Note
 Kneser's Conjecture, Chromatic Number, and Homotopy

L. Lovász
Bolyai Institute, Jozsef Attila University, H-6720 Szeged, Aradi vértanuk tere 1, Hungary

Communicated by the Editors
Received March 4, 1977

Abstract

If the simplicial complex formed by the neighborhoods of points of a graph is ($k-2$)-connected then the graph is not k-colorable. As a corollary Kneser's conjecture is proved, asserting that if all n-subsets of a ($2 n \quad k$)-element set are divided into $k+1$ classes, one of the classes contains two disjoint n-subsets.

1. Introduction

Kneser [6] formulated the following conjecture in 1955, whose proof is the main objective of this note.

Theorem 1. If we split the n-subsets of $a(2 n+k)$-element set into $k+1$ classes, one of the classes will contain two disjoint n-subsets.

It is easy to split the n-subsets into $k+2$ classes so that the assertion does not remain valid. For let $1, \ldots, 2 n+k$ be the given elements and let K_{i} contain those subsets whose first element is i. Then $K_{1}, K_{2}, \ldots, K_{k+1}$, $K_{k+2} \cup \cdots \cup K_{k+n+1}$ is a partition of the n-subsets into $k+2$ classes such that any two n-subsets in the same class intersect.

Let us construct a graph $K G_{n, k}$ as follows. The vertices of $K G_{n, k}$ are the n-subsets of $\{1, \ldots, 2 n+k\}$ and two of them are joined by an edge iff they are disjoint. These graphs are often called Knescr's graphs. Note that $K G_{2,1}$ is the well-known Petersen graph. Now Theorem 1 can be rephrased as follows:

Theorem 1'. The chromatic number of Kneser's graph $K G_{n, k}$ is $k+2$.
This conjecture, or special cases of it, have turned out to play many roles in various fields of graph theory. In particular, the case $n \leqslant 3$ has been proved and applied by Garey and Johnson [4] and Stahl [5]. Here we mention the following: Kneser's graph has the property that each odd circuit of it has
lengths at least $2 n / k+1$. So if we know that it has high chromatic number, we see that Kneser's graph is an example of triangle-free high-chromatic graphs (and of even more).

Erdös and Hajnal [2,3] have constructed several other classes of graphs with similar properties, among others the following graph, which is often called Borsuk's graph. ${ }^{1}$ Let the vertices of graph B_{k} be the points of the k-sphere S^{k}, two of them being adjacent iff their distance is at least $2-\epsilon$ for some $\epsilon>0$ (i.e., iff they are almost antipodal). It is easy to see that if ϵ is small, this graph contains no short odd circuits. The fact that its chromatic number is $k+2$ is cquivalent to the following well-known theorem of Borsuk:

Borsuk's Theorem. If $S^{k}=F_{1} \cup \cdots \cup F_{k+1}$, where F_{1}, \ldots, F_{k+1} are closed subsets of S^{k}, then one of the sets F_{i} contains two antipodal points.

We shall prove Theorem 1 by using some techniques of algebraic topology and Borsuk's theorem. In fact we shall derive a more general lower bound for the chromatic number of certain graphs. To formulate this result we need some preparation.

Let G be a graph. Define the neighborhood complex $\mathscr{N}(G)$ as the simplicial complex whose vertices are the vertices of G and whose simplices are those subsets of $V(G)$ which have a common neighbor. For any complex \mathscr{K}, let $\tilde{\mathscr{K}}$ denote the polyhedron determined by \mathscr{K}. A topological space T is called n-connected if each continuous mapping of the surface S^{r} of the $(r+1)$ dimensional ball into T extends continuously to the whole ball, for $r=0$, $1, \ldots, n$.

Theorem 2. If $\tilde{\mathcal{N}}(G)$ is $(k+2)$-connected then G is not k-colorable.
Corollary. $\tilde{\tilde{N}}(G)$ is never homotopically trivial.
In the case $k=2$ we obtain: If the neighborhood complex of G is connected then G is not bipartite. This is trivial since the color-classes of any 2-coloration of G are components of $\mathscr{N}(G)$. For connected graphs the converse is also true if $k=2$: If G is not bipartite then any two vertices x, y can be connected by a walk $x=x_{0}, x_{1}, \ldots, x_{2 p}=y$ of even length and then $x_{0}, x_{2}, \ldots, x_{2 p-2}$, $x_{2 p}$ is a walk in $\mathscr{N}(G)$ connecting x to y, thus $\mathscr{N}(G)$ is connected.

For $k \geqslant 3$ the condition of Theorem 2 is not necessary, which is shown by any graph with large chromatic number and girth. It seems to be an interesting question whether any topological property of $\tilde{\mathscr{N}}(G)$ is equivalent to the k-colorability of G. On the other hand, could Theorem 2 be strengthened

[^0]by considering homology instead of homotopy, or as follows? If the ($k-2$)dimensional homotopy group of $\mathscr{N}(G)$ is trivial, then the chromatic number of G differs from k.

The fact that Kneser's graph satisfies the conditions of Theorem 2 is not quite obvious; we shall prove the following, slightly more general result:

Theorem 3. Let S be a finite set and n, k natural numbers. Consider the simplicial complex \mathscr{K} whose vertices are the n-subsets of S and whose simplices are those sets A_{0}, \ldots, A_{m} of n-subsets for which

$$
\left|\bigcup_{i=0}^{m} A_{i}\right| \leqslant n+k .
$$

Then \mathscr{K} is $(k-1)$-connected.
Since for $|S|=2 n+k$ the complex \mathscr{K} above is the neighborhood complex of $K G_{n, k}$, Theorems 2 and 3 together imply Theorem 1 .

2. Proof of Theorem 2

Let $\mathscr{N}_{1}(G)$ denote the barycentric subdivision of $\mathscr{N}(G)$. The vertices of $\mathscr{N}_{1}(G)$ are those sets $X \subset V(G)$ whose elements have a common neighbor, and some of them span a simplex iff they form a chain with respect to inclusion. It is trivial that $\tilde{\mathscr{N}}(G)$ and $\tilde{\mathscr{N}}_{1}(G)$ are homeomorphic.

Let $X \subset V(G)$ and denote by $\nu(X)$ the set of common neighbors of X. Then ν maps the set of vertices of $\mathscr{N}_{1}(G)$ into itself, and since $X \subseteq Y$ implies $v(X) \supseteq v(Y)$, it is simplicial, i.e., maps the vertices of any simplex onto vertices of a simplex of $\mathscr{N}_{\mathbf{1}}(G)$. Let us extend it simplicially to a continuous mapping of $\tilde{N_{1}}(G)$ into itself. We denote this extended mapping by $\tilde{\nu}$.

Note that

$$
\begin{equation*}
\nu^{3}=\nu \quad \text { and } \quad \tilde{\nu}^{3}=\tilde{\nu} . \tag{1}
\end{equation*}
$$

We define mappings

$$
\varphi_{r}: S^{r} \rightarrow \tilde{\mathscr{N}_{1}}(G) \quad(r=0,1, \ldots, k-1)
$$

by induction on r such that

$$
\begin{equation*}
\varphi_{r}(-x)=\tilde{v}\left(\varphi_{r}(x)\right) \tag{2}
\end{equation*}
$$

for all $x \in S^{r}$ (here $-x$ is the point antipodal to x).
First let $r=0$ and v an arbitrary point of $\tilde{\mathscr{N}}_{1}(G)$. Set $\varphi_{0}(1)=\tilde{v}(v)$, $\varphi_{0}(-1)=\tilde{\nu}^{2}(v)$, then we have the desired mapping of S^{0} into $\tilde{N}_{1}(G)$.

Second, let $r \geqslant 1$ and assume that $\varphi_{r-1}: S^{r-1} \rightarrow \tilde{\mathscr{N}}_{1}(G)$ is defined so that (2) holds. Denote by S^{+}and S^{-}the upper and lower hemisphere of S^{r}, so that $S^{+} \cap S^{-}=S^{r-1}$. Let us extend φ_{r-1} to a continuous mapping $\psi: S^{+} \rightarrow \tilde{\mathscr{N}}_{1}(G)$. This is possible by the assumption that $\tilde{\mathscr{F}}_{1}(G)$ is k-connected. Define now

$$
\varphi_{r}(x)= \begin{cases}\tilde{v}^{2}(\psi(x)) & \text { if } \tag{3}\\ \tilde{v}(\psi(-x)) & \text { if } \quad x \in S^{+}, \\ S^{-}\end{cases}
$$

On $S^{r-1}=S^{+} \cap S^{-}$the two definitions coincide, and in fact both yield φ_{r-1} :

$$
\tilde{\nu}^{2}(\psi(x))=\tilde{\nu}^{2}\left(\varphi_{r-1}(x)\right)=\tilde{\nu}\left(\varphi_{r-1}(-x)\right)=\varphi_{r-1}(x),
$$

since (2) is valid for $r-1$. Thus (3) defines a continuous mapping of S^{r} into $\mathscr{N}_{1}(G)$. Moreover, if $x \in S^{+}$then

$$
\varphi_{r}(-x)=\tilde{\nu}(\psi(x))=\tilde{\nu}^{3}(\psi(x))=\tilde{\nu}\left(\varphi_{r}(x)\right)
$$

by (1), and if $x \in S^{-}$then

$$
\varphi_{r}(-x)=\tilde{\nu}^{2}(\psi(-x))=\tilde{\nu}\left(\varphi_{r}(x)\right)
$$

So (2) is inherited and the definition of φ_{r} is complete for all $r \leqslant k-1$.
Suppose now that G admits a k-coloration. Let \mathscr{N}_{i} denote the subcomplex of $\mathscr{N}(G)$ formed by those simplices whose vertices have a common neighbor of color $i(1 \leqslant i \leqslant k)$. Then trivially

$$
\tilde{\mathscr{N}}(G)=\tilde{\tilde{N}_{1}} \cup \cdots \cup \tilde{\mathcal{N}_{k}} .
$$

Moreover,

$$
\tilde{\tilde{N_{i}}} \cap \tilde{v}\left(\tilde{\mathcal{N}_{i}}\right)-\varnothing .
$$

Assume indirectly that $x \in \tilde{\mathscr{N}_{i}}$ and $\nu(x) \in \tilde{\mathcal{N}_{i}}$. Then x belongs to the simplex of $\mathscr{N}(G)$ spanned by the neighborhood of a vertex $v \in V(G)$ of color i. In the barycentric subdivision $\mathscr{N}_{1}(G), x$ belongs to the interior of a unique simplex spanned by vertices of $\mathscr{N}_{1}(G)$, i.e., subsets of $V(G)$, say X_{1}, \ldots, X_{m}; and we have $X_{1}, X_{2}, \ldots, X_{m} \subseteq \nu(v)$. Then $Y_{i}=v\left(X_{i}\right) \ni v$ and $\tilde{v}(x)$ is contained in the interior of the simplex of $\tilde{\mathscr{N}}_{1}(G)$ spanned by some of $Y_{1}, Y_{2}, \ldots, Y_{m}$. Since $\tilde{v}(x) \in \tilde{\mathscr{N}}_{i}$, it follows similarly that there is a vertex $u \in V(G)$ of color i such that some $Y_{j} \subseteq \nu(u)$. But then u, v are adjacent vertices of G of color i, which is a contradiction.
Now let $F_{i}=\varphi_{k-1}\left(\tilde{\mathcal{N}_{i}}\right)$. Then F_{i} is a closed subset of S^{k-1} and clearly $F_{1} \cup \cdots \cup F_{k}=S^{k-1}$. Also F_{i} contains no two antipodal points; in fact, if $x \in F_{i}$ and $-x \in F_{i}$ then

$$
\varphi_{k-1}(x) \in \tilde{\tilde{N}_{i}}
$$

and

$$
\varphi_{k-1}(-x)=\tilde{\nu}\left(\varphi_{k-1}(x)\right) \in \tilde{\mathscr{N}_{i}},
$$

which is impossible. But the existence of such sets F_{i} contradicts Borsuk's theorem. This completes the proof of Theorem 2.

3. Proof of Theorem 3

Let $A=\left\{A_{0}, \ldots, A_{m}\right\}$ be a simplex in \mathscr{K}. Put

$$
U(A)=\bigcup_{i=0}^{m} A_{i},
$$

and denote by $M(A)$ the simplex spanned by all n-subsets of $U(A)$. We call A crowded if $|U(A)|<n+k$.

The proof goes by induction on $|S|$. For $|S| \leqslant n+k$ the assertion is obvious, since \mathscr{K} is a simplex. So we may assume that $|S|>n+k$.

Let \mathscr{K}^{\prime} denote the closed subcomplex of \mathscr{K} whose simplices are the crowded simplices of \mathscr{K}, and let \mathscr{K}_{0} be the subcomplex whose simplices are the simplices of dimension $\leqslant k-1$ (the $(k-1)$-dimensional skeleton of $\mathscr{K})$.
First we show that $\tilde{\mathscr{K}}_{0}$ can be deformed into \tilde{K}^{\prime} in $\tilde{\mathscr{K}}$. We do so by defining a continuous mapping $\psi: \tilde{\mathscr{K}}_{0} \rightarrow \tilde{\mathscr{K}}^{\prime}$ such that
(*) for each simplex A of $\mathscr{K}_{0}, \psi(\tilde{A})$ lies in $\tilde{M}(A)$.
This condition clearly implies that ψ is homotopic in $\tilde{\mathscr{K}}$ to the injection of $\tilde{\mathscr{K}}_{0}$ into $\tilde{\mathscr{K}}$.

We define $\psi(\tilde{A})$ by induction on the dimension of A. If $\operatorname{dim} A=0$ then A is automatically crowded and we may set $\psi(A)=A$.

Assume now that $\operatorname{dim} A>0$ and that ψ is defined on the boundary A of \tilde{A} such that (${ }^{*}$) is fulfilled. Consider the subcomplex \tilde{K}_{A}^{\prime} of \mathscr{K}^{\prime} induced by the vertices of $M(A)$. By the induction hypothesis, $\psi(\mathcal{A})$ lies in $\tilde{\mathscr{K}}_{A}^{\prime}$ and hence, by the other induction hypothesis on $|S|$, from which we know that $\tilde{K}_{A}^{\prime \prime}$ is ($r-1$)-connected, we know that ψ can be extended over the interior of \widetilde{A}. This completes the definition of ψ.

Next we take two elements $u, v \in S$ and define a continuous mapping $\varphi_{u i}: \tilde{K}^{\prime} \rightarrow \tilde{K}^{\prime}$ as follows. For each n-subset $X \subseteq S$, let

$$
\varphi_{u r}(X)=\left\{\begin{array}{l}
X-\{u\} \cup\{v\}, \quad \text { if } u \in X \text { but } v \notin X, \\
X \quad \text { otherwise. }
\end{array}\right.
$$

Then $\varphi_{u r}$ is simplicial, i.e., if $A=\left\{A_{0}, \ldots, A_{m}\right\}$ is a simplex in \mathscr{K}^{\prime} then so is $\varphi_{u v}(A)=\left\{\varphi_{u v}\left(A_{0}\right), \ldots, \varphi_{u v}\left(A_{m}\right)\right\}$. In fact, if $u \notin A_{0} \cup \cdots \cup A_{m}$ or $v \in A_{0} \cup \cdots \cup$
A_{m} then $U\left(\varphi_{u v}(A)\right) \subseteq U(A)$; if $u \in A_{0} \cup \cdots \cup A_{m}$ and $v \notin A_{0} \cup \cdots \cup A_{m}$ then $U\left(\varphi_{u v}(A)\right)=U(A)-\{u\} \cup\{v\}$. In both cases

$$
\left|U\left(\varphi_{u v}(A)\right)\right| \leqslant|U(A)| \leqslant n+k-1
$$

Thus $\varphi_{u v}$ can be considered as a continuous mapping of $\tilde{\mathscr{K}}^{\prime}$ into itself. Also observe that
$\left({ }^{* *}\right) \quad \varphi_{u v}(\tilde{A}) \cup \tilde{A}$ is contained in the simplex of $\check{\mathscr{K}}$ spanned by the n-subsets of $U(A) \cup\{v\}$.

Therefore $\varphi_{u v}$ is homotopic in $\tilde{\mathscr{K}}$ to the injection of $\tilde{\mathscr{K}}^{\prime}$ into $\tilde{\mathscr{K}}$.
Consider now the mapping

$$
\varphi_{u_{p} u_{1}} \varphi_{u_{p} u_{2}} \cdots \varphi_{u_{p} u_{p-1}} \varphi_{u_{p-1} u_{1}} \cdots \varphi_{u_{p-1} u_{p-2}} \cdots \varphi_{u_{2} u_{1}} .
$$

This maps each n-subset of S on $\left\{u_{1}, \ldots, u_{n}\right\}$. Since it is, by the remark above, homotopic to the injection of \mathscr{K}^{\prime} into \mathscr{K}, it follows that \mathscr{K}^{\prime} can be contracted in \mathscr{K} to a single point. Since we have shown that \mathscr{K}_{0} can be deformed into \mathscr{K}^{\prime}, it follows that \mathscr{K}_{0} can be contracted in \mathscr{K} to a single point. This completes the proof.

References

1. K. Borsuk, Drei Sätze über die n-dimensionale euklidische sphäre, Fund. Math. 20 (1933), 177-190.
2. P. Erdös and A. Hajnal, On chromatic number of graphs and set-systems, Acfa Math. Acad. Sci. Hungar. 17 (1966), 61-99.
3. P. Erdös and A. Hajnal, Kromatikus gráfokról, Mat. Lapok 18 (1967), 1-4.
4. M. Garey and D. S. Johnson, The complexity of near-optimal graph coloring, J. Assoc. Comput. Mach. 23 (1976), 43-49.
5. S. Stahl, n-tuple colorings and associated graphs, J. Combinatorial Theory Ser. B 20 (1976), 185-203.
6. M. Kneser, Aufgabe 300, Jber. Deutsch. Math.-Verein. 58 (1955).

[^0]: ${ }^{1}$ I am indepted to Miklós Simonovits for pointing out the analogy between Kneser's and Borsuk's graphs, which is the underlying idea of this paper.

