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If the simplicial complex formed by the neighborhoods of points of a graph is 
(k - 2)-connected then the graph is not k-colorable. As a corollary Kneser’s 
conjecture is proved, asserting that if all n-subsets of a (2n - k)-element set are 
divided into k + 1 classes, one of the classes contains two disjoint n-subsets. 

1. INTRODUCTION 

Kneser [6] formulated the following conjecture in 1955, whose proof is 
the main objective of this note. 

THEOREM 1. If we split the n-subsets of a (2n + k)-element set into k + I 
classes, one of the classes will contain two disjoint n-subsets. 

It is easy to split the n-subsets into k + 2 classes so that the assertion does 
not remain valid. For let l,..., 2n + k be the given elements and let Ki 
contain those subsets whose first element is i. Then Kl, K2 ,..., K,,., , 
Kw, ” ... ” &+,+I is a partition of the n-subsets into k + 2 classes such 
that any two n-subsets in the same class intersect. 

Let us construct a graph KG,,, as follows. The vertices of KG,,I, are the 
n-subsets of (I,..., 2n + k) and two of them are joined by an edge iff they are 
disjoint. These graphs are often called Kneser’s graphs. Note that KG,,, is 
the well-known Petersen graph. Now Theorem 1 can be rephrased as follows: 

THEOREM 1’. The chromatic number of Kneser’s graph KG,,L is k -+ 2. 

This conjecture, or special cases of it, have turned out to play many roles 
in various fields of graph theory. In particular, the case n < 3 has been 
proved and applied by Garey and Johnson [4] and Stahl [5]. Here we mention 
the following: Kneser’s graph has the property that each odd circuit of it has 
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lengths at least 2n/k + 1. So if we know that it has high chromatic number, 
we see that Kneser’s graph is an example of triangle-free high-chromatic 
graphs (and of even more). 

Erdiis and Hajnal [2,3] have constructed several other classes of graphs 
with similar properties, among others the following graph, which is often 
called Borsuk’s graph.l Let the vertices of graph BI, be the points of the 
k-sphere SL, two of them being adjacent iff their distance is at least 2 - E 
for some E > 0 (i.e., iff they are almost antipodal). It is easy to see that if E 
is small, this graph contains no short odd circuits. The fact that its chromatic 
number is k + 2 is equivalent to the following well-known theorem of 
Borsuk: 

BORSLJK'S THEOREM. If Sk = Fl u .*. u F,,+l, where Fl ,..., F,,, are 
closed subsets of Sk, then one of the sets Fi contains two antipodal points. 

We shall prove Theorem 1 by using some techniques of algebraic topology 
and Borsuk’s theorem. In fact we shall derive a more general lower bound 
for the chromatic number of certain graphs. To formulate this result we need 
some preparation. 

Let G be a graph. Define the neighborhood complex M(G) as the simplicial 
complex whose vertices are the vertices of G and whose simplices are those 
subsets of V(G) which have a common neighbor. For any complex X, let 2 
denote the polyhedron determined by X. A topological space T is called 
n-connected if each continuous mapping of the surface S’ of the (r + I)- 
dimensional ball into T extends continuously to the whole ball, for r = 0, 
1 ,..., n. 

THEOREM 2. If J(G) is (k + 2)-connected then G is not k-colorable. 

COROLLARY. M(G) is never homotopically trivial. 

In the case k = 2 we obtain: If the neighborhood complex of G is connected 
then G is not bipartite. This is trivial since the color-classes of any 2-colora- 
tion of G are components of M(G). For connected graphs the converse is also 
true if k = 2: If G is not bipartite then any two vertices x, y can be connected 
by a walk x = x,, , x1 ,..., xz9 = y of even length and then x0 , .‘cz ,..., x~~,-~ , 
xzl, is a walk in M(G) connecting x to y, thus M(G) is connected. 

For k > 3 the condition of Theorem 2 is not necessary, which is shown by 
any graph with large chromatic number and girth. It seems to be an inter- 
esting question whether any topological property of J(G) is equivalent to 
the k-colorability of G. On the other hand, could Theorem 2 be strengthened 

‘1 am indepted to Mikfbs Simonovits for pointing out the analogy between Kneser’s 
and Borsuk’s graphs, which is the underlying idea of this paper. 
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by considering homology instead of homotopy, or as follows ? If the (k - 2)- 
dimensional homotopy group of A’-(G) is trivial, then the chromatic number 
of G differs from k. 

The fact that Kneser’s graph satisfies the conditions of Theorem 2 is not 
quite obvious; we shall prove the following, slightly more general result: 

THEOREM 3. Let S be a jnite set and II, k natural numbers. Consider the 
simplicial complex X whose vertices are the n-subsets of S and whose simplices 
are those sets A, ,..., A, of n-subsets for which 

Then X is (k - I)-connected. 

Since for j S / = 2n + k the complex Z above is the neighborhood 
complex of KGn,k , Theorems 2 and 3 together imply Theorem 1. 

2. PROOF OF THEOREM 2 

Let MI(G) denote the barycentric subdivision of -V(G). The vertices of 
Jlr,(G) are those sets XC V(G) whose elements have a common neighbor, 
and some of them span a simplex iff they form a chain with respect to inclu- 
sion. It is trivial that j(G) and MI(G) are homeomorphic. 

Let XC V(G) and denote by v(X) the set of common neighbors of X. 
Then u maps the set of vertices of XI(G) into itself, and since X C Y implies 
V(X) I V(Y), it is simplicial, i.e., maps the vertices of any simplex onto 
vertices of a simplex of Jtr(G). Let us extend it simplicially to a continuous 
mapping of MI(G) into itself. We denote this extended mapping by c. 

Note that 
v3 = v and i;3 = p. (1) 

We define mappings 

q,.: S’ + Ml(G) (r = 0, l,..., k - 1) 

by induction on r such that 

for all x E ST (here -x is the point antipodal to x). 
First let r = 0 and u an arbitrary point of Jfi*1(G). Set ~~(1) = S(v), 

~~(-1) = P(v), then we have the desired mapping of So into MI(G). 
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Second, let r 3 1 and assume that g)r-l: S-l - 2I(G) is defined so that (2) 
holds. Denote by Sf and S- the upper and lower hemisphere of S’, so that 
S+ n S- = F-l. Let us extend yV-l to a continuous mapping 16: Sf --+ &G). 
This is possible by the assumption that MI(G) is k-connected. Define now 

fi”(#(x)) dx) = [q&i)) 
if x ES+, 
if x E S-. 

On S-l = S+ n S- the two definitions coincide, and in fact both yield 
9)r-1: 

I” = ~“(qLl(X)> = qv,,.-1(--x)) = y,-1(-4, 

since (2) is valid for r - 1. Thus (3) defines a continuous mapping of 9 
into MI(G). Moreover, if x E S+ then 

94-x) = fi($44) = ~“($J(x)> = fi(f?4-4) 

by (l), and if x E S- then 

d-4 = 3K-$1 = q&N. 

So (2) is inherited and the definition of q? is complete for all r < k - 1. 
Suppose now that G admits a k-coloration. Let 4 denote the subcomplex 

of J”(G) formed by those simplices whose vertices have a common neighbor 
of color i (1 < i < k). Then trivially 

J(G) =.&u-w& 

Moreover, 

Assume indirectly that x E & and V(X) E 4 . Then x belongs to the simplex 
of J(G) spanned by the neighborhood of a vertex u E V(G) of color i. In the 
barycentric subdivision XI(G), x belongs to the interior of a unique simplex 
spanned by vertices of XI(G), i.e., subsets of V(G), say X, ,..., X,; and we 
have XI , X, ,..., X,, C V(V). Then Yi = v(Xi) 3 LJ and i;(x) is contained in the 
interior of the simplex of MI(G) spanned by some of Y, , Y, ,..., Y, . Since 
C(x) E & , it follows similarly that there is a vertex u E V(G) of color i such 
that some Yj Z V(U). But then U, ZI are adjacent vertices of G of color i, which 
is a contradiction. 

Now let Fi = ~~~~(4). Then Fi is a closed subset of Sk-l and clearly 
Fl u ... u Fk = Sk-l. Also Fi contains no two antipodal points; in fact, 
if xgF< and -xEF~ then 
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and 

9)k--1(--$ = qq*--1(4) E -4 9 

which is impossible. But the existence of such sets -Fi contradicts Borsuk’s 
theorem. This completes the proof of Theorem 2. 

3. PROOF OF THEOREM 3 

Let A = {A, ,..., A,) be a simplex in X. Put 

U(A) = ij Ai )  

i=O 

and denote by M(A) the simplex spanned by all n-subsets of U(A). We call 
A crowded if 1 U(A)] < n + k. 

The proof goes by induction on 1 S /. For j S 1 < n + k the assertion is 
obvious, since X is a simplex. So we may assume that j S 1 > n + k. 

Let X’ denote the closed subcomplex of Z whose simplices are the 
crowded simplices of X, and let X0 be the subcomplex whose simplices are 
the simplices of dimension < k - 1 (the (k - I)-dimensional skeleton of $6). 

First we show that & can be deformed into 3?’ in ~8. We do so by defining 
a continuous mapping #: go ---+ 9’ such that 

(*) for each simplex A of X0 , #(&) lies in &?((A). 

This condition clearly implies that 1,4 is homotopic in 3? to the injection of 
Y0 into 2:. 

We define I,@) by induction on the dimension of A. If dim A = 0 then A 
is automatically crowded and we may set #(A) = A. 

Assume now that dim A > 0 and that $ is defined on the boundary /i of A 
such that (*) is fulfilled. Consider the subcomplex .%?:I of ~6’ induced by the 
vertices of M(A). By the induction hypothesis, #(A) lies in f14 and hence, 
by the other induction hypothesis on 1 S /, from which we know that 3?, is 
(r - I)-connected, we know that $ can be extended over the interior of A. 
This completes the definition of $. 

Next we take two elements U, z, E S and define a continuous mapping 
. 21 cpf,1-. + 9’ as follows. For each n-subset X C S, let 

if u E X but v $ X, 

Then ~~~~ is simplicial, i.e., if A = {A, ,..., A,} is a simplex in X’ then so is 
a,(A) =x {~,dAo),...> yuv(Am)}. In fact, if u 4 A, u ... u A, or o E A, u ... u 
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A, then U(y,,(A)) C U(A); if u E A, u ..’ u A,n and v $ A,, u ... v A,,, then 
U(cp,,(A)) = U(A) - {u> u (0). In both cases 

Thus yuv can be considered as a continuous mapping of 2’ into itself. 
Also observe that 

(**) ~Uu(L~) u A is contained in the simplex of 3 
spanned by the n-subsets of U(A) u (~1. 

Therefore q,, is homotopic in 3? to the injection of 2’ into .3?. 
Consider now the mapping 

This maps each n-subset of S on {ur ,..., u,, ‘. Since it is, by the remark above, 
homotopic to the injection of X’ into X, it follows that 3”’ can be contracted 
in X to a single point. Since we have shown that Z, can be deformed into 
%‘, it follows that X0 can be contracted in 3? to a single point. This com- 
pletes the proof. 
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