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Abstract

In 1998, Goresky, Kottwitz, and MacPherson showed that for certain projective varietiesX
equipped with an algebraic action of a complex torusT, the equivariant cohomology ringH∗

T
(X)

can be described by combinatorial data obtained from its orbit decomposition. In this paper, we
generalize their theorem in three different ways. First, our groupG need not be a torus. Second,
our spaceX is an equivariant stratified space, along with some additional hypotheses on the
attaching maps. Third, and most important, we allow for generalized equivariant cohomology
theoriesE∗

G
instead ofH∗

T
. For these spaces, we give a combinatorial description ofE∗

G
(X) as

a subring of
∏

E∗
G
(Fi), where theFi are certain invariant subspaces ofX. Our main examples

are the flag varietiesG/P of Kac–Moody groupsG, with the action of the torus ofG. In this
context, theFi are theT-fixed points andE∗

G
is a T-equivariant complex oriented cohomology

theory, such asH∗
T

, K∗
T

or MU∗
T

. We detail several explicit examples.
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1. Introduction and background

The goal of this paper is to give a combinatorial description of certain generalized
equivariant cohomologies of stratified spaces. The important examples to which our
main theorems apply includeT-equivariant cohomology,K-theory, and complex cobor-
dism of Kac–Moody flag varieties. Although the examples that motivate us come from
the theory of algebraic groups, our proofs rely heavily on techniques from algebraic
topology. Indeed, we state the results of Sections2–4 in the following context.

Let G be a topological group andE∗
G a G-equivariant cohomology theory (see

[May96, Chapter XIII] for a definition) with a commutative cup product. LetX be a
stratifiedG-space such that successive quotientsXi/Xi−1 are homeomorphic to Thom
spacesT h(Vi) of E-orientableG-vector bundlesVi → Fi . In this setting, and with
the assumption that the Euler classese(Vi) are not zero divisors, we show that the
restriction map

™∗ : E∗
G(X) →

∏
i

E∗
G(Fi)

is injective. Moreover, whenX and theG-action satisfy additional technical assumptions,
we identify the image of™∗ as a subring of

∏
i E

∗
G(Fi) defined by explicit compati-

bility conditions involving divisibility by certain Euler classes. We also construct free
E∗
G-module generators ofE∗

G(X).
Our theorems generalize known results in algebraic and symplectic geometry. When

X is a projective variety,G a complex torus, andE∗
G ordinary equivariant cohomology,

then we recover a theorem of Goresky, Kottwitz, and MacPherson[GKM98] that com-
putesH ∗

T (X; C). They assume thatX has finitely many 0- and 1-dimensionalT-orbits,
and then consider the graph� whose vertices are the fixed pointsXT and edges are
the 1-dimensional orbits. An edge(v,w) in � is decorated with the weight�(v,w)
of the T-action on the corresponding orbit. They provide a combinatorial description
of H ∗

T (X) as a subring ofH ∗
T (X

T ) in terms of this graph. Each edge of� gives a
condition as follows. Letx(v) denote the restriction of a classx ∈ H ∗

T (X) to v ∈ XT .
Then the condition reads

�(v,w)
∣∣∣ x(v) − x(w) . (1.1)

We illustrate an example in Fig.1.
This article is organized as follows. In Section2 we prove the injectivity of the map

™∗ : E∗
G(X) →

∏
i

E∗
G(Fi).

Next, in Section3, we identify the image of™∗, giving combinatorial conditions sim-
ilar to those in (1.1). In Section4, we give a description of module generators for
E∗
G(X). Finally, in Sections5 and 6, we return to our motivating examples, which
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Fig. 1. This shows the graph� for a flag varietySL(3,C)/B. The weight�(v,w) is exactly the direction
of the edge(v,w), as explained in Section5. There is a linear polynomial attached to each vertex,
also depicted as a vector. The polynomials satisfy the compatibility conditions, so this does represent an
equivariant cohomology class inH2

T
(SL(3,C)/B).

are homogeneous spacesG/P for Kac–Moody groupsG, equipped with the action
of a torusT. For these spaces, our theory applies whenE∗

T is any complex oriented
T-equivariant cohomology theory. We make explicit computations for three examples:
a homogeneous space ofG2, the based loop space�SU(2), and a homogeneous space

of ̂LSL(3,C)
Z/2Z

�C∗.

2. The injectivity theorem for stratified spaces

Let G be a topological group andE∗
G a G-equivariant cohomology theory with

commutative cup product. We consider stratifiedG-spaces

X =
⋃
i�1

Xi, X1 ⊆ X2 ⊆ X3 . . . , (2.1)

where the successive quotientsXi/Xi−1 are homeomorphic to the Thom spacesT h(Vi)

of someG-vector bundlesVi → Fi . Moreover, we require that the above vector bundles
be E-orientable (see[May96, p. 177]). In other words, X is built by successively
attaching disc bundlesD(Vi) via equivariant attaching maps�i : S(Vi) → Xi−1. This
should be compared to the way one builds CW complexes by successively attaching
discs.

We recall that anE-orientation, or Thom class, of aG-vector bundleV → F is an
elementu ∈ E∗

G(T h(V )). For each closed subgroupH < G and pointx ∈ FH , the
restriction ofu to V |G·x is a generator of the freeE∗

H -module

E∗
G(T h(V |G·x)) � E∗

H (D(Vx), S(Vx)).
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The Euler classe(V ) is the restriction of the Thom classu to the baseF via the zero
section map.

Remark 2.1. As with CW complexes, the stratification is often more naturally indexed
by a posetI rather thanN. In that case, one should replace the expressionXi/Xi−1
by Xi/

⋃
j<i Xj . The posetI is required to satisfy the condition that{j ∈ I : j < i}

is finite for all i ∈ I , which makes the inductive proofs work. In the proofs, we ignore
this fact and pretend thatI = N. The only thing that we need is that for eachi ∈ I ,
the subspaceXi is obtained by a finite sequence of gluings, and thatX = lim−−→ Xi .

Remark 2.2. In the examples in Sections5 and 6, the group G = T is a
finite-dimensional torus, theT-spacesFi are single points and theVi are complex
T-representations. The stratification (2.1) expressesX as a cell complex with even
dimensional cells.

The main theorem of this section establishes the injectivity of the restriction map
E∗
G(X) → E∗

G(
∐

Fi)�
∏

E∗
G(Fi) when the Euler classes are not zero divisors.

Theorem 2.3. Let X be a stratified G-space and letE∗
G be a multiplicative cohomology

theory as above. Assume that the Euler classese(Vi) ∈ E∗
G(Fi) of the vector bundles

Vi → Fi are not zero divisors. Then the inclusion™ :∐Fi ↪→X induces an injection

™∗ : E∗
G(X) →

∏
i

E∗
G(Fi). (2.2)

Moreover, let E∗
G(X) be given the induced filtration under the above inclusion. Then

the associated gradedE∗
G-moduleQE∗

G(X) is isomorphic to(the direct product of) the
ideals generated by the Euler classes in theE∗

G(Fi). Explicitly,

QE∗
G(X)�

∏
i

e(Vi)E
∗
G(Fi). (2.3)

Proof. We first prove the theorem when the stratification ofX is finite. This is done
by induction on the length of the stratification.

We first consider the assertion that (2.2) is injective. If the length of the stratification
is 0, thenX is empty, both sides of (2.2) are zero, and the result trivially holds. We now
argue the inductive step. Assume that the stratification ofX has lengthi (i.e. X = Xi)
and consider the cofiber sequence

Xi−1 −→ Xi
p−→ T h(Vi). (2.4)

It follows from the assumption on the Euler class that the long exact sequence in
E-cohomology associated to (2.4) splits into short exact sequences

0 −→ E∗
G(T h(Vi))

p∗
−→ E∗

G(Xi) −→ E∗
G(Xi−1) −→ 0. (2.5)
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To see this, we prove thatp∗ is an injection. Indeed, the composition

E∗
G(Fi)

·u

�

�� E∗
G(T h(Vi))

p∗
�� E∗

G(Xi) �� E∗
G(Fi)

is multiplication by the Euler classe(Vi), and is therefore injective. The first map is
the Thom isomorphism (see[May96, Theorem 9.2]), so the middle mapp∗ must be
injective.

Now consider the map of short exact sequences

0 �� E∗
G(T h(Vi))

�� E∗
G(Xi) �� E∗

G(Xi−1) �� 0

0 �� E∗
G(Fi)

��
∏
j � i

E∗
G(Fj )

��
∏
j<i

E∗
G(Fj )

�� 0.

�� �� ��
(2.6)

The left vertical map is injective by the assumption one(Vi), with imagee(Vi)E∗
G(Fi).

The right vertical map is injective by induction. By the Five Lemma, the central map
is also injective. This proves (2.2) when the filtration ofX is finite.

We now prove (2.3). Again, the base case is trivial, since both sides of (2.3) are
zero when the stratification has length zero. We now argue the inductive step. The
associated gradedQE∗

G(Xi) is isomorphic toE∗
G(T h(Vi)) ⊕ QE∗

G(Xi−1). The im-
age ofQE∗

G(Xi−1) under the rightmost vertical map in (2.6) is
∏

j<i e(Vj )E
∗
G(Fj )

by the induction hypothesis. So, the image ofQE∗
G(Xi) under the center vertical

map is

QE∗
G(Xi)�e(Vi)E

∗
G(Fi) ⊕

∏
j<i

e(Vj )E
∗
G(Fj ) =

∏
j � i

e(Vj )E
∗
G(Fj )

as claimed in (2.3).
For both statements (2.2) and (2.3), the general caseX = lim−−→ Xi follows directly

from the finite case since

E∗
G(X) = lim←−− E∗

G(Xi).

Note that there is no Milnor lim1 term here because the mapsE∗
G(Xi) → E∗

G(Xi−1)

are all surjective. �
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3. The combinatorial description of E∗
G(X)

We now identify the image ofE∗
G(X) in

∏
E∗
G(Fi): it is specified by simple combi-

natorial restrictions. This is the content of Theorem3.1. In order to make this compu-
tation, we must make some additional assumptions onX. We formalize our hypotheses
on X below.

Assumption 1. The spaceX is equipped with aG-invariant stratification

X =
⋃
i∈I

Xi

and each successive quotientXi/X<i is homeomorphic to the Thom space of aG-
equivariant vector bundle�i : Vi → Fi . HereX<i denotes the subspace

⋃
j<i Xj ⊂ Xi .

Assumption 2. The bundlesVi → Fi are E-orientable and admitG-equivariant direct
sum decompositions

(�i : Vi → Fi)�
⊕
j<i

(
�ij : Vij → Fi

)
into E-orientable vector bundlesVij . We allow the caseVij = 0.

Assumption 3. There existG-equivariant mapsfij : Fi → Fj such that the attaching
maps�i : S(Vi) → Xi−1, when restricted toS(Vij ), are given by

�i |S(Vij ) = fij ◦ �ij .

Here, we identify theFj with their images inXi−1.

Assumption 4. The Euler classese(Vij ) are not zero divisors and are pairwise relatively
prime in E∗

G(Fi). Namely, for any classx ∈ E∗
G(Fi), we have that

(∀j) e(Vij )
∣∣∣ x ⇔ e(Vi)

∣∣∣ x.
With these assumptions, we may now formulate our main theorem.

Theorem 3.1. Let X be a G-space satisfying Assumptions1–4. Then the map

™∗ : E∗
G(X) →

∏
i

E∗
G(Fi)
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is injective with image

R :=
{
(xi) ∈

∏
i

E∗
G(Fi)

∣∣∣∣ e(Vij ) | xi − f ∗
ij (xj ) for all j < i

}
. (3.1)

When Vij = 0 in the theorem above, the relatione(Vij ) | xi − f ∗
ij (xj ) is vacuous

becausee(0) = 1. We introduce a decorated graph� that carries all the information
from X necessary to compute the imageR of E∗

G(X). Each edge of� corresponds to
a non-vacuous relation.

Definition 3.2. The GKM graph� associated toX is the graph with one vertexvi for
each subspaceFi and an edge(vi, vj ) wheneverVij is non-zero. Each edge is labeled
with the bundleVij and the mapfij : Fi → Fj .

Remark 3.3. In Sections5 and 6, the description of� simplifies greatly. In those
examples, all theFi are single points, and the mapsfij : Fi → Fj are the only possible
ones. Moreover, the bundlesVij are all 1-dimensional complexT-representations. Hence,
� is a graph with a character� ∈ � := Hom(T , S1) attached to each edge.

Remark 3.4. Theorem3.1 generalizes many results found in the literature. We survey
some of these results here.

(A) Suppose thatX is a projective variety equipped with an algebraic action of a
complex torus, with finitely many 0- and 1-dimensional orbits. LetE∗

G be ordinary
T-equivariant cohomology. In this setting, Theorem3.1 is precisely the result of
Goresky, Kottwitz, and MacPherson[GKM98].

(B) Theorem3.1 recovers the main theorem of[GH04] when X is a compact Hamil-
tonian T-space with possibly non-isolated fixed points, and generalizes this result
to equivariantK-theory.

(C) WhenE∗
G is T-equivariantK-theory with complex coefficients andX is a GKM

manifold, then Theorem3.1 is identical to[KR03, Corollary A.5].
(D) If X is a Kac–Moody flag variety andE∗

G is T-equivariantK-theory, then The-
orem 3.1 is closely related to a result of Kostant–Kumar[KK87] . Indeed, their
Theorem 3.13 identifiesK∗

T (G/B) with the subring of elements of
∏

W K∗
T that

are mapped toK∗
T by certain operators, which include the divided difference op-

erators

(�w − �wr�)
1

1 − e�

for all w ∈ W and reflectionsr�. These are exactly the same conditions as in (3.1).
Their Corollary 3.20 determinesK∗

T (G/P) in a similar fashion.

Before proving Theorem3.1, we give a Lemma which computesE∗
G(X) when the

stratification ofX has length 2.
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Lemma 3.5. Let Y = F1 ∪� D(V ) be obtained by gluing the sphere bundle of
� : V → F2 onto F1, where� = f ◦ � for a mapf : F2 → F1. Assume thate(V ) is
not a zero divisor. Then the images of the restriction maps™∗ : E∗

G(Y, F1) → E∗
G(F2)

and E∗ : E∗
G(Y ) → E∗

G(F1) ⊕ E∗
G(F2) are

™∗(E∗
G(Y, F1)) = {g ∈ E∗

G(F2) | e(V ) | g} (3.2)

and

E∗(E∗
G(Y )) = {(g1, g2) ∈ E∗

G(F1) ⊕ E∗
G(F2) | e(V ) | g2 − f ∗(g1)

}
, (3.3)

respectively.

Proof. Clearly E∗
G(Y, F1)�E∗

G(T h(V ))�E∗
G(F2) via the Thom isomorphism. The

map

E∗
G(F2)�E∗

G(T h(V ))
™∗−→ E∗

G(F2)

is multiplication bye(V ), so Im(™∗) is e(V )E∗
G(F2) as claimed in (3.2).

The spaceY retracts ontoF1 via the mapf ◦�, so the long exact sequence associated
to the pair(Y, F1) splits. Now consider the diagram

0 �� E∗
G(Y, F1) ��

™∗
��

E∗
G(Y )

��

E∗
��

E∗
G(F1) ��

��

0

0 �� E∗
G(F2) �� E∗

G(F1 � F2) �� E∗
G(F1) �� 0.

Both rows split, and we get Im(E∗) = E∗
G(F1)⊕Im(™∗), whereE∗

G(F1) is mapped via the
diagonal inclusion(1, f ∗) : E∗

G(F1) → E∗
G(F1) ⊕ E∗

G(F2). It is now straightforward
to check that{(g1, f

∗(g1))} ⊕ {(0, g2) : e(V ) | g2} is the same group as described
in (3.3). �

We now have the technical tool to prove our main theorem.

Proof of Theorem 3.1. The map™∗ is injective by Theorem2.3, so we must show
that its image Im(™∗) equals the ringR of (3.1).

We first show that Im(™∗) ⊆ R. Let Yij be the subspace ofX given by

Yij := Fj ∪fij ◦�ij D(Vij ).
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Consider a classx ∈ E∗
G(X), and letxi denote its restriction toFi . Since (xj , xi) is

the image ofx|Yij ∈ E∗
G(Yij ) under the restriction mapE∗

G(Yij ) → E∗
G(Fj )⊕E∗

G(Fi),
we know by Lemma3.5 that

e(Vij )
∣∣ xi − f ∗

ij (xj ). (3.4)

The conditions (3.4) characterizeR, so we conclude(xi) ∈ R.
We now have a mapE∗

G(X) → R and want to show that it is surjective. Following
Remark2.1, we are usingI = N. We argue by induction on the length of the stratifi-
cation. If the length is zero, thenX = ∅ and there is nothing to show. We now assume
that X = Xi and that surjectivity holds for

E∗
G(Xj ) → Rj :=

(xk) ∈
∏
k� j

E∗
G(Fk)

∣∣∣∣ e(Vk') ∣∣ xk − f ∗
k'(x') for all ' < k


for all j < i.

Let ri : Ri → Ri−1 be the restriction map. By Assumption4, its kernel can be
written

ker(ri) =
(xj ) ∈

∏
j � i

E∗
G(Fj )

∣∣∣∣ xj = 0 for j < i

e(Vij ) | xi for all j < i

 � e(Vi)E
∗
G(Fi). (3.5)

We now consider the following commutative diagram:

0 �� E∗
G(Xi,Xi−1) ��

��

E∗
G(Xi) ��

��

E∗
G(Xi−1) ��

��

0

0 �� ker(ri) �� Ri

ri
�� Ri−1.

(3.6)

The top sequence comes from the long exact sequence of the pair, which splits into short
exact sequences as shown in the proof of Theorem2.3. By the induction hypothesis,
we know that the right vertical arrow is an isomorphism. By comparing (3.2) and (3.5),
the left vertical arrow is also an isomorphism. It is now an easy diagram chase to verify
that ri is surjective and thatE∗

G(Xi) � Ri .
Finally, we note that

E∗
G(X) = lim←−− E∗

G(Xi) = lim←−− Ri = R,

completing the proof. �
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4. Module generators

The second part of Theorem2.3 gives us a lot of information about the structure
of E∗

G(X) as anE∗
G-module. When the spacesFi consist of isolated fixed points, we

can say more. With this assumption, (2.3) tells us that as anE∗
G-module,E∗

G(X) is
(non-canonically) a product of principal ideals ofE∗

G:

E∗
G(X)�

∏
v∈F

e(Vv)E
∗
G,

whereF = ∪Fi and Vv is the fiber overv. Moreover, given a collection of classes
xv ∈ E∗

G(X), one for eachv ∈ F , it is very easy to check whether they form a set of
free generators1 for E∗

G(X).
We write v < w when v ∈ Fi , w ∈ Fj and i < j . We write v�w if v < w or

v = w. Let xv(w) denotexv|w. We then have:

Proposition 4.1. Suppose X satisfies Assumptions1–4 and that the spacesFi consist
of isolated fixed points. Letxv ∈ E∗

G(X) be classes satisfying

xv(w) = 0 for w�v;

and

xv(v) is a generator of the ideale(Vv)E
∗
G. (4.1)

Then {xv} is a set of free topologicalE∗
G-module generators.

It might happen that a spaceX with G-action satisfies the Assumptions 1–4 for
some cohomology theoryE∗

G, but that Assumption4 fails for some closely related
cohomology theorỹE∗

G. For example, this can happen wheñE∗
G is non-equivariantE-

cohomologyE∗(X) := E∗
G(X×G), or whenE∗

G = H ∗
G(−; Z) and Ẽ∗

G = H ∗
G(−; Z/2).

In that case we have:

Proposition 4.2. Suppose X satisfies Assumptions1–4 for the cohomology theoryE∗
G,

and that theFi consist of isolated fixed points. Let̃E∗
G be a module cohomology theory

over the ring cohomology theoryE∗
G. Then one can recover̃E∗

G(X) by tensoring

Ẽ∗
G(X) = E∗

G(X)⊗̂E∗
G
Ẽ∗
G.

Here E∗
G(X) is viewed as a topologicalE∗

G-module and⊗̂ denotes the completed
tensor product.

1 Here, E∗
G
(X) should be viewed as a topologicalE∗

G
-module, and the word ‘generator’ should be

interpreted in the topological sense.
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In particular, if Ẽ∗
G is an E∗

G-algebra andxv ∈ E∗
G(X) satisfy (4.1), then xv ⊗ 1

are free Ẽ∗
G-module generators of̃E∗

G(X).

Proof. We argue by induction on the length of the stratification.
Without loss of generality, we may assume theFi are single points. The short exact

sequence (2.5) consists of freeE∗
G-modules. Therefore, the functor−⊗E∗

G
Ẽ∗
G preserves

exactness, and we get the following commutative diagram:

0 �� E∗
G
(T h(Vi )) ⊗

E∗
G

Ẽ∗
G

��

��

E∗
G
(Xi ) ⊗

E∗
G

Ẽ∗
G

��

��

E∗
G
(Xi−1) ⊗

E∗
G

Ẽ∗
G

��

��

0

Ẽ∗
G
(T h(Vi ))

�

�� Ẽ∗
G
(Xi )

�

�� Ẽ∗
G
(Xi−1).

The right vertical arrow is an isomorphism by induction. The left vertical arrow is
an isomorphism since

E∗
G(T h(Vi)) ⊗E∗

G
Ẽ∗
G�E∗

G(Fi) ⊗E∗
G
Ẽ∗
G�Ẽ∗

G�Ẽ∗
G(T h(Vi)),

where the first and last isomorphisms are the equivariant suspension isomorphisms.
A diagram chase shows that� is surjective, so the bottom long exact sequence splits

and the map� is injective. We deduce by the Five Lemma that the middle vertical
map is also an isomorphism, as desired.

Finally, if the filtration is infinite, we have

Ẽ∗
G(X) = lim←−− Ẽ∗

G(Xi) = lim←−−
(
E∗
G(Xi) ⊗E∗

G
Ẽ∗
G

)
=
(

lim←−− E∗
G(Xi)

)
⊗̂E∗

G
Ẽ∗
G = E∗

G(X)⊗̂E∗
G
Ẽ∗
G. �

Assume now thatX is a CW complex withG-invariant cells,2 that the filtration (2.1)
is the usual filtration by skeleta (indexed byN), and that

E∗
G(X) = H ∗

G(X) := H ∗(X ×G EG)

is ordinary equivariant cohomology. In this case, we can give a canonical set of free
generators forH ∗

G(X). As before, we letF = ∪Fi , whereFi is now the set of the
centers of thei-dimensional cells. We write|v| = i wheneverv ∈ Fi and recall the
notationxv(w) for xv|w.

2 Careful: we do not mean thatX is a G-CW complex.
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Proposition 4.3. Let X be a CW complex as above. Then there is a unique set{xv}v∈F
of free generators for theH ∗

G-moduleH ∗
G(X) satisfying the conditions

1. eachxv is homogeneous of degree|v|;
2. if |w|� |v|, w �= v, then xv(w) = 0 ∈ H ∗

G; and
3. the elementxv(v) is the equivariant Euler classe(Vv) := e(Vv ×G EG → BG) in

H ∗
G, whereVv is the cell of X with centerv.

Proof. We first construct the classesxv. Assume by induction that we have classesx′
w

in H ∗
G(Xi−1) for |w| < i. To extend these toH ∗

G(Xi), consider the short exact sequence

0 �� H ∗
G(Xi,Xi−1) �� H ∗

G(Xi) �� H ∗
G(Xi−1) �� 0

and note that

H ∗
G (Xi,Xi−1)�H ∗

G

∨
|v|=i

T h(Vv)

�
∏
|v|=i

H ∗
G (T h(Vv)) .

The spacesT h(Vi) are G-spheres, so eachH ∗
G(T h(Vv)) has a canonical generatoruv.

The restriction ofuv to the centerv of Vv is the equivariant Euler classe(Vv). The
classesx′

w of H ∗
G(Xi−1) have a unique liftxw to H ∗

G(Xi) becauseHk
G(Xi,Xi−1) is

zero for all k < i. It is straightforward to check that these lifts, along with the images
xv of the chosen generatorsuv of H ∗

G(Xi,Xi−1), satisfy the above conditions and
generateH ∗

T (Xi). We take a limit overi to obtain the generatorsxv ∈ H ∗
T (X).

We show that Conditions 1–3 characterize the generatorsxv. Let {̃xv} be another
set of generators satisfying the same conditions. Write them asx̃v = ∑w bvwxw.

By Condition 2, we havebvw = 0 whenever|w|� |v| and w �= v. By Condition
3, bvv = 1. Finally, bvw = 0 when |w| > |v|, because otherwisẽxv would not be
homogeneous. �

Remark 4.4. SupposeX is a manifold with aG-invariant Morse functionf and a
CW decomposition constructed from the Morse flow. Then the above construction is
the same as the following: given a fixed pointv, consider the flow-up manifold�v

of codimension|v|. By Poincaré duality, it represents a cohomology classxv. It is
straightforward to see that thexv satisfy Conditions 1–3 of Proposition4.3.

Remark 4.5. There are other situations when it is possible to find canonical module
generators. For example, such generators exist whenX is a complex algebraic variety
or a symplectic manifold, andE∗

G is equivariantK-theory. The algebraic construction
involves resolving the structure sheaf of the “flow-up” varieties�v. See[BFM79] for
details. The symplectic construction can be found in[GK03].

We illustrate these generators for some examples in Section6.
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5. Kac–Moody flag varieties

We now turn our attention to the main examples that motivate the results in this
paper. These are homogeneous spacesG/P for a (not necessarily symmetrizable) Kac–
Moody groupG, defined overC, with P a parabolic subgroup. Specific examples of
such homogeneous spaces include finite-dimensional Grassmannians, flag manifolds,
and based loop spaces�K of compact simply connected Lie groupsK.

We first take a moment to explicitly describe�K as a homogeneous spaceG/P.
Let LK be the group of polynomial loops

LK := {� : S1 → K},

where the group structure is given by pointwise multiplication. By polynomial, we
mean that the loop is the restrictionS1 = {z ∈ C : |z| = 1} → K of an algebraic map
C∗ → KC. The space of based polynomial loops is defined by

�K := {� ∈ LK| �(1) = 1 ∈ K}.

The groupLK acts transitively on�K by

(� · �)(z) = �(z)�(z)�(1)−1. (5.1)

The stabilizer of the constant identity loop is exactlyK, the subgroup of constant loops.
Thus �K�LK/K.

Now let G be the affine Kac–Moody groupG = L̂KC�C∗. Here,LKC is the group
of algebraic mapsC∗ → KC, L̂KC is the universal central extension ofLKC, and the

C∗ acts onLKC by rotating the loop. The parabolicP is L̂+KC�C∗, whereL+KC

is the subgroup ofLKC consisting of mapsC∗ → KC that extend to mapsC → KC.

It is shown in [PS86, 8.3]that �K can be identified as a homogeneous spaceG/P.
We briefly sketch this argument. The groupLK acts onG/P by left multiplication,
and the stabilizer of the identity isP ∩LK. This intersection is the set of polynomial
maps C∗ → KC which extend over 0, and which sendS1 to K. Thus, a loop� in
P ∩ LK satisfies the condition�(z) = �(�(1/z̄)), where� is the Cartan involution on
KC. Therefore, since� extends over zero, by setting�(∞) = �(�(0)), it also extends
over ∞. But then � is an algebraic map fromP1 to KC, and is therefore constant,
sinceKC is affine. HenceP ∩ LK = K.

Remark 5.1. We have only considered the space of polynomial loops inK. However,
our results still apply to other spaces of loops, such as smooth loops,1

2-Sobolev loops,
etc. Indeed, the polynomial loops are dense in these other spaces of loops[PS86,
3.5.3, Mit87]. By Palais’ theorem[Pal66, Theorem 12], these dense inclusions are weak
homotopy equivalences. The inclusions ofT ′-fixed point sets forT ′ a closed subgroup
of T are also equivalences. So the various forms of�K are actually equivariantly
weakly homotopy equivalent.
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Let us return to the general case. LetTG be the maximal torus ofG. The center
Z(G) acts trivially onX = G/P, so the quotient groupT := TG/Z(G) acts onX. We
need to check that this spaceX with this T-action satisfy Assumptions1–4 that are the
hypotheses of Theorem3.1. It is known (see for example[BD94,KP83,KK87,Mit87])
that G/P admits aT-invariant CW decomposition

G/P =
∐

[w]∈WG/WP

Bw̃P/P, (5.2)

where WG and WP are the Weyl groups ofG and of (the semisimple part of)P,
respectively, andw̃ is a representative ofw in G. This is the filtration of Assump-
tion 1. Each cell is homeomorphic to aT-representation and has a singleT-fixed point
w̄ := w̃P/P at its center. These cells are theVi and the fixed points are theFi . The
T-representationVi is isomorphic to the tangent space

Tw̄Bw̄ = Tw̄Bw̃P/P = b/b ∩ w̃pw̃−1 = b/b ∩ w · p.

This tangent space decomposes into 1-dimensional representations, corresponding to the
roots contained inb but not inw · p. These subspaces are theVij of Assumption2.

We now check Assumption3. Since theFi are points, we only need to show that
the attaching map�i : S(Vi) → Xi−1 maps eachS(Vij ) onto the pointFj . In other
words, we need to show that the closure ofVij is a 2-sphere with north and south
polesFi andFj . Pick a root� in b but not inw · p. Let e�, e−� be the standard root
vectors for�,−�. Let SL(2,C)� be the subgroup ofG with Lie algebra spanned by
e�, e−� and [e�, e−�], and letB� be the Borel ofSL(2,C)� with Lie algebra spanned
by e� and [e�, e−�]. Let r̃� := exp(�(e� −e−�)/2) represent the elementr� of the Weyl
group which is reflection along�. Let Fi be the pointw̄ and Fj the point r�w̄. The
�-eigenspace in the cellBw̄ is B�w̄ = Vij�C. Its closure isSL(2,C)�w̄�P1, and
the point at infinity is given bỹr�wP/P = r�w̄ = Fj , as desired.

Finally, we need to check Assumption4. To do this, we must show that for the roots
contained inb but not inw · p, the corresponding Euler classes are pairwise relatively
prime. This is true for a large class ofT-equivariant complex oriented cohomology
theories includingH ∗

T (−; Z), K∗
T andMU∗

T .

Lemma 5.2. Let E∗
T be H ∗

T (−; Z), K∗
T or MU∗

T . Let �i be any finite set of non-zero
characters such that no two are collinear. Moreover, if E∗

T = H ∗
T (−; Z), assume that

no prime p divides two of the�i . Then the corresponding Euler classese(�i ) are
pairwise relatively prime inE∗

T .

Proof. The equivariant cohomology ringH ∗
T is the symmetric algebra3 Sym∗(�) on

the weight lattice ofT. This is a unique factorization domain, and the Euler classes

3 This is true if one restricts theRO(T )-grading of [May96] to the more familiarZ-grading. Otherwise,
one has various periodicities with respect to all zero-dimensional virtualT-representations.
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e(�i ) = �i decompose into an integer times a primitive character. The result follows
immediately in this case.

The equivariantK-theory ringK0
T is the group ringZ[�] generated by symbolse�.

For each� in our set of characters, let̄� be the primitive character in that direction,
so � = n�̄. The Euler classese(�i ) = 1 − e�i factorize as a product of cyclotomic
polynomials

1 − e�i =
∏
d|ni

�d(e
�̄i ).

The factors�d(e
�̄i ) are all distinct, so the result follows.

To prove the result about complex cobordism, we argue by induction on the number
of characters in our set. The base case is trivial. Assume by induction that the result
holds for n characters and that we are given a set�,�1, . . . ,�n of n + 1 characters
satisfying the hypotheses of the lemma. Letx be a class inMU∗

T which is divisible
by each of the Euler classes of the above characters. By induction,x is divisible by
the product

∏
i e(�i ), so there exists a classb such thatb ·∏i e(�i ) = x. We now

consider the short exact sequence[Sin01, Theorem 1.2]

0 �� MU∗
T

·e(�)
�� MU∗

T MU∗
Ker(�)

�� 0.
res

��

Sincex is divisible by e(�),

res(b) ·
∏
i

res(�i ) = res(x) = 0.

By assumption, the restrictions�i |Ker(�) are non-torsion in the group of characters of
Ker(�). So by a result of Sinha[Sin01, Theorem 5.1]their Euler classese(�i |Ker(�)) =
res(e(�i )) are not zero divisors. We conclude thatres(b) = 0. Henceb is a multiple
of e(�), completing the proof. �

Remark 5.3. It is shown in [CGK02] that any complex orientedT-equivariant co-
homology theoryE∗

T is an algebra overMU∗
T . Combining this with Proposition4.2

and Lemma 5.2, we may use our main Theorem3.1 to compute E∗
T (G/P) =

MU∗
T (G/P)⊗̂MU∗

T
E∗
T .

We conclude this section with an explanation of how to obtain the pictures that we
draw in Section6. The GKM graph associated toG/P has verticesWG/WP , with
an edge connecting[w] and [r�w] for all reflectionsr� in WG . The weight label on
such an edge is�. It turns out that it is possible to embed this GKM graph int∗,
the dual of the Lie algebra ofT. Under this embedding, the weight�ij is then the
primitive element of� ⊂ t∗ in the direction of the corresponding edge. To produce
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Fig. 2. This is the GKM graph embedded int∗ for �SU(2), a homogeneous space for the loop group
LSL(2,C).

this embedding, we pick a point int∗G whoseWG-stabilizer is exactlyWP , take its
WG-orbit, and draw an edge connecting any two vertices related by a reflection inWG .
This graph sits in a fixed level oft∗G (this is only relevant whenG is of affine type)
and can therefore be thought of as sitting int∗.

These ideas are borrowed from the theory of moment maps in symplectic geometry.
In that context,X is a symplectic manifold withT-action and admits a moment map
	 : X → t∗. Consider the setX(1) of points with stabilizer of codimension at most 1.
The GKM graph is the image ofX(1) under the moment map	. In our situation,X(1)

corresponds exactly to the union of theVij . Fig. 2 shows the image of the moment
map for the example�SU(2).

6. Examples

6.1. A homogeneous space forG2

The complex Lie groupG2 contains two conjugacy classes of maximal parabolic sub-
groups. They correspond to the two simple roots ofG2. We consider the caseX = G2/P
and its natural torus action, whereP = Plong is the parabolic generated by the Borel
subgroup and the exponential of the negative long simple root. Equivalently,X is the
quotient of the compact groupG2 by a subgroup isomorphic toU(2). The GKM graph
is a complete graph on 6 vertices and is embedded int∗�R2 as a regular hexagon.

We now compute explicitly module generatorsxv of E∗
T (X) for a large class of co-

homology theoriesE∗
T , following Section4. We will represent them by their restrictions

xv(w) := xv|w to the variousT-fixed pointsw ∈ F . In this example, all thexv(w)
happen to be Euler classes of complexT-representations. This allows us to use the
following convenient notation to represent the classesxv. On every vertexw of � we
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draw a bouquet of arrows�j ∈ �. By this, we mean that the classxv(w) ∈ E∗
T ({w})

is the Euler class

xv(w) = e

⊕
j

�j

 =
∏
j

e(�j ).

The vertices with no arrows coming out of them carry the class 0. Using these con-
ventions, we draw the six module generators 1, x, y, z, s, t of E∗

T (G2/P) in Fig. 3.
Recall that Assumptions 1–4 are satisfied for the cohomology theoriesH ∗

T (−; Z),
K∗
T andMU∗

T , as shown in Section5. To check that the elements shown in Fig.3 are
module generators, we need to check two things. First, we notice that the conditions
(4.1) are satisfied. Second, we need to verify that the elementsx, y, z, s, t satisfy the
criteria (3.1) for being elements ofE∗

T (X).
To check (3.1), note thate(�) ∈ E∗

T divides e(�) − e(�) whenever� − � is a mul-
tiple of � in �. This is a trivial fact whenE∗

T is ordinaryT-equivariant cohomology
or T-equivariantK-theory, and is a consequence of the theory of equivariant formal
group laws whenE∗

T is an arbitraryT-equivariant complex oriented cohomology the-
ory [CGK00, p. 374]. Similarly e(�) divides a difference of products

∏
e(�j )−

∏
e(�j )

if the �j − �j are all multiples of�. Now, for each of the classes in Fig.3, and for
each edge(v,w) of � with direction �, we note that the two bouquets of arrows{�j }
at v and {�j } at w can be ordered in such a way that the differences�j − �j are
each in the direction of�. So, we have checked (3.1) and hence by Theorem3.1,
the classes in Fig.3 are elements ofE∗

T (X). Thus, by Proposition4.1, they are free
module generators.

1

1

1

1

1 1

x                                                  y

z                                               s t

Fig. 3. The module generators forE∗
T
(G2/P). We include the lattice� in the first diagram.
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Even though the module generators look very similar in all cohomology theories, the
ring structures are different. We compute the ordinaryT-equivariant cohomology and
K-theory ofX = G2/P to exhibit this phenomenon.

For cohomology theories̃E∗
T such asH ∗

T (−; Z/2), H ∗(−; Z), K∗, or MU∗ for which
Assumption4 fails, we still have a good understanding of̃E∗

T (X) by Proposition4.2.
We exploit this to computeH ∗(X; Z) from H ∗

T (X; Z) andK∗(X) from K∗
T (X) below.

For the computation ofH ∗
T (X; Z), it is convenient to leta := e(✲), b := e( ❏❏ ) be

the Euler classes inH 2
T of the characters✲, ❏❏ ∈ �. One then hasH ∗

T = Z[a, b].
Using the embedding (2.2) H ∗

T (X; Z) ↪→∏F H ∗
T , we compute:

x(x + a) = y,

x(x + a)(x + b) = 2z,

x(x + a)(x + b)(x + 2a + b) = 2s,

and

x(x + a)(x + b)(x + 2a + b)(x + 2b + a) = 2t.

To get the non-equivariant cohomologyH ∗(X; Z), it suffices by Proposition4.2 to set
a = b = 0:

x2 = y, x3 = 2z, x4 = 2s, x5 = 2t, x6 = 0. (6.1)

In K-theory, it is more convenient to leta, b ∈ K0
T be the characters✲ and ❏❏ ∈ �

themselves (not their Euler classes). We then haveK0
T = Z[a, a−1, b, b−1], and all

other K-groups are either zero or isomorphic toK0. We use the convention that the
Euler class of a line bundleL is 1− L. We can now compute:

x(ax + 1 − a) = y,

x(ax + 1 − a)(bx + 1 − b) = (1 + a−1)z − a−1s,

x(ax + 1 − a)(bx + 1 − b)(a2bx + 1 − a2b) = (1 + b−1)s − b−1t,

and

x(ax + 1 − a)(bx + 1 − b)(a2bx + 1 − a2b)(ab2x + 1 − ab2) = (1 + a−1b−1)t.

To get the non-equivariantK-theory, we seta = b = 1 according to Proposition4.2:

x2 = y, x3 = 2z − s, x4 = 2s − t, x5 = 2t, x6 = 0. (6.2)
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We note that, as expected, the cohomology ring (6.1) of G2/P is the associated graded
of the K-theory ring (6.2).

6.2. Loops inSU(2)

We now compute explicitly the ring structure ofH ∗
T (�SU(2); Z) using the GKM

graph� ⊂ t∗ and the module generatorsxv as constructed in Section4. In this example,
as in the previous one, all the restrictionsxv(w) at fixed points are elementary tensors
in H ∗

T ({w})�Sym∗(�). So as before, we will represent the classesxv by drawing on
every vertexw a bouquet of arrows�j ∈ � such thatxv(w) =∏�j . The vertices with
no arrows coming out of them carry the class 0.

The first few module generators are illustrated in Fig.4. We call x the generator of
degree 2, and express the others in terms of it. The arrows in the expressions denote
elements inH 2

T = �.
The mapH ∗

T (�SU(2); Z) → H ∗(�SU(2); Z) is simply the map that sends the
arrows to zero. So we recover the well-known fact that the ordinary cohomology
H ∗(�SU(2); Z) is a divided powers algebra on a class in degree 2.

Note that the classes in Fig.4 arenot generators forK-theory. Indeed, the conditions
(3.1) are only satisfied when the classes in Fig.4 are interpreted in cohomology, but
not when they are interpreted inK-theory.

To compute the generators ofK∗
T (�SU(2)), we introduce the following notation. Let

pk(
1, . . . , 
n) := (1 − 
1) · · · (1 − 
n)
∑

0� |�|<k

�,

where
� = 
�1
1 · · · 
�n

n and |�| = �1+· · ·+�n. The first such polynomialp1(
1, . . . , 
n)
is exactly the Euler classe(

⊕

i ) that appeared in Section6.1. The other ones are

slightly more complicated. To best draw ourK-theory classes, we introduce a pictorial

x x (x− )
2

x
6

(x− ) (x− ) x
24

(x− )(x− )(x− )

Fig. 4. The degree 2,4,6, and 8 generators forH∗
T
(�SU(2); Z).
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Fig. 5. The first few module-generators ofK∗
T
(�SU(2)). (The classx0 = 1 is omitted.)

notation for pk(
1, . . . , 
n), for 
i ∈ �. We will represent them by a bouquet{
i}
of arrows, and a small numberk at the vertex. We illustrate our generators using
this notation in Fig.5. To check that these elements are indeed the generators of
K∗
T (�SU(2)), we need to check (4.1), which is immediate, and that they satisfy the

GKM conditions (3.1). These latter turn out to be quite hard to check.

Let a := ✲ and q := ✻∈ K0
T . Let us also identify the vertex setF of � with Z

by taking the horizontal coordinate. The classxi drawn in Fig.5 is given by

xi(m) =

pm−k

(
a−1q−m−k, a−1q−m−k+1, . . . , a−1q−m+'

)
if m > k,

0 if − '�m�k,

p−m−'(aq
m−', aqm−'+1, . . . , aqm+k) if m < −',

where ' = |i| − 1 and k = |i − 1
2| − 1

2. Given an edge(m, n) ∈ �, we must
check the condition given in (3.1), namely that the Euler class 1− aqm+n divides the
difference

xi(m) − xi(n).

This involves several different cases. However, the problem has a few symmetries that
allow us to reduce the cases to the following three.

If m is between−' and k then xi(n) has either(1− aqm+n) or (1− a−1q−m−n) as
a factor and we are done.

If both m and n are bigger thank, then we must check that 1− aqm+n divides

pm−k

(
a−1q−m−k, . . . , a−1q−m+'

)
− pn−k

(
a−1q−n−k, . . . , a−1q−n+'

)
. (6.3)
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This is equivalent to checking that (6.3) evaluates to 0 after settinga−1 = qm+n. So
we are reduced to checking that

pm−k(q
n−k, . . . , qn+') = pn−k(q

m−k, . . . , qm+').

The above formula is invariant under adding the same constant to the indicesm, n
and k, and subtracting it from'. So by lettingk = 0, we must prove the equivalent
formula

pm(q
n, . . . , qn+') = pn(q

m, . . . , qm+'). (6.4)

This is the content of Lemma6.1.
Finally, if m > k and n < −' then we are reduced to checking that

pm−k(q
n−k, . . . , qn+') = p−n−'(q

−m−', . . . , q−m+k).

By replacingq with q−1, reversing the order of the arguments in the polynomialp,
and a couple changes of indices, this also reduces to Lemma6.1.

Lemma 6.1. The expression

amn' := pm(q
n, qn+1, . . . , qn+')

is symmetric in m and n.

Proof. Let
( )

q
denote the quantum binomial coefficient

(
a

b

)
q

= a!q
b!q(a − b)!q ,

wherea!q is the q-factorial4 a!q = (1 − q)(1 − q2) . . . (1 − qa). We can then rewrite
the expressionamn' as

amn' = (1 − qn) · · · (1 − qn+')

m−1∑
i=0

qin
(
' + i

'

)
q

. (6.5)

See for example[And76, Section 3.3]for more detail. In particular, (6.5) is a truncated
version of Eq. (3.3.7) in[And76].

4 Some authors define the quantum factoriala!q to be 1(1+ q)(1+ q + q2) · · · (1+ q + · · · + qa). This
agrees with our expression up to a power of 1− q.
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Now recall from[Zei93] that a “difference form”

� = f (i, j)�i + g(i, j)�j

has “exterior difference”

d� = [f (i, j + 1) − f (i, j)] �j �i + [g(i + 1, j) − g(i, j)] �i �j,

where�i and �j are anti-commuting symbols. Such a difference form can be viewed
as a cellular 1-cochain on the standard square tiling ofR2, the exterior difference being
the usual cellular coboundary operator. Consider the difference form

� = qij
(i + ')!q(j + ')!q

i!qj !q'!q
[
(1 − qj )�i + (1 − qi)�j

]
.

It is an easy exercise to verify that� is closed. Therefore, by the discrete Stokes’
theorem[Zei93], ∫

�L
� = 0,

whereL is the rectangle[0,m]×[0, n]. One now checks that the above integral is zero
on the sides{0}×[0, n] and [0,m]×{0}, and equalsanm' and−amn' on the remaining
two sides. �

Remark 6.2. We do not know whether the generators illustrated in Fig.5 are the same
as those mentioned in Remark4.5.

6.3. A homogeneous space of typeA
(4)
1

For our last example, we letG be the affine group associated to the Cartan matrix

[
2 −1

−4 2

]
.

This group is ̂LSL(3,C)
Z/2Z

�C∗, where theZ/2Z-action onLSL(3,C) is given by
precomposition with the antipodal mapz #→ −z on C∗ and composition with the outer
automorphismA #→ (At )−1 of SL(3,C).

We consider the homogeneous spaceG/P where the parabolicP has Lie algebra
generated byb and the negative of the simple short root. The degree 2, 4, 6, and 8
module generators forH ∗

T (G/P; Z) are illustrated in Fig.6. The denominator in the
degreenth module generator is given byn!2$n/2%.
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−x( −x(

x x
4

−x( ) x )
12

−x( ) −x(

x ) )
96

−x( )

Fig. 6. The degree 2, 4, 6, and 8 generators forH∗
T
(G/P; Z).
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