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Abstract

In 1998, Goresky, Kottwitz, and MacPherson showed that for certain projective varéties
equipped with an algebraic action of a complex tofiishe equivariant cohomology ring' 7 (X)
can be described by combinatorial data obtained from its orbit decomposition. In this paper, we
generalize their theorem in three different ways. First, our gi@upeed not be a torus. Second,
our spaceX is an equivariant stratified space, along with some additional hypotheses on the
attaching maps. Third, and most important, we allow for generalized equivariant cohomology
theoriesEg instead of 3. For these spaces, we give a combinatorial descriptioEE’p(X) as
a subring of[] E; (F;), where theF; are certain invariant subspaces Xf Our main examples
are the flag varietiey/# of Kac—Moody groups?, with the action of the torus o¥. In this
context, theF; are theT-fixed points andEg is a T-equivariant complex oriented cohomology
theory, such a7y, K7 or MU’.. We detail several explicit examples.
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1. Introduction and background

The goal of this paper is to give a combinatorial description of certain generalized
equivariant cohomologies of stratified spaces. The important examples to which our
main theorems apply includé-equivariant cohomologyK-theory, and complex cobor-
dism of Kac—Moody flag varieties. Although the examples that motivate us come from
the theory of algebraic groups, our proofs rely heavily on techniques from algebraic
topology. Indeed, we state the results of Sectigng in the following context.

Let G be a topological group and’f, a G-equivariant cohomology theory (see
[May96, Chapter Xlll]for a definition) with a commutative cup product. L¥tbe a
stratified G-space such that successive quotieXifg X;_1 are homeomorphic to Thom
spacesTh(V;) of E-orientable G-vector bundlesV; — F;. In this setting, and with
the assumption that the Euler class€¥;) are not zero divisors, we show that the
restriction map

FESX) > [ | E&(F)

1

is injective. Moreover, wheX and theG-action satisfy additional technical assumptions,
we identify the image of* as a subring off [; Ef(F;) defined by explicit compati-
bility conditions involving divisibility by certain Euler classes. We also construct free
EF-module generators off,(X).

Our theorems generalize known results in algebraic and symplectic geometry. When
Xis a projective varietys a complex torus, and'; ordinary equivariant cohomology,
then we recover a theorem of Goresky, Kottwitz, and MacPhejG#ti98] that com-
putesH;(X; C). They assume thaX has finitely many 0- and 1-dimension&orbits,
and then consider the gragh whose vertices are the fixed poink’ and edges are
the 1-dimensional orbits. An edge, w) in I' is decorated with the weight(, .,
of the T-action on the corresponding orbit. They provide a combinatorial description
of Hj(X) as a subring ofH;(XT) in terms of this graph. Each edge bf gives a
condition as follows. Letc(v) denote the restriction of a classe H;(X) to v € XT.
Then the condition reads

o) ‘ () — x(w). (1.1)

We illustrate an example in Fidl.
This article is organized as follows. In Secti@nwe prove the injectivity of the map

2 EG(X) - [ E&(F).

l

Next, in Section3, we identify the image of*, giving combinatorial conditions sim-
ilar to those in {.1). In Section4, we give a description of module generators for
E{(X). Finally, in Sections5 and 6, we return to our motivating examples, which
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Fig. 1. This shows the graph for a flag varietySL(3, C)/B. The weighta, ., is exactly the direction

of the edge(v, w), as explained in Sectiom. There is a linear polynomial attached to each vertex,
also depicted as a vector. The polynomials satisfy the compatibility conditions, so this does represent an
equivariant cohomology class iﬂ%(SL(S, C)/B).

are homogeneous spacggP for Kac—Moody groupsg, equipped with the action

of a torusT. For these spaces, our theory applies wignhis any complex oriented
T-equivariant cohomology theory. We make explicit computations for three examples:
a homogeneous space 6%, the based loop spaceSU (2), and a homogeneous space

—— 7/27
of LSL(3,0) xC*,

2. The injectivity theorem for stratified spaces

Let G be a topological group and'y, a G-equivariant cohomology theory with
commutative cup product. We consider stratifi@espaces

X:UX,-, X1CX2C X3..., (2.1)
i>1

where the successive quotierXs/ X;_1 are homeomorphic to the Thom spad@s(V;)
of someG-vector bundles/; — F;. Moreover, we require that the above vector bundles
be E-orientable (segMay96, p. 177). In other words, X is built by successively
attaching disc bundle®(V;) via equivariant attaching mapg; : S(V;) — X;_1. This
should be compared to the way one builds CW complexes by successively attaching
discs.

We recall that arE-orientation, or Thom class, of @-vector bundleV — F is an
elementu € Ef(Th(V)). For each closed subgroul < G and pointx € FH the
restriction ofu to V|s., is a generator of the fre&’,-module

EG(Th(Vigx) = Ef(D(Vy), S(Vi)).
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The Euler clas(V) is the restriction of the Thom classto the base- via the zero
section map.

Remark 2.1. As with CW complexes, the stratification is often more naturally indexed
by a posetl rather thanN. In that case, one should replace the expressipnX;_1

by Xi/Uj<i X ;. The posetl is required to satisfy the condition th@j € I : j < i}

is finite for all i € I, which makes the inductive proofs work. In the proofs, we ignore
this fact and pretend that = N. The only thing that we need is that for eacke 7,

the subspace; is obtained by a finite sequence of gluings, and tkat I|_m> X;.

Remark 2.2. In the examples in Section® and 6, the group G = T is a

finite-dimensional torus, th@-spacesF; are single points and th&; are complex
T-representations. The stratificatio@.1) expressesX as a cell complex with even
dimensional cells.

The main theorem of this section establishes the injectivity of the restriction map
EL(X) — EL(L] Fi) =[] EL(F;) when the Euler classes are not zero divisors.

Theorem 2.3. Let X be a stratified G-space and IEf; be a multiplicative cohomology
theory as above. Assume that the Euler classé3) € E/,(F;) of the vector bundles
V; — F; are not zero divisors. Then the inclusian [ ] F; < X induces an injection

P ESX) — [ | E&F). (2.2)

1

Moreover let Ef(X) be given the induced filtration under the above inclusion. Then
the associated gradefi;-module Q E¢; (X) is isomorphic to(the direct product dfthe
ideals generated by the Euler classes in #g(F;). Explicitly,

QES(X) = [ ] e(V)EE(F). (2.3)

i

Proof. We first prove the theorem when the stratificationXofs finite. This is done
by induction on the length of the stratification.

We first consider the assertion th&td) is injective. If the length of the stratification
is 0, thenX is empty, both sides o(2) are zero, and the result trivially holds. We now
argue the inductive step. Assume that the stratificatioX dfas lengthi (i.e. X = X;)
and consider the cofiber sequence

Xii1 — X; -5 Th(V)). (2.4)

It follows from the assumption on the Euler class that the long exact sequence in
E-cohomology associated t@.6) splits into short exact sequences

0— EL(Th(Vi) 2> EL(X;) — E5(Xi_1) —> 0. (2.5)
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To see this, we prove that* is an injection. Indeed, the composition

r*

Eg(Fi) S EG(Th(V) —— Eg(Xi)) —— EG(F)

is multiplication by the Euler class(V;), and is therefore injective. The first map is
the Thom isomorphism (seMay96, Theorem 9.3] so the middle magp™* must be
injective.

Now consider the map of short exact sequences

0 — EG(Th(V) —— EGXi) —— Eg(Xi-1) —— 0

e

0 —> EL(F) —— HEg(Fj) - ]_[Eg(Fj) — =0
j<i j<i

The left vertical map is injective by the assumptionai;), with imagee(V;) Ef; (F;).
The right vertical map is injective by induction. By the Five Lemma, the central map
is also injective. This prove2(2) when the filtration ofX is finite.

We now prove 2.3). Again, the base case is trivial, since both sides 28B)(are
zero when the stratification has length zero. We now argue the inductive step. The
associated graded Eg,(X;) is isomorphic to E,(Th(V;)) ® QEF(X;-1). The im-
age of QE(X;—1) under the rightmost vertical map ir2.¢) is ]'[j<,. e(V)EF(F))
by the induction hypothesis. So, the image @fE7(X;) under the center vertical
map is

QEc(Xi) =e(V)EG(F) & H e(V)Eg(Fj) = 1_[ e(V)EG(F))

j<i j<i
as claimed in 2.3).

For both statement2(2) and @.3), the general cas& = I|_m> X; follows directly
from the finite case since

EG(X) = lim E&(X)).

Note that there is no Milnor lith term here because the mapsg, (X;) — E5(Xi-1)
are all surjective. (I
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3. The combinatorial description of E&(X)
We now identify the image o, (X) in [] E5(F;): it is specified by simple combi-
natorial restrictions. This is the content of Theor8. In order to make this compu-

tation, we must make some additional assumptionowe formalize our hypotheses
on X below.

Assumption 1. The spaceX is equipped with aG-invariant stratification

X:UXi

iel

and each successive quotiekif/ X .; is homeomorphic to the Thom space ofGa
equivariant vector bundle; : V; — F;. HereX_; denotes the subspatg; _; X; C X;.

j<i

Assumption 2. The bundlesV; — F; are E-orientable and admiG-equivariant direct
sum decompositions

(nﬁ%—)ﬂ)g@(m/‘:vﬁaﬂ)

j<i
into E-orientable vector bundle¥;;. We allow the casé/;; = 0.

Assumption 3. There existG-equivariant mapsf;; : F; — F; such that the attaching
maps; : S(V;) — X;_1, when restricted ta(V;;), are given by

@ilsvy) = fij o mij-
Here, we identify theF; with their images inX;_;.

Assumption 4. The Euler classes(V;;) are not zero divisors and are pairwise relatively
prime in E{;(F;). Namely, for any class € Ef;(F;), we have that

Vi) eVij) | x & e(Vi) | x.

With these assumptions, we may now formulate our main theorem.

Theorem 3.1. Let X be a G-space satisfying Assumptidrd. Then the map

FES(X) — [ | ES(F)

1
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is injective with image

e(Vij) | xi — ffj‘(xj) forall j <i}. (3.1)

R:= {(xi) e[ E&F

1

When V;; = 0 in the theorem above, the relatietV;;) | x; — fij.(xj) is vacuous
becauser(0) = 1. We introduce a decorated graphthat carries all the information
from X necessary to compute the imaBeof E{;(X). Each edge of" corresponds to
a non-vacuous relation.

Definition 3.2. The GKM graphI” associated t is the graph with one vertey; for
each subspacé; and an edg€v;, v;) wheneverV;; is non-zero. Each edge is labeled
with the bundleV;; and the mapfi; : F; — F;.

Remark 3.3. In Sections5 and 6, the description ofl" simplifies greatly. In those
examples, all the; are single points, and the mayg : F; — F; are the only possible
ones. Moreover, the bundlé3; are all 1-dimensional complekrepresentations. Hence,
I' is a graph with a charactere A := Hom(T, s1) attached to each edge.

Remark 3.4. Theorem3.1 generalizes many results found in the literature. We survey
some of these results here.

(A) Suppose thatX is a projective variety equipped with an algebraic action of a
complex torus, with finitely many O- and 1-dimensional orbits. Egt be ordinary
T-equivariant cohomology. In this setting, Theor& is precisely the result of
Goresky, Kottwitz, and MacPhersd@®KM98].

(B) Theorem3.1 recovers the main theorem §&H04] when X is a compact Hamil-
tonian T-space with possibly non-isolated fixed points, and generalizes this result
to equivariantK-theory.

(C) When E¢; is T-equivariantK-theory with complex coefficients an¥ is a GKM
manifold, then Theoren3.1 is identical to[KRO3, Corollary A.5]

(D) If Xis a Kac-Moody flag variety andty, is T-equivariantK-theory, then The-
orem 3.1 is closely related to a result of Kostant—-KumiK87]. Indeed, their
Theorem 3.13 identifiek 7 (G/B) with the subring of elements of,, K7 that
are mapped tK; by certain operators, which include the divided difference op-
erators

1

((Sw - 5wr1) m

for all w € W and reflections,. These are exactly the same conditions as3id)(
Their Corollary 3.20 determine& 7.(G/P) in a similar fashion.

Before proving Theoren8.1, we give a Lemma which computds;;(X) when the
stratification ofX has length 2.
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Lemma 3.5.Let Y = F; U, D(V) be obtained by gluing the sphere bundle of
n:V — Fy onto F1, wherep = fon for a map f : Fo» — Fy. Assume thae(V) is

not a zero divisor. Then the images of the restriction mapsey; (Y, F1) — E[(F2)
and j* : E5(Y) — Ej(F1) © EJ(F2) are

V(EG(Y, F1) = {g € EG(F2) | e(V) | g} (3.2)
and
TEEY)) ={(81.82) € EG(F1) @ EG(F2) | e(V) | g2 — f*(g1)}. (3.3)

respectively
Proof. Clearly E,(Y, F1) = E;(Th(V)) = E(F2) via the Thom isomorphism. The
map

Ej(F) = E5(Th(V)) ~> Ef(F)

is multiplication bye(V), so Im(*) is e(V)E((F2) as claimed in 3.2).
The spacé retracts ontaF; via the mapf on, so the long exact sequence associated
to the pair(Y, F1) splits. Now consider the diagram

0 — Eg(Y,F1) — Eg(Y) — Eg(F1) —— 0

|- | l

0 —— EL(F2) —— Ej(FiuF) —— EG(F1) —— 0.

Both rows split, and we get Ith) = Ej,(F1)@Im(:*), whereE,(F1) is mapped via the
diagonal inclusion(1, f*) : E},(F1) — E{(F1) @ Ej5(F2). It is now straightforward
to check that{(g1, f*(g1))} ® {(0, g2) : e(V) | g2} is the same group as described
in (3.3. O

We now have the technical tool to prove our main theorem.
Proof of Theorem 3.1 The map:* is injective by Theoren?.3, so we must show

that its image Ink*) equals the ringR of (3.1).
We first show that Ink*) € R. Let Y;; be the subspace of given by

Yij i= Fj Ufjom; D(Vij).
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Consider a class € Ej(X), and letx; denote its restriction taF;. Since (x;, x;) is
the image ofx|y,; € E¢;(Y;;) under the restriction magy; (Y;j) — EG(F)) @ EG(F),
we know by Lemma3.5 that

e(Vij) | xi = f75x)). (3.4)

The conditions §.4) characterizeR, so we concluddx;) € R.

We now have a magE(X) — R and want to show that it is surjective. Following
Remark2.1, we are using/ = N. We argue by induction on the length of the stratifi-
cation. If the length is zero, thek = ¢ and there is nothing to show. We now assume
that X = X; and that surjectivity holds for

E;}(Xj) — Rj = (xp) € l—[ E?;(Fk) e(Vie) | Xp — fk*ﬁ(xf) for all ¢ <k

k<j

forall j <.
Let r; : R; — R;_1 be the restriction map. By Assumptioh) its kernel can be
written

x;=0forj<i

~ . * .
e(Vij) | xi forall j <i | ™ e(Vi)EG (Fi). (3-5)

ker(r)) = § (xj) € 1_[ E§(F))

JSi

We now consider the following commutative diagram:

0 — E;(Xi,Xi-1) —— E;(Xi) —— E;(Xi-1) —— 0

e

ri
0O ——— ker(r,-) Rl‘ Rifl.

The top sequence comes from the long exact sequence of the pair, which splits into short
exact sequences as shown in the proof of TheoPeBn By the induction hypothesis,
we know that the right vertical arrow is an isomorphism. By compargg) @nd @.5),
the left vertical arrow is also an isomorphism. It is now an easy diagram chase to verify
that r; is surjective and thakE,(X;) >~ R;.

Finally, we note that

E5(X) = lm E5(X;) = lm R =R,

completing the proof. [J
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4. Module generators

The second part of Theore&3 gives us a lot of information about the structure
of E;,(X) as anEj-module. When the space§ consist of isolated fixed points, we
can say more. With this assumptior2.3) tells us that as arEy-module, Ef;(X) is
(non-canonically) a product of principal ideals &;:

EEX) =[] e ES.

veF

where F = UF; and V, is the fiber overv. Moreover, given a collection of classes
xy € E;(X), one for eachw € F, it is very easy to check whether they form a set of
free generators for EL(X).

We write v < w whenv € F;, w € F; andi < j. We write v<w if v < w or
v = w. Let x,(w) denotex,|,. We then have:

Proposition 4.1. Suppose X satisfies Assumptidist and that the space#; consist
of isolated fixed points. Let, € Ej(X) be classes satisfying

xy(w) =0 for wkv;
and
xy(v) is a generator of the ideak(V,)E;. (4.2)

Then{x,} is a set of free topologicak;-module generators

It might happen that a spac¥ with G-action satisfies the Assumptions 1-4 for
some cohomologyNtheor)Eg, but that Assumptiord fails lfgr some closely related
cohomology theoryEy;. For example, this can happen whep, is~non—equivarianE—
cohomologyE*(X) := E;;(X x G), or WhenEy = Hf(—; Z) and E; = Hf(—; Z/2).

In that case we have:

Proposition 4.2. Suppose X satisfies Assumptidrs} for the cohomology theor¥;,
and that ther; consist of isolated fixed points. LEf; be a module cohomology theory
over the ring cohomology theorky,. Then one can recovek;(X) by tensoring

E4(X) = EG(X)®p; Eg.

Here Ej(X) is viewed as a topologicaEg,-module and® denotes the completed
tensor product

1Here, Ef(X) should be viewed as a topologicd;-module, and the word ‘generator’ should be
interpreted in the topological sense.
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In particular, if Eg is an Ej-algebra andx, € Ej(X) satisfy (4.1), thenx, ® 1
are free E;;-module generators of(; (X).

Proof. We argue by induction on the length of the stratification.

Without loss of generality, we may assume theare single points. The short exact
sequenced.5 consists of free;-modules. Therefore, the functer@Eg E(;, preserves
exactness, and we get the following commutative diagram:

0 — EGThiegs By — > EGXpops By — > EGXiveps By - 0

A |

B
EL(Th() ————————— EL(X) ——————— EL(X_p.

The right vertical arrow is an isomorphism by induction. The left vertical arrow is
an isomorphism since

EG(Th(V:) @z, Eg = EG(F) ®ps, Eg = Eg = EG(Th(V),

where the first and last isomorphisms are the equivariant suspension isomorphisms.
A diagram chase shows thAtis surjective, so the bottom long exact sequence splits
and the mapx is injective. We deduce by the Five Lemma that the middle vertical
map is also an isomorphism, as desired.
Finally, if the filtration is infinite, we have

Epo0 = lim Eyox) = lim (E5(0) ®; EY)

(Llri Eg(x,»)) B By = EE(X0OBp By, O
Assume now thaX is a CW complex withG-invariant cells? that the filtration 2.1)
is the usual filtration by skeleta (indexed BY), and that
EL(X) = H:(X) := H*(X xg EG)

is ordinary equivariant cohomology. In this case, we can give a canonical set of free
generators forHg (X). As before, we letF = UF;, where F; is now the set of the
centers of the-dimensional cells. We writév| = i wheneverv € F; and recall the
notation x, (w) for x|y .

2Careful: we do not mean that is a G-CW complex.
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Proposition 4.3. Let X be a CW complex as above. Then there is a uniquérsgk r
of free generators for theédj-module Hf;(X) satisfying the conditions

1. eachx, is homogeneous of degrée|;

2. if lw|<|v|, w # v, thenx,(w) =0€ HE; and

3. the elementy,(v) is the equivariant Euler class(V,) :=e¢(V, xg EG — BG) Iin
H{;, whereV, is the cell of X with centep.

Proof. We first construct the classes. Assume by induction that we have classés
in Hf(X;-1) for [w| < i. To extend these t&/};(X;), consider the short exact sequence

0 — Hi(Xi,Xi-1) —— H{(X;)) —— Hi(Xi-1) —— 0

and note that

HE (Xi Xic) =HE | \/ Th(vy) | = [] HE (Th(V).

[v]=i [v]=i

The spaced'h(V;) are G-spheres, so eacH(Th(V,)) has a canonical generatay.
The restriction ofu, to the centerv of V, is the equivariant Euler clasgV,). The
classesx, of H}(X;_1) have a unique liftx, to H(X;) becauseHg(Xi, X;_1) is
zero for allk < i. It is straightforward to check that these lifts, along with the images
x, of the chosen generators, of Hf(X;, X;_1), satisfy the above conditions and
generateH; (X;). We take a limit overi to obtain the generators, € H7(X).

We show that Conditions 1-3 characterize the generatprd et {x,} be another
set of generators satisfying the same conditions. Write thent,as= ), bywxw.
By Condition 2, we haveb,,, = 0 whenever|w|<|v] and w # v. By Condition
3, by, = 1. Finally, b,,, = 0 when |w| > |v|, because otherwis&, would not be
homogeneous. [

Remark 4.4. SupposeX is a manifold with aG-invariant Morse functionf and a

CW decomposition constructed from the Morse flow. Then the above construction is
the same as the following: given a fixed point consider the flow-up manifol&,

of codimension|v|. By Poincaré duality, it represents a cohomology classlt is
straightforward to see that thg satisfy Conditions 1-3 of Propositioh3.

Remark 4.5. There are other situations when it is possible to find canonical module
generators. For example, such generators exist whéna complex algebraic variety

or a symplectic manifold, andy; is equivariantK-theory. The algebraic construction
involves resolving the structure sheaf of the “flow-up” varietles See[BFM79] for
details. The symplectic construction can be found@&iK03].

We illustrate these generators for some examples in Se6tion
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5. Kac—Moody flag varieties

We now turn our attention to the main examples that motivate the results in this
paper. These are homogeneous sp&yE? for a (not necessarily symmetrizable) Kac—
Moody groupg, defined overC, with P a parabolic subgroup. Specific examples of
such homogeneous spaces include finite-dimensional Grassmannians, flag manifolds,
and based loop spacésk of compact simply connected Lie groups

We first take a moment to explicitly descrif@k as a homogeneous spaggP.

Let LK be the group of polynomial loops

LK = {y: S* > K},

where the group structure is given by pointwise multiplication. By polynomial, we
mean that the loop is the restrictidht = {z € C : |z| = 1} — K of an algebraic map
C* — K¢. The space of based polynomial loops is defined by

QK :={c e LK| 0(1)) =1€ K}.
The groupLK acts transitively orQK by

;-0 =@ (5.1)

The stabilizer of the constant identity loop is exadtlythe subgroup of constant loops.
Thus QK ~LK/K.

Now let G be the affine Kac—Moody groug = L/KTCNC*. Here, LK¢ is the group
of algebraic mapL* — K¢, L/KE is the universal central extension 6K, and the
C* acts onLK¢ by rotating the loop. The paraboliP is L/+\KC>4<D*, where LT K¢
is the subgroup of.K¢ consisting of mapL* — K¢ that extend to map& — Kc.

It is shown in[PS86, 8.3]that QK can be identified as a homogeneous spa¢e.
We briefly sketch this argument. The grolyk acts onG/P by left multiplication,
and the stabilizer of the identity i® N LK. This intersection is the set of polynomial
maps C* — K¢ which extend over 0, and which ser} to K. Thus, a loopy in
P N LK satisfies the condition(z) = 6(y(1/z)), where 6 is the Cartan involution on
Kc. Therefore, since’ extends over zero, by settingoo) = 0(y(0)), it also extends
over co. But theny is an algebraic map fron®! to K¢, and is therefore constant,
since K¢ is affine. HenceP N LK = K.

Remark 5.1. We have only considered the space of polynomial loopK.itHowever,
our results still apply to other spaces of loops, such as smooth Iéeﬁsbolev loops,
etc. Indeed, the polynomial loops are dense in these other spaces of [RS86,
3.5.3, Mit87] By Palais’ theorenjPal66, Theorem 12}these dense inclusions are weak
homotopy equivalences. The inclusions©ffixed point sets forT’ a closed subgroup
of T are also equivalences. So the various formsQ¥ are actually equivariantly
weakly homotopy equivalent.
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Let us return to the general case. L& be the maximal torus of;. The center
Z(G) acts trivially onX = G/P, so the quotient grouff := Tg/Z(G) acts onX. We
need to check that this spagewith this T-action satisfy Assumption$—4 that are the
hypotheses of Theore®.1 It is known (see for examplBD94,KP83,KK87,Mit87)
that G/P admits aT-invariant CW decomposition

gip= || BuwP/P. (5.2)

[wleWg/Wp

where Wg and Wp are the Weyl groups off and of (the semisimple part ofp,
respectively, andb is a representative ofv in G. This is the filtration of Assump-
tion 1. Each cell is homeomorphic to Rrepresentation and has a singidixed point
w = wP/P at its center. These cells are the and the fixed points are thg;. The
T-representatiorV; is isomorphic to the tangent space

TaBw = TaBwP/P =b/bnwpd~t =b/bNw-p.

This tangent space decomposes into 1-dimensional representations, corresponding to the
roots contained irb but not inw - p. These subspaces are thig of Assumption2.

We now check AssumptioB. Since theF; are points, we only need to show that
the attaching mapp; : S(V;) — X;_1 maps eachS(V;;) onto the pointF;. In other
words, we need to show that the closure ¢f is a 2-sphere with north and south
poles F; and F;. Pick a rootx in b but not inw - p. Let ey, e, be the standard root
vectors fora, —a. Let SL(2, C), be the subgroup off with Lie algebra spanned by
ey, e—y and ey, e_,], and let3, be the Borel ofSL(2, C), with Lie algebra spanned
by ey and[ey, e_y]. Let 7y := exp(n(eq —e—y)/2) represent the elemeni of the Weyl
group which is reflection along. Let F; be the pointw and F; the pointr,w. The
o-eigenspace in the ceBw is By,w = V;; =C. Its closure isSL(2, C)yw=P?!, and
the point at infinity is given by, wP/P = r,w = F;, as desired.

Finally, we need to check Assumpti@n To do this, we must show that for the roots
contained inb but not inw - p, the corresponding Euler classes are pairwise relatively
prime. This is true for a large class dfequivariant complex oriented cohomology
theories includingH;(—; Z), K3 and MU;.

Lemma 5.2. Let E} be Hj(—; Z), Kj or MU7}. Leto; be any finite set of non-zero
characters such that no two are collinear. Moreovér £ = H}(—; Z), assume that
no prime p divides two of the;. Then the corresponding Euler classe&x;) are
pairwise relatively prime inE?.

Proof. The equivariant cohomology ring/; is the symmetric algebra Sym*(A) on
the weight lattice ofT. This is a unique factorization domain, and the Euler classes

3This is true if one restricts th& O(T')-grading of[May96] to the more familiarZ-grading. Otherwise,
one has various periodicities with respect to all zero-dimensional vifu@presentations.
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e(n;) = o; decompose into an integer times a primitive character. The result follows
immediately in this case.

The equivarianK-theory ring K? is the group ringZ[A] generated by symbols*.
For eacha in our set of characters, let be the primitive character in that direction,
so o = na. The Euler classes(o;) = 1 — ¢% factorize as a product of cyclotomic
polynomials

1—e% = H @4 (%).

dn;

The factors®,(e%) are all distinct, so the result follows.

To prove the result about complex cobordism, we argue by induction on the number
of characters in our set. The base case is trivial. Assume by induction that the result
holds for n characters and that we are given a sefy, ..., f, of n + 1 characters
satisfying the hypotheses of the lemma. Ixebe a class inMU; which is divisible
by each of the Euler classes of the above characters. By inductiendivisible by
the product[]; e(f;), so there exists a clags such thatb - []; e(f;) = x. We now
consider the short exact sequerj&n01, Theorem 1.2]

-e(a) res

0O —— MU;  —— MU; E—— MUIter(a) — 0.

Sincex is divisible by e(x),

res(b) - 1_[ res(f;) =res(x) =0.

By assumption, the restriction$| k.- are non-torsion in the group of characters of
Ker(o). So by a result of Sinh§Sin01, Theorem 5.1fheir Euler classes&(f;|kerw) =
res(e(f;)) are not zero divisors. We conclude thats(b) = 0. Henceb is a multiple

of e(a), completing the proof. O

Remark 5.3. It is shown in [CGKO02] that any complex oriented-equivariant co-
homology theoryE?% is an algebra ovet/Uy. Combining this with Propositior.2
and Lemma5.2 we may use our main TheorerB.1 to compute E7(G/P) =
MU3;(G/P)®wus E}-

We conclude this section with an explanation of how to obtain the pictures that we
draw in Section6. The GKM graph associated tg/P has verticesWg/Wp, with
an edge connectingw] and [r,w] for all reflectionsr, in Wg. The weight label on
such an edge ig. It turns out that it is possible to embed this GKM graphtin
the dual of the Lie algebra of. Under this embedding, the weight; is then the
primitive element of A c t* in the direction of the corresponding edge. To produce
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Fig. 2. This is the GKM graph embedded {fi for QSU(2), a homogeneous space for the loop group
LSL(2,C).

this embedding, we pick a point itE whose Wg-stabilizer is exactlyWp, take its
Wg-orbit, and draw an edge connecting any two vertices related by a reflectibfg.in
This graph sits in a fixed level df’é (this is only relevant wherg; is of affine type)
and can therefore be thought of as sittingtin

These ideas are borrowed from the theory of moment maps in symplectic geometry.
In that context,X is a symplectic manifold withT-action and admits a moment map
i X — t*. Consider the sek™ of points with stabilizer of codimension at most 1.
The GKM graph is the image af® under the moment map. In our situation,x ®
corresponds exactly to the union of thg;. Fig. 2 shows the image of the moment
map for the exampl€SU (2).

6. Examples
6.1. A homogeneous space 6p

The complex Lie groupiz2 contains two conjugacy classes of maximal parabolic sub-
groups. They correspond to the two simple rootgef We consider the caseé = Go/P
and its natural torus action, whef@ = Pjong is the parabolic generated by the Borel
subgroup and the exponential of the negative long simple root. Equivaléhtythe
quotient of the compact grou@, by a subgroup isomorphic t&'(2). The GKM graph
is a complete graph on 6 vertices and is embeddetf inR? as a regular hexagon.

We now compute explicitly module generators of E7.(X) for a large class of co-
homology theories}., following Section4. We will represent them by their restrictions
xy(w) = x|y to the variousT-fixed pointsw € F. In this example, all thex,(w)
happen to be Euler classes of complBxepresentations. This allows us to use the
following convenient notation to represent the classgsOn every vertexw of I" we
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draw a bouquet of arrowﬁj € A. By this, we mean that the class(w) € E7({w})
is the Euler class

ww)=e|EP B | =[] B
J J

The vertices with no arrows coming out of them carry the class 0. Using these con-
ventions, we draw the six module generators,ly, z, s, ¢ of E7(G2/P) in Fig. 3.

Recall that Assumptions 1-4 are satisfied for the cohomology thedfigs-; 7),
K} and MU7Z, as shown in Sectiob. To check that the elements shown in Fiyare
module generators, we need to check two things. First, we notice that the conditions
(4.1) are satisfied. Second, we need to verify that the elementsz, s, ¢ satisfy the
criteria 3.1) for being elements oE7 (X).

To check 8.1), note thate(x) € Ej divides e(f)) — e(y) wheneverf —y is a mul-
tiple of o in A. This is a trivial fact whenE?. is ordinary T-equivariant cohomology
or T-equivariantK-theory, and is a consequence of the theory of equivariant formal
group laws whenE? is an arbitraryT-equivariant complex oriented cohomology the-
ory [CGKOO, p. 374] Similarly e(«) divides a difference of produci{d e(;) —[Te(y;)
if the f; —; are all multiples ofx. Now, for each of the classes in Fig, and for
each edgdgv, w) of I with direction «, we note that the two bouquets of arrowsj}
at v and {y;} atw can be ordered in such a way that the differenfles- y; are
each in the direction of. So, we have checked3.l) and hence by Theorer.],
the classes in Fig3 are elements o7 (X). Thus, by Propositiost.1, they are free
module generators.

1 1

z S t

Fig. 3. The module generators fdr}.(G2/P). We include the latticeA in the first diagram.
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Even though the module generators look very similar in all cohomology theories, the
ring structures are different. We compute the ordin@rgquivariant cohomology and
K-theory of X = G2/P to exhibit this phenomenon.

For cohomology theorieg’. such as;(—; Z/2), H*(—; Z), K*, or MU* for which
Assumption4 fails, we still have a good understanding E;(X) by Proposition4.2
We exploit this to computé!*(X; Z) from H7(X; Z) and K*(X) from K7.(X) below.

For the computation ofi;(X; Z), it is convenient to let := e(—), b := e(\) be

the Euler classes irH% of the characters—~, X\ € A. One then hasi} = Z[a, b].
Using the embedding2(2) H;(X; Z) = [, H}, we compute:

x(x +a) =y,
x(x +a)(x +b) =2z,
x(x+a)(x+b)(x +2a+b) =2s,

and
x(x+a)x+b)(x+2a+b)(x +2b+a) =2t

To get the non-equivariant cohomolody*(X; Z), it suffices by Propositiod.2 to set
a=b=0:

%2 = v, X3 = 2z, x4 = 2s, X2 = 2t, =0 (6.1)

In K-theory, it is more convenient to let b € K? be the characters» and X € A
themselves (not their Euler classes). We then h&fe= Z[a, a1, b, b71], and all
other K-groups are either zero or isomorphic &°. We use the convention that the
Euler class of a line bundle is 1— L. We can now compute:

x(ax+1—a)=y,
1

x(ax+1—a)(bx+1—-0b) = (1+a_1)z —a s,
x(ax +1—a)(bx +1—b)(a’bx +1—a’h) = (L+ b Ys — b~ 14,
and

x(ax+1—a)(bx +1— b)(asz +1-— azb)(abzx +1-— abz) =1+ ailbfl)t.

To get the non-equivariark-theory, we setu = b = 1 according to Propositiod.2

x2=y, =275, x*=2—1t x°=2r, x=0. (6.2)
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We note that, as expected, the cohomology ri&d)(of G»/P is the associated graded
of the K-theory ring 6.2).

6.2. Loops inSU(2)

We now compute explicitly the ring structure @17 (QSU(2); Z) using the GKM
graphT" C t* and the module generatarg as constructed in Sectigh In this example,
as in the previous one, all the restrictioagw) at fixed points are elementary tensors
in Hf({w}) =Sym*(A). So as before, we will represent the classgsy drawing on
every vertexw a bouquet of arrow$; € A such thaty,(w) = [] ;. The vertices with
no arrows coming out of them carry the class O.

The first few module generators are illustrated in FigWe call x the generator of
degree 2, and express the others in terms of it. The arrows in the expressions denote
elements inHZ = A.

The map H7(QSU(2); Z) — H*(QSU(2); Z) is simply the map that sends the
arrows to zero. So we recover the well-known fact that the ordinary cohomology
H*(QSU(2); 7Z) is a divided powers algebra on a class in degree 2.

Note that the classes in Fig.are not generators foK-theory. Indeed, the conditions
(3.1) are only satisfied when the classes in Fgare interpreted in cohomology, but
not when they are interpreted K-theory.

To compute the generators &f; (Q2SU(2)), we introduce the following notation. Let

PG, )= A= Ja) (A=) Y A

0< o<k

whereA* = A7t -+ 2% and|o| = o1+ - -+a,. The first such polynomiabi (21, ..., 4,)
is exactly the Euler class(&p /;) that appeared in Sectiof.L The other ones are
slightly more complicated. To best draw okirtheory classes, we introduce a pictorial

X(x=) (=) X(X-/)(X-\)(X-/)
6 24

Fig. 4. The degree .2, 6, and 8 generators foH;(QSU(Z); 7).
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Fig. 5. The first few module-generators m;(QSU(Z)). (The classxg =1 is omitted.)

notation for py(41, ..., 4y), for 4; € A. We will represent them by a bouquét;}

of arrows, and a small numbéc at the vertex. We illustrate our generators using
this notation in Fig.5. To check that these elements are indeed the generators of
K7 (QSU(2)), we need to check4(l), which is immediate, and that they satisfy the
GKM conditions B.1). These latter turn out to be quite hard to check.

Leta ;= —andq := € KQ. Let us also identify the vertex s&t of I' with Z
by taking the horizontal coordinate. The clagsdrawn in Fig.5 is given by

Pm—k (afqumfk’ a*qumfk+l’ L a*qum+() if m> k,
xim)=10 if —e<m<k,
Pem—t(ag™ "t ag™ L ag™m ) if m < —¢,
where ¢ = |i| —1 andk = |i — 3| — 3. Given an edge(m,n) € T, we must

check the condition given in3(1), namely that the Euler class-1ag”*" divides the
difference

x;i(m) — x;(n).

This involves several different cases. However, the problem has a few symmetries that
allow us to reduce the cases to the following three.

If mis between—¢ andk thenx;(n) has either(d — ag”t") or (1—a~1¢=" ") as
a factor and we are done.

If both m and n are bigger thark, then we must check that-1aqg™*" divides

Pt (a—lq—m—k’ o a—lq—m+e> — ok (a—lq—n—k’ L a—lq—n+€) _ (6.3)
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This is equivalent to checking tha6.Q) evaluates to 0 after setting™ = ¢”*". So
we are reduced to checking that

k(@5 " = pak(@™ R, g,

The above formula is invariant under adding the same constant to the indices
and k, and subtracting it fron?. So by lettingk = 0, we must prove the equivalent
formula

pm(qns"~aqn+e) =pn(qm»-~'1qm+l)' (64)

This is the content of Lemmé.1
Finally, if m > k andn < —¢ then we are reduced to checking that

—k 14 — k
n . m+ )

Pm—k(q " = poae@T™ g

By replacingq with ¢~—1, reversing the order of the arguments in the polynorpial
and a couple changes of indices, this also reduces to Lefina

Lemma 6.1. The expression

amne = pm(q" q" L L "t

is symmetric in m and.n

Proof. Let ( )q denote the quantum binomial coefficient

(a) B aly
b, ~ bly(a—b),’

whereal, is the g-factorial* aly = (1—¢q)(L—g?)...(1—¢%). We can then rewrite
the expression,,; as

m—1

Amnt :(1_51")"'(1_‘]”—%)2: qm( Zl> . (6.5)
i=0

q

See for exampl¢And76, Section 3.3for more detail. In particular,§(5) is a truncated
version of Eq. (3.3.7) ifAnd76].

4 Some authors define the quantum factorig) to be ](l+q)(l+q+q2)~--(1+q+~-+q”). This
agrees with our expression up to a power of .
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Now recall from[Zei93] that a “difference form”
w = f(i, j)oi +g(i, )]
has “exterior difference”
do=[fGj+D—fG NIoj oi +[gG+1 j)—g )i dj,

where oi and dj are anti-commuting symbols. Such a difference form can be viewed
as a cellular 1-cochain on the standard square tilin§afthe exterior difference being
the usual cellular coboundary operator. Consider the difference form

ij @+0,3G+0Yy

ilgjlqtly

[(l —gh)oi+ 11— qi)éj] :

It is an easy exercise to verify that is closed. Therefore, by the discrete Stokes’
theorem[Zei93],
f w =0,
oL

wherelL is the rectanglg0, m] x [0, n]. One now checks that the above integral is zero
on the sideq0} x [0, n] and [0, m] x {0}, and equals,,,¢ and —a,,,¢ on the remaining
two sides. [

Remark 6.2. We do not know whether the generators illustrated in Bigre the same
as those mentioned in Remadis.

6.3. A homogeneous space of tyzp%f-‘)

For our last example, we lgf be the affine group associated to the Cartan matrix

i)

This group isLSf(?(E)Z/ZZx(C*, where theZ/27-action onLSL(3, C) is given by
precomposition with the antipodal map— —z on C* and composition with the outer
automorphismA — (A")~1 of SL(3, C).

We consider the homogeneous spatg” where the paraboli®® has Lie algebra
generated byb and the negative of the simple short root. The degree 2, 4, 6, and 8
module generators fofH7(G/P; Z) are illustrated in Fig6. The denominator in the
degreenth module generator is given by2l"/2].
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7
\ /
A X(X=.") (X_g?“) (x= )

Fig. 6. The degree 2, 4, 6, and 8 generators i (G/P; 7).
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