimate |∂m

λ b�(λx,λ)| � Cm〈x〉m since
|λ|−1 � 〈x〉 and this implies |∂m

λ m+(x,λ)| � Cm〈x〉m for all m ∈ N0. Set

ω
(
x, x′, λ

) := λ
m−(x′, λ)m+(x,λ)

W(f−, f+)(λ)
χδ(λ)

(
1 − χδ(xλ)

)(
1 − χδ

(
x′λ
))

.

Then we have ∣∣∂m
λ ω
(
x, x′, λ

)∣∣� 〈x〉m〈x′〉m
for all m ∈ N0 since W(f−, f+)(λ) is of symbol type (cf. Eq. (21)). We have to estimate the
integral ∫

R

eiλ(±t+x−x′)ω
(
x, x′, λ

)〈x〉−α
〈
x′〉−α

dλ.

If | ± t + x − x′| � 1
2 t we integrate by parts α-times to obtain

∣∣∣∣
∫
R

eiλ(±t+x−x′)ω
(
x, x′, λ

)〈x〉−α
〈
x′〉−α

dλ

∣∣∣∣� ∣∣±t + x − x′∣∣−α � 〈t〉−α

and, if | ± t + x − x′| � 1
2 t , we have 〈x〉−α〈x′〉−α � 〈t〉−α as t → ∞ and thus,

∣∣∣∣
∫

eiλ(±t+x−x′)ω
(
x, x′, λ

)〈x〉−α
〈
x′〉−α

dλ

∣∣∣∣� 〈t〉−α.
R
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If x′ � 0 or x � 0 we use the representations m−(x′, λ) = a(λ)e2iλx′
m+(x′, λ) + b(λ)m+(x′, λ)

or m+(x,λ) = −a(λ)e−2iλxm−(x,λ) + b(λ)m−(x,λ) and with the help of Eqs. (22) and (23)
the corresponding integrals can be estimated as above.

For the sine evolution note that we are missing one λ and thus, for instance, if

ω
(
x, x′, λ

) := a(λ)m+(x′, λ)m+(x,λ)

W(f−, f+)(λ)
χδ(λ)

(
1 − χδ(xλ)

)(
1 − χδ

(
x′λ
))

we have |ω(x, x′, λ)| � |λ|�−1 (cf. Eq. (21)) which, in the case � = 0, only yields the weaker
bound |∂m

λ ω(x, x′, λ)| � 〈x〉m+1〈x′〉m. �
8.3. Estimates for |xλ| small and |x′λ| large

The next regime to be considered is |xλ| � δ and |x′λ| � δ
2 . We distinguish the two cases

x′ � 0 and x′ � 0.

Lemma 8.4. Let α ∈ N and δ > 0 sufficiently small. Then we have the estimates

sup
x∈R, x′<0

∣∣∣∣
∫
R

λ cos(tλ)
f−(x′, λ)f+(x,λ)

W(f−, f+)(λ)
〈x〉−α

〈
x′〉−α

χδ(λ)χδ(xλ)
(
1 − χδ

(
x′λ
))

dλ

∣∣∣∣� 〈t〉−α

and

sup
x∈R, x′<0

∣∣∣∣
∫
R

sin(tλ)
f−(x′, λ)f+(x,λ)

W(f−, f+)(λ)
〈x〉−α

〈
x′〉−α

χδ(λ)χδ(xλ)
(
1 − χδ

(
x′λ
))

dλ

∣∣∣∣� 〈t〉−α+1

for all t � 0.

Proof. Let x ∈ R, x′ � 0, |λ| � δ, |λx| � δ and |λx′| � δ
2 . As before, we write f±(x,λ) =

e∓iλxm±(x,λ) and recall the bound |∂m
λ m−(x′, λ)| � Cm for all m ∈ N0 (Lemma 6.2). For m+

we use the representation

m+(x,λ) = e−iλx
(−c+

1 (λ)u0(x,λ) + c+
0 (λ)u1(x,λ)

)
where we extend c+

j (λ) and uj (x,λ) to negative λ according to c+
j (−λ) = c+

j (λ) and
uj (x,−λ) = uj (x,λ). Applying Proposition 4.1 and Lemmas 4.6, 6.1, we obtain the bounds∣∣∂m

λ c+
1 (λ)u0(x,λ)

∣∣� 〈x〉�+1|λ|�−m � 〈x〉|λ|−m �
〈
x′〉m|λ|−1

and ∣∣∂m
λ c+

0 (λ)u1(x,λ)
∣∣� 〈x〉|λ|−�−m �

〈
x′〉m|λ|−�−1

for m ∈ N0 which implies |∂m
λ m+(x,λ)| � 〈x′〉m|λ|−�−1. We also have |∂m

λ χδ(xλ)| � 〈x〉m �
|λ|−m � 〈x′〉m and, putting all this together, we arrive at∣∣∂mω

(
x, x′, λ

)∣∣� 〈x′〉m

λ
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where

ω
(
x, x′, λ

) := λ
m−(x′, λ)m+(x,λ)

W(f−, f+)(λ)
χδ(λ)χδ(xλ)

(
1 − χδ

(
x′λ
))

,

see also Eq. (21). Thus, the claim follows by appropriate integration by parts as in the proof of
Lemma 8.3. The proof for the sine evolution goes along the same lines but one loses one power
of λ. �
Lemma 8.5. Let α ∈ N and δ > 0 sufficiently small. Then we have the estimates

sup
x∈R, x′>0

∣∣∣∣
∫
R

λ cos(tλ)
f−(x′, λ)f+(x,λ)

W(f−, f+)(λ)
〈x〉−α

〈
x′〉−α

χδ(λ)χδ(xλ)
(
1 − χδ

(
x′λ
))

dλ

∣∣∣∣� 〈t〉−α

and

sup
x∈R, x′>0

∣∣∣∣
∫
R

sin(tλ)
f−(x′, λ)f+(x,λ)

W(f−, f+)(λ)
〈x〉−α

〈
x′〉−α

χδ(λ)χδ(xλ)
(
1 − χδ

(
x′λ
))

dλ

∣∣∣∣� 〈t〉−α+1

for all t � 0.

Proof. Let x ∈ R, x′ � 0, |λ| � δ, |xλ| � δ and |x′λ| � δ
2 . As always, we write f±(x,λ) =

e∓iλxm±(x,λ). Again, by Lemmas 4.3, 6.1, 4.6 and the representation

m+(x,λ) = e−iλx
(−c+

1 (λ)u0(x,λ) + c+
0 (λ)u1(x,λ)

)
we obtain the bound ∣∣m+(x,λ)

∣∣� 〈x〉�+1|λ|� + 〈x〉|λ|−� � 〈x〉|λ|−�

and, by using the symbol behavior of the involved terms (see Proposition 4.1 and Lemma 6.1),
this implies ∣∣∂m

λ m+(x,λ)
∣∣� 〈x〉|λ|−�−m � 〈x〉〈x′〉m|λ|−�.

For m−(x′, λ) we use reflection and transmission coefficients, i.e.,

m−
(
x′, λ
)= a(λ)e2iλx′

m+
(
x′, λ
)+ b(λ)m+

(
x′, λ
)

and, from the proof of Lemma 8.3, we have |∂m
λ m+(x′, λ)| � 〈x′〉m. Hence, Eqs. (23) and (22)

show that ∣∣∂m
λ m−

(
x′, λ
)∣∣� |λ|−1−m + 〈x′〉m|λ|−1 �

〈
x′〉m|λ|−1.

Setting

ω
(
x, x′, λ

) := λ
m−(x′, λ)m+(x,λ)

χδ(λ)χδ(xλ)
(
1 − χδ

(
x′λ
))
W(f−, f+)(λ)
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the above estimates and Eq. (21) imply |∂m
λ ω(x, x′, λ)| � 〈x〉〈x′〉m and the cosine estimate fol-

lows by appropriate integration by parts as in the proof of Lemma 8.3. For the sine estimate we
set

ω
(
x, x′, λ

) := m−(x′, λ)m+(x,λ)

W(f−, f+)(λ)
χδ(λ)χδ(xλ)

(
1 − χδ

(
x′λ
))

and we only have the weaker bound |∂m
λ ω(x, x′, λ)| � 〈x〉〈x′〉m|λ|−1 � 〈x〉〈x′〉m+1. �

8.4. Estimates for |x′λ| small and |xλ| large

Due to the asymmetric decay of the Regge–Wheeler potential, this case is slightly different
from the above considered |xλ| small and |x′λ| large. Thus, it has to be studied separately and
does not follow from symmetry arguments as in [53]. Similar as above, we distinguish x � 0 and
x � 0.

Lemma 8.6. Let α ∈ N and δ > 0 sufficiently small. Then we have the estimates

sup
x>0, x′∈R

∣∣∣∣
∫
R

λ cos(tλ)
f−(x′, λ)f+(x,λ)

W(f−, f+)(λ)
〈x〉−α

〈
x′〉−α

χδ(λ)
(
1 − χδ(xλ)

)
χδ

(
x′λ
)
dλ

∣∣∣∣� 〈t〉−α

and

sup
x>0, x′∈R

∣∣∣∣
∫
R

sin(tλ)
f−(x′, λ)f+(x,λ)

W(f−, f+)(λ)
〈x〉−α

〈
x′〉−α

χδ(λ)
(
1 − χδ(xλ)

)
χδ

(
x′λ
)
dλ

∣∣∣∣� 〈t〉−α+1

for all t � 0.

Proof. Let x � 0, x′ ∈ R, |λ| � δ, |x′λ| � δ and |xλ| � δ
2 . As in the proof of Lemma 8.3, we

have the bounds |∂m
λ m+(x,λ)| � 〈x〉m. For m−(x′, λ) we use the representation

m−
(
x′, λ
)= eiλx′(−c−

1 (λ)u0
(
x′, λ
)+ c−

0 (λ)u1
(
x′, λ
))

since |x′λ| is small. Lemmas 4.3, 4.6 and 6.4 imply the bound

∣∣m−
(
x′, λ
)∣∣� 〈x′〉�+1 + 〈x′〉� |λ|−�−1

and, by using the symbol behavior (see Proposition 4.1 and Lemmas 4.4, 6.4) and 〈x′〉 � |λ|−1,
we infer ∣∣∂m

λ m−
(
x′, λ
)∣∣� |λ|−�−1−m � 〈x〉m|λ|−�−1.

We set

ω
(
x, x′, λ

) := λ
m−(x′, λ)m+(x,λ)

χδ(λ)
(
1 − χδ(xλ)

)
χδ

(
x′λ
)

W(f−, f+)(λ)
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and the above bounds as well as Eq. (21) imply the estimate |∂m
λ ω(x, x′, λ)| � 〈x〉m. Thus, as

before, the claim follows by appropriate integration by parts. �
Lemma 8.7. Let α ∈ N and δ > 0 sufficiently small. Then we have the estimates

sup
x<0, x′∈R

∣∣∣∣
∫
R

λ cos(tλ)
f−(x′, λ)f+(x,λ)

W(f−, f+)(λ)
〈x〉−α

〈
x′〉−α

χδ(λ)
(
1 − χδ(xλ)

)
χδ

(
x′λ
)
dλ

∣∣∣∣� 〈t〉−α

and

sup
x<0, x′∈R

∣∣∣∣
∫
R

sin(tλ)
f−(x′, λ)f+(x,λ)

W(f−, f+)(λ)
〈x〉−α

〈
x′〉−α

χδ(λ)
(
1 − χδ(xλ)

)
χδ

(
x′λ
)
dλ

∣∣∣∣� 〈t〉−α+1

for all t � 0.

Proof. Let x � 0, x′ ∈ R, |λ| � δ, |x′λ| � δ and |xλ| � δ
2 . Like in the proof of Lemma 8.7 we

have ∣∣∂m
λ m−

(
x′, λ
)∣∣� 〈x′〉�+1|λ|−m �

〈
x′〉|λ|−�−m

for all m ∈ N0. Since x � 0 we use reflection and transmission coefficients to obtain the repre-
sentation

m+(x,λ) = −a(λ)e−2iλxm−(x,λ) + b(λ)m−(x,λ)

which immediately implies the bound |m+(x,λ)| � |λ|−1 by Eqs. (23), (22) and Lemma 6.2.
Thus, from the symbol behavior of a(λ), b(λ) and |∂m

λ m−(x,λ)| � Cm (Lemma 6.2), we infer∣∣∂m
λ m+(x,λ)

∣∣� 〈x〉m|λ|−1

for all m ∈ N0 since |λ|−1 � 〈x〉. Thus, Eq. (21) implies∣∣∂m
λ ω
(
x, x′, λ

)∣∣� 〈x〉m〈x′〉
for all m ∈ N0 where

ω
(
x, x′, λ

) := λ
m−(x′, λ)m+(x,λ)

W(f−, f+)(λ)
χδ(λ)

(
1 − χδ(xλ)

)
χδ

(
x′λ
)
.

As a consequence, by appropriate integration by parts (cf. the proof of Lemma 8.3), we obtain∣∣∣∣
∫
R

eiλ(±t+x−x′)ω
(
x, x′, λ

)〈x〉−α
〈
x′〉−α

dλ

∣∣∣∣� 〈t〉−α

provided that α � 1. For the sine evolution we set

ω
(
x, x′, λ

) := m−(x′, λ)m+(x,λ)
χδ(λ)

(
1 − χδ(xλ)

)
χδ

(
x′λ
)

W(f−, f+)(λ)



530 R. Donninger et al. / Advances in Mathematics 226 (2011) 484–540
and use the bounds

∣∣∂m
λ m+(x,λ)

∣∣� 〈x〉m|λ|−1 � 〈x〉m+1

to obtain

∣∣∂m
λ ω
(
x, x′, λ

)∣∣� 〈x〉m+1〈x′〉
for all m ∈ N0. Hence, as before, the claim follows from

∣∣∣∣
∫
R

eiλ(±t+x−x′)ω
(
x, x′, λ

)〈x〉−α
〈
x′〉−α

dλ

∣∣∣∣� 〈t〉−α+1

which can be obtained by appropriate integration by parts similar to the proof of Lemma 8.3. �
9. Oscillatory integral estimates for large energies

9.1. The Jost solutions at large energies

In order to estimate the contributions from large energies, we need the behavior of the Jost
solutions for λ → ∞. As usual, we write m±(x,λ) = e∓iλxf±(x,λ).

Lemma 9.1. Let λ0 > 0. Then, for k,m ∈ N0, the function m+(·, λ) satisfies the estimates

∣∣∂k
x ∂m

λ

(
m+(x,λ) − 1

)∣∣� Ck,m〈x〉−1−kλ−1−m

for all λ � λ0 and all x � 0. The same bounds hold for m−(x,λ) if x � 0.

Proof. As already discussed (see Lemma 3.1), the function m+(·, λ) satisfies the Volterra equa-
tion

m+(x,λ) = 1 + 1

2iλ

∞∫
x

(
e2iλ(y−x) − 1

)
V�,σ (y)m+(y,λ) dy

= 1 +
∞∫

0

(
e2iη − 1

)[
V�,σ

(
η

λ
+ x

)
m+(

η
λ

+ x,λ)

2iλ2

]
dη

and thus, the lemma is obviously true for k = m = 0. Let n : N0 × N0 → N0 denote the bijection
from Proposition 4.1. Fix (k,m) ∈ N0 × N0 and suppose the assertion is true for all (j, l) with
n(j, l) � n(k,m). We need to show that this implies the claim for (k′,m′) where n(k′,m′) =
n(k,m) + 1. There are two possibilities: Either (k′,m′) = (m + 1,0) (if k = 0) or (k′,m′) =
(k − 1,m + 1). In the former case we have
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∂m+1
x m+(x,λ) = 1

2iλ2

m∑
j=0

(
m + 1

j

) ∞∫
0

(
e2iη − 1

)
∂

m+1−j
x V�,σ

(
η

λ
+ x

)
∂

j
x m+
(

η

λ
+ x,λ

)
dη

+ 1

2iλ2

∞∫
0

(
e2iη − 1

)
V�,σ

(
η

λ
+ x

)
∂m+1
x m+

(
η

λ
+ x,λ

)
dη

= OC

(〈x〉−1−(m+1)λ−1)+ 1

2iλ

∞∫
x

(
e2iλ(y−x) − 1

)
V�,σ (y)∂m+1

y m+(y,λ) dy

by assumption and thus, the estimate from Lemma B.1 yields |∂m+1
x m+(x,λ)|� 〈x〉−1−(m+1)λ−1.

For the latter case observe that

∂λ∂
j
x m+
(

η

λ
+ x,λ

)
�
〈
η

λ
+ x

〉−1−j−1
η

λ
λ−1 +

〈
η

λ
+ x

〉−1−j

λ−2 �
〈
η

λ
+ x

〉−1−j

λ−1

and, more generally,8

∂l
λ∂

j
x m+
(

η

λ
+ x,λ

)
�
〈
η

λ
+ x

〉−1−l−j
ηl

λl
λ−l + · · · +

〈
η

λ
+ x

〉−1−j

λ−1−l �
〈
η

λ
+ x

〉−1−j

λ−l

for all (j, l) with n(j, l) � n(k,m) and (j, l) �= (0,0) by assumption. This shows that

∂k−1
x ∂m+1

λ m+(x,λ)

=
m∑

j=0

(
m + 1

j

) ∞∫
0

(
e2iη − 1

)
∂k−1
x

[
∂

m+1−j
λ

V�,σ (
η
λ

+ x)

2iλ2
∂

j
λm+
(

η

λ
+ x,λ

)]
dη

+
∞∫

0

(
e2iη − 1

)
∂k−1
x

[
V�,σ (

η
λ

+ x)

2iλ2
∂m+1
λ m+

(
η

λ
+ x,λ

)]
dη

= OC

(〈x〉−1−(k−1)λ−1−(m+1)
)+ 1

2iλ

∞∫
x

(
e2iλ(y−x) − 1

)
V�,σ (y)∂k−1

y ∂m+1
λ m+(y,λ) dy

and Lemma B.1 yields the claim. The proof for m− is (mutatis mutandis) identical. �
Corollary 9.1. Let λ0 > 0. Then the Wronskian W(f−, f+)(λ) has the behavior

1

W(f−, f+)(λ)
= 1

2iλ

(
1 + OC

(
λ−1))

for all λ � λ0 where the O-term behaves like a symbol.

8 One may apply Faà di Bruno’s formula (cf. Lemma A.1) to obtain a completely explicit expression for the higher
λ-derivatives.
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Proof. With m±(x,λ) = e∓iλxf±(x,λ) we have

W(f−, f+)(λ) = 2iλm−(0, λ)m+(0, λ) + OC

(
λ−1)= 2iλ

(
1 + OC

(
λ−1))

by Lemma 9.1 where the O-term is of symbol type. Thus, the claim follows from Lem-
ma A.1. �

Before proceeding to the final oscillatory integral estimate, we need the large λ behavior of the
reflection and transmission coefficients, i.e., the coefficients a(λ) and b(λ) satisfying f−(x,λ) =
a(λ)f+(x,λ) + b(λ)f+(x,λ). The behavior of b is given by Eq. (22). By Lemma 9.1 we have

W(f−, f+)(λ) = m−(0, λ)m′+(0, λ) − m′−(0, λ)m+(0, λ) = OC

(
λ−1)

where the O-term behaves like a symbol and therefore,

a(λ)

W(f−, f+)(λ)
= − W(f−, f+)(λ)

2iλW(f−, f+)(λ)
= OC

(
λ−3). (24)

We also remark that, by symmetry, the above considerations extend to large negative λ. Now we
are ready to prove the final oscillatory integral estimate.

9.2. The cosine estimate

We distinguish between the cosine and the sine estimate since in the former case we obtain a
bound involving the derivative of the data.

Proposition 9.1. Let α ∈ N0 and δ > 0 sufficiently small. Then we have the estimate

sup
x∈R

∣∣∣∣∣ lim
N→∞

∫
R

N∫
−N

λe±itλG�,σ

(
x, x′, λ

)(
1 − χδ(λ)

)〈x〉−α
〈
x′〉−α

φ
(
x′)dx′ dλ

∣∣∣∣∣
� 〈t〉−α

∫
R

(∣∣φ′(x′)∣∣+ ∣∣φ(x′)∣∣)dx′

for all t � 0 and any φ ∈ S(R).

Proof. We split the integral according to

∫
R

N∫
−N

. . . dλdx′ =
x∫

−∞

N∫
−N

. . . dλdx′ +
∞∫

x

N∫
−N

. . . dλdx′

and only consider the first summand since the proof for the second one is completely analogous.
In the domain x′ � x, which we study now, the Green’s function is given by

G�,σ

(
x, x′, λ

)= f−(x′, λ)f+(x,λ)
.

W(f−, f+)(λ)
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We distinguish between x � 0 and x � 0 and start with x � 0. Using reflection and transmission
coefficients we obtain

f−
(
x′, λ
)
f+(x,λ) = e−iλx′

m−
(
x′, λ
)[−a(λ)e−iλxm−(x,λ) + b(λ)eiλxm−(x,λ)

]
= −e−iλ(x+x′)a(λ)m−

(
x′, λ
)
m−(x,λ) + eiλ(x−x′)b(λ)m−

(
x′, λ
)
m−(x,λ),

and consider each term separately. We define

ω
(
x, x′, λ

) := λb(λ)(1 − χδ(λ))

W(f−, f+)(λ)
m−
(
x′, λ
)
m−(x,λ)

and by Lemma 9.1 and Corollary 9.1 as well as Eqs. (22), (24), we obtain the estimates

∣∣∂m
λ ω
(
x, x′, λ

)∣∣� Cm|λ|−m

for all |λ| � δ
2 and x, x′ � 0 (recall that 1 − χδ(λ) ≡ 1 for |λ| � δ). Note that, by Fubini, we can

freely interchange the order of integration and thus, integration by parts with respect to x′ yields

x∫
−∞

N∫
−N

eiλ(±t+x−x′)ω
(
x, x′, λ

)〈x〉−α
〈
x′〉−α

φ
(
x′)dλdx′

= −φ(x)〈x〉−2α

N∫
−N

e±iλt

iλ
ω(x, x,λ) dλ

+
x∫

−∞

N∫
−N

eiλ(±t+x−x′)

iλ
〈x〉−α∂x′

[
ω
(
x, x′, λ

)〈
x′〉−α

φ
(
x′)]dλdx′. (25)

We first claim that

sup
x<0

∣∣∣∣
∫
R

e±iλtλ−1ω(x, x,λ)dλ

∣∣∣∣� 1. (26)

Indeed, set

ω̃(x, λ) := λ−1ω(x, x,λ) = b(λ)(1 − χδ(λ))

W(f−, f+)(λ)
m−(x,λ)m−(x,λ)

and observe that ω̃(x, λ) = 1
2iλ

(1 + OC(|λ|−1)) for |λ| → ∞ by Eq. (22) and Lemma 9.1. This
shows that ω̃(x,−λ) = −ω̃(x, λ) + OC(|λ|−2). Thus, we have
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∣∣∣∣
∫
R

e±iλt ω̃(x, λ) dλ

∣∣∣∣=
∣∣∣∣∣

∞∫
δ
2

[
e±iλt ω̃(x, λ) + e∓iλt ω̃(x,−λ)

]
dλ

∣∣∣∣∣

�
∣∣∣∣∣

∞∫
δ
2

sin(λt)ω̃(x,λ) dλ

∣∣∣∣∣+
∣∣∣∣∣

∞∫
δ
2

e±iλtOC

(|λ|−2)dλ

∣∣∣∣∣

�
∣∣∣∣∣

∞∫
δ
2

sin(λt)
(
λ−1 + OC

(|λ|−2))dλ

∣∣∣∣∣+ 1 � 1

for all x � 0 and this proves Eq. (26). Therefore, for N → ∞, we can estimate the first term in
Eq. (25) as∣∣∣∣φ(x)〈x〉−2α

∫
R

e±iλtλ−1ω(x, x,λ)dλ

∣∣∣∣� sup
x<0

∣∣φ(x)
∣∣ 1

tα

∫
R

∣∣e±iλt ∂α
λ

[
λ−1ω(x, x,λ)

]∣∣dλ

� 〈t〉−α

∫
R

(∣∣φ′(x′)∣∣+ ∣∣φ(x′)∣∣)dx′

for all t � 1 and x � 0 by α-fold integration by parts and Sobolev embedding. By Eq. (26) this
inequality is in fact valid for all t � 0.

For the second term we similarly claim that

sup
x<0

x∫
−∞

∣∣∣∣
∫
R

eiλ(±t+x−x′)λ−1〈x〉−α∂x′
[
ω
(
x, x′, λ

)〈
x′〉−α

φ
(
x′)]dλ

∣∣∣∣dx′

� 〈x〉−α

∫
R

〈
x′〉−α(∣∣φ′(x′)∣∣+ ∣∣φ(x′)∣∣)dx′. (27)

Indeed, we have ∣∣∣∣
∫
R

eiλ(±t+x−x′)λ−1〈x〉−α∂x′ω
(
x, x′, λ

)〈
x′〉−α

φ
(
x′)dλ

∣∣∣∣
� 〈x〉−α

〈
x′〉−α

∫
R

∣∣λ−1∂x′ω
(
x, x′, λ

)
φ
(
x′)∣∣dλ

� 〈x〉−α
〈
x′〉−α∣∣φ(x′)∣∣

for all x � 0 since |λ−1∂x′ω(x, x′, λ)| � |λ|−2 by Lemma 9.1. Moreover,∣∣∣∣
∫

eiλ(±t+x−x′)λ−1ω
(
x, x′, λ

)〈x〉−α∂x′
[〈
x′〉−α

φ
(
x′)]dλ

∣∣∣∣� 〈x〉−α
〈
x′〉−α(∣∣φ′(x′)∣∣+ ∣∣φ(x′)∣∣)
R
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for all x � 0 which can be shown by exploiting exactly the same cancellation that led to Eq. (26).
This proves Eq. (27). Note in particular that Eq. (27) implies

lim
N→∞

x∫
−∞

N∫
−N

eiλ(±t+x−x′)

iλ
〈x〉−α∂x′

[
ω
(
x, x′, λ

)〈
x′〉−α

φ
(
x′)]dλdx′

=
x∫

−∞

∫
R

eiλ(±t+x−x′)

iλ
〈x〉−α∂x′

[
ω
(
x, x′, λ

)〈
x′〉−α

φ
(
x′)]dλdx′

by dominated convergence. Now we distinguish two cases. If | ± t + x − x′| � 1
2 t , we integrate

by parts α-times to obtain

∣∣∣∣
x∫

−∞

∫
R

eiλ(±t+x−x′)λ−1〈x〉−α∂x′
[
ω
(
x, x′, λ

)〈
x′〉−α

φ
(
x′)]dλdx′

∣∣∣∣
�
∣∣±t + x − x′∣∣−α

x∫
−∞

∫
R

∣∣〈x〉−α∂x′∂α
λ

[
λ−1ω

(
x, x′, λ

)〈
x′〉−α

φ
(
x′)]∣∣dλdx′

� 〈t〉−α

∫
R

∫
|λ|� δ

2

|λ|−(α+1)〈x〉−α
∣∣∂x′
[〈
x′〉−α

φ
(
x′)]∣∣dλdx′

� 〈t〉−α

∫
R

(∣∣φ′(x′)∣∣+ ∣∣φ(x′)∣∣)dx′

for all t � 0 and all x � 0. If | ± t + x − x′| � 1
2 t , we have 〈x〉−α〈x′〉−α � 〈t〉−α as t → ∞ and

Eq. (27) implies

sup
x<0

x∫
−∞

∣∣∣∣
∫
R

eiλ(±t+x−x′)λ−1〈x〉−α∂x′
[
ω
(
x, x′, λ

)〈
x′〉−α

φ
(
x′)]dλ

∣∣∣∣dx′

� 〈t〉−α

∫
R

(∣∣φ′(x′)∣∣+ ∣∣φ(x′)∣∣)dx′

for all t � 0. The remaining cases are treated in a completely analogous fashion. Note that the
terms involving the coefficient a(λ) are even simpler due to the stronger decay given by Eq. (24).
For terms that contain no reflection and transmission coefficients, use Corollary 9.1 for the can-
cellation argument. �
9.3. The sine estimate

The sine estimate is slightly stronger since it does not require derivatives of the data.
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Corollary 9.2. Let α ∈ N0 and δ > 0 sufficiently small. Then we have the estimate

sup
x∈R

∣∣∣∣∣ lim
N→∞

∫
R

N∫
−N

e±itλG�,σ

(
x, x′, λ

)(
1 − χδ(λ)

)〈x〉−α
〈
x′〉−α

φ
(
x′)dx′ dλ

∣∣∣∣∣
� 〈t〉−α

∫
R

∣∣φ(x′)∣∣dx′

for all t � 0 and any φ ∈ S(R).

Proof. Just repeat the arguments from the proof of Proposition 9.1. However, note that we are
lacking one factor of λ compared to Proposition 9.1 which makes the integration by parts with
respect to x′ unnecessary. This explains why no term containing φ′ appears on the right-hand
side of the estimate. �
Appendix A. Symbol behavior

Lemma A.1. Let I ⊂ R and suppose f is smooth on I and satisfies |f (x)| � C < 1 for all x ∈ I .
Then, for all x ∈ I , we have the estimate

∣∣∣∣
(

1

1 + f

)(k)

(x)

∣∣∣∣� Ck

∑ k∏
j=1

∣∣f (j)(x)
∣∣mj

for all k ∈ N where the sum runs over all possible k-tuples (m1,m2, . . . ,mk) ∈ N
k
0 satisfying∑k

j=1 jmj = k.

Proof. This follows from the identity

(
1

1 + f

)(k)

=
∑

∑k
j=1 jmj =k

am1,m2,...,mk

(
1

1 + f

)1+∑k
j=1 mj k∏

j=1

(
f (j)
)mj

which is known as Faà di Bruno’s formula (see e.g. [50], the explicit form of the coefficients
am1,m2,...,mk

is irrelevant for our purposes) and the fact that |(1 + f )−1| � 1 on I . �
Appendix B. Volterra integral equations

In this section we establish some well-known facts about Volterra integral equations which
are frequently used throughout this work.

Lemma B.1. Let a ∈ R, g ∈ L∞(a,∞) and suppose the integral kernel K satisfies

μ :=
∞∫

sup
x∈(a,y)

∣∣K(x,y)
∣∣dy < ∞.
a
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Then the Volterra equation

f (x) = g(x) +
∞∫

x

K(x, y)f (y) dy

has a unique solution f satisfying

‖f ‖L∞(a,∞) � eμ‖g‖L∞(a,∞).

Proof. See e.g. [25] or [52]. �
The next lemma states differentiability properties of solutions of Volterra integral equations.

Lemma B.2. If, in addition to the assumptions of Lemma B.1, g ∈ C∞(a,∞) and the kernel K

is smooth in both variables on (a,∞) and satisfies

∞∫
a

∣∣∂k
xK(x, y)

∣∣dy < ∞

for any x � a and all k ∈ N then the solution f is smooth on (a,∞). Furthermore, the derivatives
can be calculated by formal differentiation, i.e.,

f (k)(x) = g(k)(x) −
k−1∑
j=0

(κjf )(k−1−j)(x) +
∞∫

x

∂k
xK(x, y)f (y) dy

where κj (x) := ∂
j
x K(x, y)|y=x .

Proof. The claim follows from a straightforward application of Lebesgue’s theorem on domi-
nated convergence and an induction. �

The next lemma shows how the dependence of the kernel K on a parameter λ carries over to
the solution of the corresponding Volterra equation.

Lemma B.3. Let I ⊂ R be open and suppose

∞∫
a

sup
x∈(a,y)

∣∣∂m
λ K(x, y,λ)

∣∣dy < ∞

as well as ∂m
λ g(·, λ) ∈ L∞(a,∞) for all m ∈ N0 and λ ∈ I . Then the Volterra equation

f (x,λ) = g(x,λ) +
∞∫

K(x,y,λ)f (y,λ)dy
x
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has a unique solution f (x,λ) for all x � a and λ ∈ I which is smooth in λ. Furthermore, we
have ∂m

λ f (·, λ) ∈ L∞(a,∞) for all m ∈ N0 and the derivatives are given by

∂m
λ f (x,λ) = ∂m

λ g(x,λ) +
m∑

j=0

(
m

j

) ∞∫
x

∂
j
λK(x, y,λ)∂

m−j
λ f (y,λ) dy.

Proof. According to Lemma B.1, the solution f exists, is unique and satisfies ‖f (·, λ)‖L∞(a,∞)<

∞. Now consider the integral equation

h(x,λ) = ∂λg(x,λ) + h̃(x, λ) +
∞∫

x

K(x, y,λ)h(y,λ)dy (28)

where

h̃(x, λ) :=
∞∫

x

∂λK(x, y,λ)f (y,λ)dy.

We have ‖h̃(·, λ)‖L∞(a,∞) < ∞ and thus, by Lemma B.1, Eq. (28) has a unique solution h(·, λ) ∈
L∞(a,∞) for all λ ∈ I . However, by dominated convergence we conclude

lim
ν→0

∣∣∣∣f (x,λ + ν) − f (x,λ)

ν
− h(x,λ)

∣∣∣∣= 0

and hence, ∂λf exists and equals h. Existence of the higher derivatives follows by the Leibniz
rule and an induction. �

We finally remark that all of the above lemmas have counterparts for Volterra equations of the
form

f (x,λ) = g(x,λ) +
x∫

a

K(x, y,λ)f (y,λ)dy

with almost identical proofs.
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