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The main goal of this paper is to describe the parabolic orbits of the planar
restricted elliptic three body problem. The method used is based on a standard
blow up of the periodic orbits at the infinity and the perturbation of the integrable
case corresponding to mass parameter equal to zero. We give an asymptotic
formula for the distance between the stable and unstable manifolds of the infinity
which allows us to describe how the heteroclinic orbits are created, changing the
eccentricity of the primaries. Some conclusions of the quantitative study are given
at the end.  © 1994 Academic Press, Inc.

1. INTRODUCTION

In many problems of celestial mechanics, the existence of oscillatory
solutions such that either all the masses or some of them go far away and
return infinitely many times has been shown. The basic ideas to prove the
existence of that kind of motion were introduced by Alekseev [Al]. After
his work, many authors contributed to related problems (Sitnikov [Si],
Moser [Mo], Easton and McGehee [E.Mc], Llibre and Simé [L1.S],
Moeckel [Mk], Martinez and Sim6 [M.S], etc.). One important point in
all that papers is the existence of some “homoclinic solution to the infinity,”
that is, a solution that belongs to the stable and unstable manifold of the
infinity. In most of the studied problems, the infinity can be seen as a peri-
odic orbit that, in general, corresponds to the motion of two of the bodies
in a bounded orbit. So, the intersection of the invariant manifolds of the
periodic orbit gives the necessary recurrence to prove the existence of
oscillatory solutions. All such problems have two degrees of freedom and
a first integral, so the phase space with a given energy is three-dimensional.

Easton and McGehee [E.Mc] showed that in the planar three body
problem, the infinity can be seen as an invariant S® where all the orbits are
periodic. In that case the phase space is five-dimensional. They pointed out

* This work was partially supported by CICYT Grant ESP91-0403 and by DGICYT
GRANT PB9%0-0695.

299
0022-0396/94 $6.00

Copyright © 1994 by Academic Press, Inc.
All rights of reproduction in any form reserved.



300 MARTINEZ AND PINYOL

that in a situation like that, the fact that the stable and unstable manifolds
of S? intersect, can not ensure the existence of oscillatory solutions. This is
due to the fact that the a- and w-limit sets of an orbit in that intersection
can be different.

In this paper we study the elliptic planar restricted three body
problem. This is a nonautonomous, time periodic, two-degrees of freedom
Hamiltonian problem. We consider two bodies of masses m,=1—u and
m, = u, respectively, where u € (0, 1), describing an elliptic orbit with eccen-
tricity e€ [0, 1). A third body of zero mass is moving in the same plane
under the gravitational effect of the positive masses. We remark that the
phase space is five-dimensional as in the planar three body problem. Using
a standard blow up, the periodic orbits at the infinity can be parametrized
by two parameters (p,, ), provided that some limit velocity is zero. Let
Wipe, %) (W p.,a,)) be the stable (unstable) manifold of the
periodic orbit (p,, ., ). Our purpose is to describe the intersections of the
stable and unstable manifolds of these periodic orbits for small values of
>0 and large values of p.,. The orbits in W3(p_, o) N W', 4, ) for
some parameters p.,, %, P> &o are heteroclinic orbits. We determine the
heteroclinic orbits by the three parameters p,, ®,, w that we shall describe
briefly. We consider the pericenter of the primaries on the x axes. Let us
assume the third body crossing some direction «, € [0, 2n) with zero radial
velocity and an angular velocity related to p,. The angle w gives the
position of m; on the ellipse.

In what follows we consider values of u >0 and e > 0 small enough.

THEOREM A. If po>0 is large enough, the parameters p,, ®y, and w
corresponding to heteroclinic orbits are the zeros of some function
L(pg, %o, W, u)=D(pg, 2y, @)+ O(1), where D(py, xy, @) is exponentially
small in p,.

The limit periodic orbits at the infinity for the heteroclinic orbit
corresponding to the parameters (pg, &y, ®) are

e 1 5 15
[ =p0+u<—;—3>{5e cos 2a0+;5 [<§+—8—e2+ O(e“)) COoS %

0 0

15 45 s ) 1 2
i<16+64e +0(e )) snna0]+0<p8>}+0(# ),

173 9 45
am=a0¥n+u—4[§+e2 (?ﬂ——lgcos 20, + 80 sin 2a0)+0(e3)
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1 /—15 1
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where the upper (lower) sign stands for the limit parameters when time tends
to +oo (—m).

Moreover, the following asymptotic expression holds for values of r = 2ep,
large enough

3 1/2
D ~exp (—%)(%)

. |-
X [COS(% — ) epoay(po, %) + sin(ap — w) (§+ épobi(po, “o))]-

Where
4 5 5
a,(po, o‘o)=Tr45/2 {3 sin (—5a0i§>
i1

. . 3
+ 2r exp(r cos a,) sin { 7 sin a —3 % )t

4 ) 5 5
bi(po, o) = —1+—=r"%? {3 cos(——aoi£>
\/7_r 2 2

. 3
+ 2r exp(r cos ag) cos | r sin o, 5% )¢

where the sign +(—) is taken for —n/2 <oy,<mn/2 (n/2<ay<3n/2), and
e=-exp(l).

THEOREM B. Let us fix a small value of e>0 and consider py>0 such
that r=2ep, is large enough. Then, except for a sequence {p, k an even
integer} of values of p,, the function D(p,, 0y, @) has two continuous curves
of zeros w = w(ay) and v = w(xy) + n in the torus defined by o, and w.

Furthermore, {p{®} is an increasing sequence with p{’ — oo when k — co.
If k is an even integer such that |k| is large enough, we have p{ ~
(1/2e)(3n/4 + km). For these values of p, the winding number of the curve
w = w(ay) changes. These bifurcations take place when w = w(ay) and w =
w(ay) + 7 have four contact points at

T 3n
Aog=7=—E¢, g =~—+8&, W0, W=+ 7,

2

where

£~ arctan {—1— In [-{—n (kn)m]}.
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The bifurcations imply that for a fixed value of the eccentricity e>0
small enough, if poe(p¥—Y, pi) for any we [0,2n), there exist 2k
possible directions for the third body in order to have a heteroclinic orbit.

We remark that if e =0, the asymptotic formula of Theorem A does not
apply. Nevertheless, from the expression of D(p,, &y, @) given in Section 7
we recover the results of [L1.S]. In this case the initial conditions
corresponding to a heteroclinic orbit show the three masses on a line. In
fact, for a fixed direction, there are two heteroclinic orbits depending on
the mass lying in the middle. In our notation, they correspond to o= w
and a, = w + 7 respectively. The winding number of the curve w = w(a) is
now 1.

As a consequence of the theorems we have:

COROLLARY. Let u>0, e>0 be small enough.
For any a_ €[0, 2n) and for almost all p ., >0 large enough, there exists
a transversal heteroclinic orbit, ye W*(p , %, )N W p, &) where

p 2 3n+ 2 (971 451 c0s 2 )
=0, —pU— | —+e&'|———

+ 0(83) +F1(poc»’ aooa e):l + 0(/"2)’

o = £ (lé+e345 sin +0<1
poo_poo H p; 8 32 L2 pzo

+F2(poo’ L e)} + 0(“2)’

where F, is a function of order 1/p>, and F, contains only terms exponen-
tially small of the type exp(—p>,/3).

We use the same technique as in [L1.S] for the planar circular restricted
three body probiem. We perturb the integrable case corresponding to u=0
and we carry the eccentricity, e, of the primaries as an additional
parameter. This procedure allows us to obtain the asymptotic formula of
Theorem A, which gives the distance between the stable and unstable
manifolds of the infinity in terms of the initial conditions taken on a
suitable section.

2. THe ELLIPTIC RESTRICTED THREE BODY PROBLEM

Let m,, m, be the masses of the primaries normalized in such a way that
my=1—pu, my=u for pe(0,1). We consider primaries describing an
elliptic orbit with eccentricity e¢ and semimajor axis a. Introducing
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dimensionless variables, we can take ¢=1 and then the distance between
the primaries can be written as

1— 2
po =) (1)
l+ecosf
where f is the true anomaly of m,. The angular motion of the primaries is
given by

df (1+ecos f)

(= @

where ¢ is the dimensional time.

On the plane of motion we consider a third body with infinitesimal mass
moving under the attraction of m, and m,. In a fixed coordinate system
X, Y we represent the position of the third body using complex notation
Z=X+iY.

Let
_u(1—é%)
""14+ecosf
and
=(1 —u)(1—e?)
? l+ecosf

Then, Z,=z,exp(if) and Z, = —z,exp(if’) locate the primaries.
The motion of the third body can be described by the equation [Sz]

RN e S A2
R? R}’

dtz - (3)

where R,=|Z—2Z,| and R,=|Z—Z,| are the distances between the
primaries and the third body.

In order to study the motion near the infinity we introduce McGehee
coordinates [Mc] x, y, p, and « defined by

2

2 dz _ X°p .
z=Zexp(in), 2 —(y+z ; )exp(za), @

where i=./—1.
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This change brings the infinity to the origin x =0. Equations (3) are
written as

1
x=—Zx3y,
1 4 6,2
y=—gx +§xp + F,
i )
==
p:FZ,
. (1+ecos f)
f_ (1_e2)3/2 4

where

_xt l—p p x* (I-pul—€e)/1 1
A= (1= P +a—;>)+§'°°s(“_” (+ecosf) (E?_Ei)’

1—p)(1—e?) , . 11
FQ:uc(t(l+ﬂ3(cos;))x4sm(“'f)(“?ﬁ?)’

2

x4

62=1-—2z,x? cos(a—f)+zfz—,
2 2 il
o;=142,x cos(az—f)+zzz-,

and the overdot stands for the derivative with respect to .
The flow defined by (5) extends analytically to x =0. We define the set

I={(x,y,0,p, )| x=0,yeR,aeS", peR, feS'},

which is invariant under the flow given by (5). In what follows we will call
I the infinity manifold. We refer to Iy=In {y=0}, as the parabolic
infinity.

We note that « and p remain constant on orbits of the flow restricted to
I. Moreover, these orbits are periodic and can be characterized by the
values of a and p, that we call «,, and p,, respectively.

The results on the planar three body problem obtained by Robinson
[R] and Easton [E] can be applied to the restricted elliptic three body
problem to obtain the existence of invariant manifolds for I,,. In fact, every
periodic orbit given by (a.,, p.,) has two-dimensional stable (W*(a ., g ))
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and unstable (W"(a,, p.,)) manifolds. We define W*(1,) =) (W (x, po))
where the union is taken for o, € S’ and p € R. In a similar way we define
W (I,). We will refer to the orbits of W*W(l,) as parabolic orbits for ¢ —
4o (t— —).

3. The Case u=0

For u=0, the elliptic restricted three body problem is equivalent to two
copies of the two body problem. Equations (5) reduce to

.1

X = 4Xy,

. 1 1

p= x4 xto’

4 6
d=x_4g, (6)
p=0,
f-_(1+ecosf)2
T

FIGURE 1
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p=M

FIGURE 2

This is an integrable system with two independent integrals of motion
p=M, 2n=y"—x*4ix*p? (7)

which correspond to the angular momentum and to the energy of the third
body with respect to m,, respectively.

When p =0, the manifold W*(I,) coincides with W*(l,). The projection
of that manifold on the plane (x, y) can be seen as the curve A=0 in
Fig. 1.

The points of the curves >0 and 4 <0 correspond to hyperbolic and
elliptic orbits of the two body problem respectively.

Notice that the manifold of parabolic orbits intersects the hypersurface
y=0. Using the integrals M and #, the intersection of W*(1;) (respectively
WH(I,)) with y =0 is given by set of points

2
T={(XO;J’0’ %o pO,fO) | x°=|~]\7|’y0=0’ aOESl9 p0=MEIR’fOESl}'

It is easy to see that the orbits with initial conditions (x,, ¥g, %o, Po> fo)E T
tend to the periodic orbit of the parabolic infinity with «, =a,— = and
Pox = Po-

Topologically, T is a solid torus foliated by two-dimensional tori whose
points correspond to orbits with a constant value of p (see Fig. 2).

4. THE CASE u#0

If u+#0 is small enough, the manifolds W*(I,) and W*"(l,) intersect the
hypersurface {y =0} but they do not coincide.
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Equations (5) are invariant under the symmetry
S: (x’ y, o, P, f; t) i (xa -y, —4, p, _.f’ _t)'

Therefore W"(Il,)=S(W*(l,;)), and it is easy to see that for every
periodic orbit at the parabolic infinity we have WY(a,,p,)=
S(W(—ay, pa))

We are interested in computing W*({,) ~ {y =0} for u small enough.

Introducing z= (x, », a, p, f), system (5) can be written as

Z2=F(z)+ pT (z2)+ R(z, p), (8)

where R(z, u) is a function of order two in pu.
We look for initial conditions of the type

Z;= (xl" Vis %45 Pis fl)= (xo(/’o)'*'#L(POs %o, an Iu)’ 0’ %os Pos fO)?

where zq = (xq, Yq, %05 Po, fo)ET.

Let @ be the time of pericenter passage of the two primaries, then f, =
w + O(e) where O(e) is an odd 2zn-periodic function on w of order 1 in the
eccentricity e (see [B.C]). So we can consider

L(pg; a0, fo, )= dxo(po, %, @)+ O(u).

Let z(¢, z;, u) be the solution of (8) such that z(0, z;,, u) =z, We put
z(t, z;, p)=2(1, 2o, 0) + uz,(t, Ax,) + O,, where z,(t, Ax,) is the solution of
the variational equations

2,(t, dxo) = DF(z(t, z4, 0)) z,(¢, 4x0) + T (2(1, 2,, 0)),

)
25(0, 4x0) = (4x,, 0,0, 0,0)7,

and O,, both here and in what follows, stands for O(u?).
If z(z,z;,, u) tends to the parabolic infinity 7, for r— oo, then the
parameters of the limit periodic orbit are given by

Ao = ao—n+ﬂab,m(po, %o» 60) + 02»
P = p0+”’pb,oo(p09 Oo» (D)+ 02’

where a, , =lim, , . a,(f, 4x,) and p, , =1lim, , , p,(¢, 4x,).

The points (xi’ Yis %5 Pis fx) = (xi, 0’ %o5 Pos fo) € WS(IO) n Wu(lo) N
{y=0} are heteroclinic points. A necessary and sufficient condition to
have a heteroclinic point is

L(pO’ Xg, fO’ .u)_L(pOa 27[_“09 —fO’ #) =0.



308 MARTINEZ AND PINYOL

For small values of pu we can apply the implicit function theorem,
provided some transversality condition holds (see later). So we can reduce
the problem to solve

D(po, 2y, ) := Axo(po, %o, @) — AXo(po, 27 — g, —w)=0.

If (x;,0, a4, po, fo) is @ heteroclinic point, then the limit periodic orbit
for t -+ —o0 is characterized by the parameters

doc =a0 +7n —uab,co(pos 27[ _a09 —(,L)) + OZa
Poo=Pot+ HPs w(Po, 2n — g, —)+ O;.

A heteroclinic point is called homoclinic point if «,, =d_ and p =4
In order to have homoclinic points for small values of u, we must be able
to solve

ab,oo(poy aOa w) + ab,oo(po’ 2713 —aO’ —(D) =0’
Pb,0(P0s %o, @) — Py (Po, 20— ag, —w) =0,

for the zeros, (pg, %y, @), of the function D(p,, 2y, w). We remark that the
function D depends also on the eccentricity e. Therefore, in fact, the
equations above involve four parameters. However, for any value of e,
if we take a;=0 or 7, f,=0 or = and an arbitrary value of p,, the initial
conditions  z,=(2/|po| + LL(pg, %o, fo, 1), 0, ag, po, fo) correspond to
heteroclinic points. In order to study the existence of additional
heteroclinic points we will determine the zeros of D(p,, o4, @). We are also
interested in computing «, ., and p, .

5. EXPANSIONS OF AXxg, 0y, AND P,

Let (£(2), (1), 4(1), po, f(1)) be the solution z(z, z,, 0) of the two body
problem. Then, Eq. (9) can be written as

. 3., 1,
xb=_'zx.yxb_zxyba

— _f3+§j5 2 ) % +_1.)2 +gi
Vo= 3 Po | X 4 PoPos o u=0,

(10)
. _ a3 [
o =X Poxb+3x Pbs
oF,

Pp=—7—

ou

pn=0
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We remark that f,(¢z)=0 if we take the initial conditions such that

£p(0)=0.
We introduce an independent variable t through dt/dr = (2/%%) p,. Then,
. 2 . 27 .
X(T)=m-,/—2, y(r)=m, d(r)=2arctan t+a,.  (11)

Note that p,t is the eccentric anomaly of the motion of m, when u=0.
et ' denote the derivative with respect to 1. System (10) becomes

o 31 . 1

b~ (1+12) b (1+rz)1/2yba

,_< —4 12 ) 8 pa(l +1%) OF,
B\ T a2 Y iy o SETI

4p (12)

’ 0

b (1+1:2)”2xb+p0(1+12)
2(1—e?)sin(é — f) ( 1>

= =~ —1+—3).
po(l1 +13)(1 +ecos f) o)

s

I

Pbs

Pb
Integrating the equation for p, and substituting in the equation of y;, we
can restrict ourselves to study the solutions of
3t 1
— X, — ,
T+ @+

, 4 12
Y= _(1+’[2)1/2+(1+T2)3/2 xb+bl(‘t)9

*
Kol
l

(13)

where
8 2 1
b(1)= 1-—
) pé(1+r2)z”"")+p(1+r2)( a>
2
_ 4(1 —e*) cos(d — < is) (14)
p3(1+ecos f)( 1-!—12)2 o5
where, now,
1 —¢? 1 —e?)? 1
c2144 e cos(& f) (1—e)

1+ecosfPo(1+T2) (1 +ecos f) pa(l+73)%

We remark that «,(7) can be obtained by integration from x,(t) and
ps(1).
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Let (v,, w;), (v,, w,) be a fundamental system of solutions of the
homogeneous system associated to (13) such that (v, w,)(0)= (1, 0) and
(vy, w,)(0)=(0, 1). As in [L1.8] these solutions are given by

_ I 2172 2 8 16
vi(r)= 5[(1+7) +(1+Tz)1/z+(1+12)3/2 A+202 )
1 4t 32t
——|4
wi(7) 5[ T+(1+12)+(1+r2)3]’
1
A=

1 2
Wt =5y ((1 Y1) 1)'

Using the method of variation of the constants, the solutions of (13) can
be written as

x5(t) = () v,(1) + (1) vo(1),

(15)
yo(t) = B(r) wi (1) + 9(1) w1(7),
where f(1) and y(t) satisfy the equations
__
B - (1 +T2)b1(f)s
(16)

r_ 1 2 2 _____lg__
y ——5[(1+r P+2(1+1H)+38 (l+rz):|bl(1)’

with initial conditions $(0) = 4x,, 7(0)=0.

LEMMA 1. If pgo is large enough and Axo= —[g (s/(1 +5%)) b(s5) ds,
then the solution given by (15) verifies that x,(1) =0 and y,(1) >0 when
T = c0.

Proof. From (16) we get

M

Blr)=— fﬁ-s—zbl(s) ds. (17)

When u is small enough and p, large enough, the third body does not
approach the primaries, then o, is bounded from below. It is also clear
from (12) that |p,(t)| is bounded.

Using (14), it is easy to see that

C 4 D
1+ (1+7Y

1b,(7)] <



PARABOLIC ORBITS IN THE ELLIPTIC PROBLEM 311

for some constants C and D. Therefore, (17) shows that 7f(z) —» 0 when
7 — o0 and so, f(t) v,(t) -0 and B(z) w,(t) - 0 when 7 — 0.

In a similar way we prove that y(z)/t* —0, when 7 — o0, and then
y(t) v2(1) and y(z) w,(1) tend to zero when 1 — c0. |

From (12) and (15) we get

2
i+ pall 1797

By integrating by parts and taking the limit when t — oo, we obtain

= —14
e =po | b dne 2 [ g

4p,
A =""3173 2)1/2 [B(D) vy (r) +y(r) vp(1)] +

which can be reduced to the following expression:

. =_12(1—e2)J~ (—=1+12)cos(d — f)
b P 0(1+ecosf)(1+rz)3

+f°° {2(—1-}—1 )+ 4(1 —e?)
(1+12)? pf,(l+ecosfﬂ)'

[(—1+f ) cos(d— f)
(1+1%)°

T 2t . A 1
_((1+12)2+(1+12)3>S‘“(°‘—f)][1—a—z]}dr (18)

Our purpose is to compute asymptotic expansions for the integrals which
appear in the expressions of 4x,, «,,, and p, ... Of course, for fixed values
of e, py, 29, and w, we can compute numerically 4x,, p, o, and a, . by
integrating the corresponding functions on the real line; but, to obtain a
good approximation of the behaviour of those functions for p, large
becomes a hopeless numerical task, due to the exponentially small
character that they display.

Following [L1.S] and [Be], we use the Gegenbauer polynomials C{(x)
given by

(1-2xw+w?)""=3) CV(x)w",

nz0
in order to develop
4(1 —¢? 1 - 4(1 — e?)? —32
023—<1+ ( e), 5~ cos 0+ ( f) )
pi(1+ecos f) (1+77) pi(1 +ecos /) (1+12)2
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-

where — f. We denote by B¢ the coefficients of C?)(—cos ), that is,

CP(—cosB)= Y B cos(kd).

k=n(—2)0
We define
2(1 —e? imf
ag=| 12 [ ke i,
' s 0 (I+ecos )" (1+12)"+* ' ' (19)
g_slmk) _ [2(1 —232)]" '[oc T exﬂp(l.me) dr I=(é£xmk)+ l.?;mk]
’ Po o (14+ecosf)" (1413)"+* ’ '

Let ny,=1for m=1 and n, =0 for m >2. Then, an elementary but long
computation shows that

1 - ”
R DI LI D S BT |
0 Llnzi mz1 nzm
(20a)

U == Y, (€5, —2€5),]

nzl1

+ 2 X UL — 2607 00]

mz22 nznj

FyUm P +2y<m>2n .1 (20b)

m+2n,1

P m) p (m
EY Y AL e (20¢)
mz=2 nzn
where
(0= 2B + B =22n+ 1) 487,

C(l)= ﬁ(Zn)+ﬂ(2n)+2B(2n+l)
C(m)_ B(m+2n)+ﬁ(m+2n-1)+ﬁ(m+2n—1)
=(—1)"4(m+2n+1) 43", if m>1,n>0,
y(1)=2ﬁ(2n)_ﬁ(2n)
.yim)_ﬁ(m-#zn—l) ﬂ(m++l2n—1)
=(—1)""14m 43", if m=1,n>0,
with
2m—1)"
m)

(2n— 1) 2m+2n—1)!!
emll (2m+ 2n)!

49 = for m>=0,

A = for m>=0,n>1.
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Using (11) we have 6§ = oo+ 2 arctan t —f and
exp[imé] =explimay] exp[i2m arctan 7] exp[ —imf].
Let T,,(x) and U,, _,(x) be the Chebyshev polynomials of first and
second class with degree 2m and 2m — 1, respectively. We define T, (x?) =

T.(x) and U,(x*)=xU,,_,(x). The coefficients (™ and @™ of x’ in
T,(x) and U,,(x), respectively, are given by

FOm = (= 1)~ m4J z%’%"*‘(_iﬂ“%, i(m) =rj—n o,
Using these polynomials, we have [Be]
exp[i2marctant] = f: [ t-’('m) -+ a’('mt ] (21)
L+ yY 1+

Let / be the mean anomaly of the motion of m, and m,. Then

3 3
_Po(T”
—2<3+r)+w. (22)

We develop, as Fourier series in the mean anomaly /, the functions of the
type r” exp[imf] where r is given in (1)

rexplimf]1= Y ci™exp[ikl]. (23a)

kel

The coefficients c;™ depend on the eccentricity e and can be written as

m (LH =)\ =m iy 1N e\ L ()
=) 5 (T R0

2m 1_ 1_ 23172\ s
) (@_)(____(__f_)__) it 2uss— j—mlke), (23b)

s=0 5 €
where J (x) is the Bessel function of order q.
LemMma 2. (a) Ife=0, then

chm=1, for neN,

cy™=0, for neN and  k#m.

505/111/2-8
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(b) Ifee(0,1),
crm=elk—ml (ao + Y aje2j>,
iz1
where a;=a;(n, m, k) are constants depending on the indexes n, m, and k.
(c) The following equalities hold:

(~D"'@m+1)l (5 72
27 (m+2)! (m—l)!e<1_;+0(m )>’

1) 2m+ 1) 13
agm, m, ~1)=;—m)7n—!(~(’,%—%—!é<1 —8—m+0(m_2)).

aO(m’ m, 1) =

Where € is the basis of natural logarithms.

Proof. Part (a) is obvious from (23).
The expression in (b) follows from the fact that the powers of the eccen-
tricity e which appear in ¢7™ are j+ s+ |[k+2/+5— j—m| + 2u for u 2 0.
Some tedious but not difficult computations show that
(=)™ ' 2m+ 1)
27 Y m 4 2) (m— 1)
_(1 m—l+ (m—1)(m-2)
m+3 21 (m+3)m+4)
(m—1)(m—2)(m—3) + )
3 (m+3)m+4)m+5) ’
(=)™ 2m+ 1)
T2 I m 4 1)
m mim—1)
'(2! (m+2) 31 (m+2)(m+3)
m(m—1)(m—2) +)
41 (m+2)(m+3)(m+4)

aO(ma m, 1) =

ao(m, m, —1)

Taking the dominant terms of the sumes inside parenthesis we get (c). |

Using (21) and (23), the integrals defined in (19) can be written in terms of
= exp[id(t3/3+1)]

F£(8)=1,(8) + iJ,(8) ;=L Tt i,
: (24)
@ 5 3 3
ﬂk(5)=Nk(5)+iM,((5):=L Ie"p([; J(:ré)':L 20

where §=p3/2 and k> 1.
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By integrating by parts, it is easy to see that the following recurrent
relations are satified for k=1 (see [L1.S] and [Be])

B
Mk+z(5)=m1k(5),

I 5———52——1 Sy4{1-—1 V1.6

-0 = e M0+ (1= 5 ) B0

(25)

Nk+z(6)=2(k+1)(1—6Jk(5)),
T d(6)= 32J,(9) <1_ 1 ) 0J5 4 5(9)
T4k + 1)k +3) 2(k +3)) 4(k +1)(k +3)

Then

m‘=(3)n{z e explilmag—50)] 3. (1 Fs vy s ,(55)
=0

2
Po 520 Jj=

+iA M, gy (58)+ Y ¢ explLi(mug + sw))

§>0

<5y 501 M (50D

j=0

2\" . . -
7 =(Z) [T amewlitnto—s0)] T (4 v (69)
=0

2
Po 520 J

+ il "N F ks 1(8) = Fins ;(58))) + Y ™7 expli(mog + sw)]

s>0

(i}'"wn+k+,<sé>+m}mm+kﬂ;«sé)—m“,(s&m},
(26)

where .#, and ¢, stand for complex conjugates of .#, and _#,, respectively.
From (20a) we can write dx, in terms of the integrals defined in (24).
As we are interested in the difference D(p,, oy, @), it is sufficient to
consider the terms in sin(ma,— sw).
If s=0, we get terms which are independent of w. They can be written
as

m+2n
2 >y <£2) cm+Immgin mog,

pom?l nzm 0

X
J

™Mz

0

m

5 {—cgm’a;m’(1m+2n+,+1(0)—1,.,+2,,+j+2(0)>—v::”t‘;'“Im”H,”(O)}.

j=0
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We claim that for any value of m and n, the summation on j is zero. To
see that, we write the sum as

m

(=™ 4453") {(m+2n+ 1) Z ﬁl(‘M)(Im+2n+j+1(0)_Im+2n+j+2(0))
j=0

—m Z t-j('m)lm+2n+j+ 2(0)}
=0

7 sin(2m arctan 1)
(1 +,r2)m+2n+2

=(-1)"'4A§3”>{(m+2n+1)fw

fw cos(2m arctan 1) p }_0

—m o (1+1.2)m+2n+2

The last equality is obtained integrating by parts.

From (24) and (26) we see that the terms which appear in 4x, coming
from integrals of the type J,.(J) and N,(8) are multiplied by cos(ma, — sw)
and so they do not contribute to D{p,, oy, @). Then we only need to
consider the terms which contain the integrals I,(5) and M ,(5). Using (25),
we get

D(Po, %o, Q)): 2 Z T(M)a

m=0
with
IO Y sins T (804 e) 52l e 4G, (),
s>0 nz1
N 2n, -

Tm™m=Y {sm(mozo——sw) Y e

s>0 nzng

+sin(magy +sw) Y. i ,:,M}, (27

nzn

where n,=1ifm=1and n,=0ifm=2,

2m+2n+2 m N 35
P = U e 43 3 1 L ()T D 60)
Po j=0
(m+2n+1)
-

.]Im+2n+j+l(sa)

+j(m+2n+1)+m2
m

1m+2n+j+2(sa)}'
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6. THE BasiC INTEGRALS

In order to get asymptotic developments for 7,(5) and J,(J) for large
values of 6 >0 we follow the same ideas of [L1.S] and [Be] (see also
[Er]). In fact, the integrals were computed in these references but some
terms were omitted. Consequently, the formula (5.23) of [L1.S] should be
corrected to I=(1/16) (nC)"? exp(— C?*/24)(1 + o(1)), by using the right
estimates of the 7, integrals, to be obtained later on in Lemma 4 of this
section.

Let us define h,(1)=exp(id(t + t/3))/(1 4+ %) for k= 1. If there is not
a possibility of confusion we simply put A(z) instead h,(t). Then

L(8) +iJ,(0) = lim j: h(t) dr.

We consider the curve I' of Fig. 3, for R large enough, where points C
and D belong to the circle T =i+ ¢exp(ig) for ¢ small. Let t=¢ + in. The
curve CB is a branch of the hyperbola 3 + &> — 352 =0. Over the curve the
argument of exp is real and negative.

The integration of 4(t) along I” gives

[} B(R) B(R)
j h(z) dt = — lim j h(t)dt + lim h(7) dt
0 R

R o R—- o YC

+ jDC k() dt + jOD h(t) dr.

It is shown in [L1.S] that limg _, . {3 #(t) dr =0.

BIR) .-~

) TR, e€)
D(e)

0] A(RFR

FIGURE 3
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We note that the integral on the imaginary axis is imaginary and so, it
only contributes to J,(8). Using the parameter u(¢)= 1 — (£*/3) where 1= it,
the following development is computed in [Be]:

J-Dh(r)dr=i(6’1+2(k+1)5‘3+4(k+1)(3k+10)5‘5+ ) (28)

In fact, the terms above give the main contribution to J,(5) because we
will show that the integrals of A(t) on the curves CB and DC give exponen-
tially small terms.

For the computation of 7,(8)=Re{[§ h(z)dr + {2 h(1) dr} we will use
the recurrence given in (25). If we define 7(8) = [§° cos(8(t +17/3)) dr, the
recurrent formula can be applied for k> 0. Therefore, we only need to
compute /,(d) for k=0, 1, 2, and 3.

An asymptotic development of /y(d) for  large is given in [Er] as

3 —28\(1/m\"* 1 (—1)" I'Gm+1/2)
or=ew (57){3 () NI ICE |

We define B,(¢) := [ h,(7) dr, for k=1, 2, 3. For ¢> 0 small enough we
introduce a new parameter § as =i+ ¢e”. Then

—28\ e exp(—de2e® + (i6/3) &%)
B = Er— . _
(&) exp( 3 ) j.,,,/z (2i)* e*e™O(1 + ee™/2i)*
where 0(¢) is implicitely defined by &= 6 sin 6(¢)/(1 — 4 sin? 8(¢)), and so

0(e) = ¢/6 + O(&>).
After some computations we get

gie db,

Re(B, () = exp <_T26>§ + 0(8)],
Re(B,(¢)) = exp (—Tza) g + °°s4(:(8) +06) |,
Re(Bi(e)) = exp (:3_2§) 1"—6 (5 + %) - Sinlzfz(s) e “;865(6) + 0 )].

Let us define 4,(¢) := & h(z) dr.
If t=¢& + in, we can write

B — 26\ = exp[ —3{n((2/3) +(8/9) £*) - (2/3)}]
Ak“"“""( 3 )L A E(1 + 4829

2 k
x<§ 52—21'5;7) (1 +—3%i> de,

where # = (1 + £%/3)"2, and & =¢ cos 0(¢).
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Some computations show that
1 =20\ r= exp[ —du]
Re(,(a)) =5 exp () f, Bl de.
—26 exp[ —du]
Re(Az(s))———exp( 3 5(1+452/9)2d5 (29)

Re(A3(s))=——exp< 2‘5) »_expl—oul (‘3‘ 276) d,

3 EX(1 + 4£7/9)?
where

e (8e) 2ot

In order to compute the integrals of (29) we use u as a new variable (see
[Er]). The inversion theorem of Lagrange can be applied

in a
neighbourhood of the point 7 —i to get
t—i=y 3, a,(iy)’ (30)
pz=0

where y =u'/2. The series above is convergent if |u'?| < 2/\/5.
From (30), we have

=y T (=1 s, G1)
ai=3 (T (-1 B a
nz0

where

T((3/2)(p+1)—1) .
(p+ 137 ((p+1)2) if p=0.

P=

Let u, be a real number such that |uy| <4/3, and £,>0 defined by
u(£y)=uy. It is easy to check that if 0 <& < ¢, then 4£2/9<1 and so
( -

1+4£%9)~* can be developped as a power series in &2 Let f(&) be a
bounded function for ¢ > ¢,. Then

J,| expL—du()] f(€) d& =exp(~bua) |~ expll —d(u—uo)] /(6) a2
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If 6 is large enough we can neglect terms of order exp(— du,) in front of
the terms exp(—24/3). Therefore we can use formal developments of the
functions to be integrated in (29). The neglected terms are of order

exp(—44/3).
We define
&= J._OO exp(—éu) u’ du,
where
i ) Ez 172 /9 852 ,
u——3+<1+—3—> (§+-§—)—0(8 )- (32)

The following formula is obtained integrating by parts:

2 o oa 20
g((zq_l)/z)zzl—j(exp(__éu) it 2q+l)/2)+mg((¥2q+“/2). (33)

It is clear that for r= —1, im, o g, = (1/6"*") I'(r +1).
We return to the computation of the integrals of (29). Using (31), we can
write

<1+4—§—2)"d¢=<i‘29uv2+ ) a,.uw—lw) d,
=1

for some coefficients 4;.
Then

1 20\[ «
RC(A1(5))=33XP(_?>|:'2_Og—1/2+ Z ljg(2j~l)/2:|

izt

1 26\[1 /m\ '~ A 2 +1
e 5“"(‘?)[5(5) +j§15(2j:1,/2r( > )]‘ (4

In a similar way, we get

Re(A4,(g)) = —% exp (—%g)[exp( —6a) 12

23 _
_<5+Z§)g—1/2+ ) i,—g(z,»_”/z], (35)

J=z1
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where (33) has been used for ¢g=1, and

Re(A4s(e)) = —% exp (—?)[; exp(—ou) a2

4 85 =
_<§6+E§)g‘1/2+ % Ajgtzj—n/z:ls (36)

izl

In (35) and (36), 4,, /fj are suitable coefficients.

Using (32) it is easy to see that the singular terms for e=0 in (35) and
(36) are cancelled by the singular terms appearing in Re(B,(¢)) and
Re(B;(¢)).

Adding Re(A4,(€)) and Re(B.(¢)), we get the following lemma.

LemMa 3. If 6 > 0 is sufficiently large the following expressions hold:
W\ 1 /m\'? A
11(5)—exp(—T)Lz+g<3) +O(é )],
20\[r (6 23 n
I.(8) = i | B Ty jad ~-3/2
%) CXP( 3 )L8+(4+ 192) \/a’LO(‘S )]’

20\[ = 3 1746 85\/m\'?
ror=on(-3) {6 (0+3)+s(3+i)5) +oe )

LEMMA 4. For k=0 and 6> 0 large enough

1(3)=exp <—E3é)[n5[(’“”/”fk(l +O(6 "))+ /6T (1 + 0(5”))],

(37)
where
_[k].1
qg= 517
Ril if k is even, ) o
) - o
RLE ifk is odd, Vi g
NG
with
k+1 _ 1
vk=6.2(k+l)/2(k—2)”’ 'yk=.2._(k+2)___/2_(k_—_l_)_ﬁ’ for k> 1,

and I,=0, T,=1/2.
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In (37), [ ] stands for the integer part.

Proof. The recurrence formula (25) shows that the numbers I, satisfy

7 1 2k—3 .
= . .
k 4(k—3)(k )[k 4+2k 21k¥1, lfklseven, (39)
and
= : j if k is odd (40
' 4(k 3)(1(—1) k_4> 1 180 . )

The initial valBes I, =1/4, I,=1/8, I, =1/16 are given by Lemma 3.
The numbers I, verify (39) if & is odd, and (40) if & is even.
The relations given in (38) are proved easily by induction. |

LeEMMA S. If 6> 0 is large enough, for any k >0 we have
J(0)=0""4+2(k+ 1) 3+ 4(k+ 1)(3k+10) 6+ O(5 ?).
Proof. We have seen that the integrals of A(t) on the curves DC and

CB give exponentially small contributions. Therefore, the dominant terms
of {5 h(1) dr are given in (28). |

7. AN AsyMPTOTIC FORMULA FOR THE FUNCTION D(pg, %g, @)

Using Lemma 4, we get the following expression for the dominant terms
of T m=0;

3 1/2 . "

©) - _ _Po) 7m0y 2oy (2 G

= exp( 3)51““’;1(“ +C')(2> 2052 [(2n)1]*
(41)

p3 pm n+1/2
T""’=(—1)'"«/;e"p(_—3q> LA T

nz=ny
. o i (m, )
. {sm(mczz0 m+2 Z 3k/2
(2)
m, n
+sin{magy + o) 7T é%z——)}, (42)
k=0 Po
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where n,=1if m=1, and n, =0 if m>2, and the ¢ coefficients are defined
by

<6 m, m) = (2tr§ (fzi,tll))”’ )
while for 1 <k <m we have
ENDm, n)= G ’:;)n EZ‘: o {_—t(2m+2n—k+ 1)
m2(2m—2k+1)+(m+2n+1)(2mz+m~k)}’ (44)
m(2m—2k + 1)
1, if k is even,
L= (g)m, if k is odd.

We note that in (41) and (42) terms of the order exp(—spg/3) with s> 1
have been neglected.

In what follows we develop an asymptotic formula which is a good
approximation of D(pg, oy, @) for some values of the parameters e and p,.
We consider p, > 0 sufficiently large. Then, the dominant part of 7", for
mz?2, is given by the terms corresponding to n=0. The rest can be
bounded by a geometric series in p, ‘. Due to Lemma 2, if e=0, then
D(pg, 0y, ) =TV, so the terms corresponding to m=1 become
important when the eccentricity tends to zero.

We are interested in determining values of p, and e such that 7, for
mz1 is well approximated neglecting the terms with k=1 in the finite
sums of (42). Note that [£(m, 0)] < [E{)(m, 0)| for all m>0. Moreover
EP(m,0)=0 if m>0. Therefore for our purpose we can restrict us to
consider the terms with sin(ma, — @), that is,

3

TM ~ —exp <——%9) sin(otg — w)

86 /2 p3
T ~ _re
Irm=-(5) (-5

- Y. sin(me, — w)(2epy)”

27)'72
&, (45a)

1 Q2m+ D! 2m—1N
271 2m + )1 2m = 2)!!

mz2
m W(m, £i)(m, 0) '
Z 3k/2 ’ (45b)

where the dominant terms of ¢{*" given in Lemma 2 have been used.
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LEMMA 6. Let 6 be a positive number sufficiently small. For any integer
my= 1, if po=mge” " where e=¢e;:= {(1/2)[log(1 +6/3)]%} ">, one has

£i(m, 0)

m

N 46)
Proof. For k=1, from (44), we have
00 = G 5 (i T B
where
[Bo il = Im(2m —k + 1)(2m — 2k + 1)
+m?(2m =2k + 1)+ (m+ D)(2m* + m—k))
<8m*+3m*+m. (47)

If k is even then (2m— 1)!/(2m—k+ 1)!' < (2m)**~', and for k odd,
Cm— DY 2m—k+ )N < ((2m)* ™ Y)((r/2)m))%. Using (2m—k—1)Y/
(2m — 2k + 1)1 < (2m)*~ Y/(2m — k), we have

£ (m, 0)

Bm,kzk/z - 2m3k/2

p37E(m, 0)

< :
(2m—k)m*p3?k!

From (47), we get |B,, ./(m*(2m —k))| <12, for all m > 1. Then

£k (m, 0)

m
3%/2

L S e m, 0)

k=1 Po

o 2 3\ k72 1
<3 Z <_m3_) —
k=1 \ Po k!

(27

< 3[exp((26)"?) ~ 1],

where the last equality holds if po=me~'. §

LeMMA 7. Let p, be a positive number large enough. Then

m

)

k=1 P

i (m, 0)
3k/2
0

2%Mm

(m=2)1" (48)

n 1/2
<6(=
6<2)

Proof. Using 2m—k+ 1)!'>m™%+22(m 2, for 1 <k<m, and

(47) we get from (45) that

E8(m, 0)
P

m

)

k=1

2

oy 1/2
<6 (‘) ey T M o

22m m m3k/2

(49)
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If m<p,, we have

i m3k/2 < (m>3/2<
T sm|— m
3k/2 =
k=1p0/k! Po

and (48) holds in that case.

We consider now m> p,.

We define y, := (m/po)**”* (1/k!). Let n be a natural number 1 <np<m
such that y, > y,, for all 1 <k<m. Then

m 3n/2 1
pe<m (ﬂ> (50)

k=1 n!

It is easy to see that 5> (m/py)*”.
Let us assume 5 < m. Using m~™"2 < 1 and the Stirling formula, we get
from (49) and (50)

= £{(m, 0) 2 ¢

<3 m
k=1 p(3)k/2 (m—2)11 (‘/po

where the last inequality holds for p,> 2. We recall that here é=exp(1).

Then, (48) follows because 1 < (27)'/2
In the case that # > m, it is obvious that

m m 3m/2 1
Z ‘))k Sm <—> ml’
k=1

m!

_m_
(m—2)1

n
) <32

The Stirling formula gives

iéi"(m,0)<3 m'? <i§_)'"

P 7T m=2)11\p3?

k=1

and we get (48) by taking p, sufficiently large. |

LEMMA 8. Let & be a positive number small enough and ¢ < g5 as defined
in Lemma 6. For a fixed value r >0, let my(r) > 0 be an integer number such
that

2%mm

7.[1/2
5) 2,

m = mo(r)

where
g - 1 Cm+1)1 2m—1)!
7T Qm+ A (2m—2)1

(51)
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Then, for any real value po> my(r)/e, we have

((m, 0
Y. B, sin(mo, — w) Z 3! :,32 )
mz2
= Y "B, sin(may—w) £ (m, 0)(1 4+ 1,,) +7, (52)

mz2
where |n,,| <6 for all m=2, and |y| <e.
Proof. We define

0, if mz=my(r),
=4 & _&0(m,0)

——— if )
R pok/zf(”(m 0y it m<me(r)

The left-hand side of (52) can be written as
m é(lJ

Y sin(may— ) B0 +n,)+ Y sin(mag—w) B, Y, 2.

mz2 mz=mg(r) k=lp0

Using Lemma 7, the second summation is less than & Otherwise, for a
fixed value of r, my(r) is a fixed integer and then Lemma 6 can be applied
to obtain |,,| <d. |

It is easy to see that the maximum term of the series ¥, 5, r"f, 5" is
obtained for some m in the interval determined by [r—1] and [r—1]+1,
where [ ] means the integer part.

We note that, if r and p, are in the hypotheses of Lemma 8, for some
& and ¢ sufficiently small, and if the eccentricity is defined by r/(2p,), then
we can approximate ¥,.., T by taking the terms with k=0 in (45b);
that is,

3
1
—exp (—%) (2rpy)'? {—— sin(ay— ) + 8ép,

16
" (2m 4 3)!
R o

3
— —exp (—%) (1) Im {exp( (0 — )

2 16 o z" 2m+3)
[16 +ep°ﬁ 2 E’!(2m+6)!!]}

mz1

= —exp<ﬂ£—o>(np0> Im{ﬁ(e, Po> aO’w)}a

where z = r exp(ia,).
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Let M(5/2,4;z) be the confluent hypergeometric function defined by

(see [A.S])
5 2 2m+ 3
24z)=1 Zmror
M(2’4’Z> 6m>0m!(2m+6)!!

It is easy to see that

Im{D(e, po, %y, w)} =Im {exp(i(ao— w)) [é +ép, (M (%, 4; z) - 1)]}

We recall that if the eccentricity e is zero, then M(5/2, 4; z) =1, and then
the zeros of Im{D(0, py, %y, )} are given by w = a,+ kn, k € Z. Further-
more, by using C=2p,, the result coincides with [L1.S] after the
correction made at the beginning of Section 6 (and it agrees quite well with
the numerical results given in the same reference for values of C larger
than 5). However, if we fix e, and we take p, sufficiently large, then the
term corresponding to M(5/2, 4; z} becomes important.

The following asymptotic formula for |z] large is well known (see [A.S])

M(%, 4; z)=\1/—2;exp (i% ni) 2721 4+ 0(jz| "))
+—};exp(z) 2721+ 0(12) 1),

where the sign +(—) is taken for —n/2 <oy <7n/2 (n/2 <oy < 37/2).
The expression above allows us to get an asymptotic expression for
Im{D(e, po, 2o, @)} which can be written as

~ 1
Im{D(e, py, 2y, @)} = cos(ag— w) (g +e—Pobl) —sin(ay — w) epoay, (53)
where

12 5 5
a,(po, a0)=—\/—; r= 32 Sin(—zaoi-zﬁ>

8 . . 3
+ r 32 exp(r cos &) sin (r sin og — 5 “o),
n

12 5 5
bl(Po,ao)=—1+_r*5/2cos(——aoil>
T 2 2

8 3
+—\/—;r‘3’2 exp(r cos o) cos (r sin 0‘0"5%): (54)
n

and we recall that here r = 2¢p, should be large enough.
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8. NuMERICAL RESULTS CONCERNING HETEROCLINIC ORBITS

The zeros of D(pg, g, @) can be computed numerically using the
expression of the function D(p,, ay, @) given in (27).

Given a value of p,, we take §=p;/2. The integrals 1,(8), i>4 are
obtained from the recurrent formula (25) once 1(8), 1,(8), I5(3), and I5(J)
are known. Note that for i=0, 1, 2, 3, 1,(8) can be computed by numerical
integration on the real axis only for small values of 4, due to the factor
exp(—26/3) given by Lemma 3. The method we have used to compute
them is to perform a numerical integration along the path defined in
section 6. More precisely, we compute numerically the integrals appearing
in (29) and we add to them the dominant terms of exp(26/3) Re(B,), i=
1,2,3. In that way we skip the exponencial factor. A good agreement
between the results given by the two methods is obtained for small values
of & (which allows to compute the integrals on the real axis without
numerical problems).

For fixed values of e and p,, two curves of zeros, w=w(x,) and
w = w(ax,) + n are obtained. We represent them on a torus parametrized by
oy and w. Due to the symmetry of the function D(p,, ,, @) it is sufficient
to compute w = w(a,) for aye [0, n]. Figures 4, 5, and 6 show that curves
for some values of ¢ and p,, for aye [0, n] and wy€ [0, 27].

We remark that, if e =0, the dominant term of D(p,, o, @) is given by
(45a), so, for large values of p,, the zero curves are well approximated by
w=ua, and w=oa,+ 7. In that case, for a fixed value of p,, only two
heteroclinic orbits exist. In these way we recover the results obtained for
the circular case in [L1.S].

Qg

FIG. 4. po=2023, e=0.
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We observe that if we fix a value of p, and increase ¢, some bifurcations
appear which change the winding number of the zero curves. That occurs
for values of p, and e such that the curves w=w(a,) and w =w(ay)+ =
coincide at some point (af, w*) where the slope of curves becomes
unbounded.

In order to compute these bifurcations we must solve the system of
nonlinear equations

D=0,
D,=0, (55)
D, =0,

@

where D, and D, mean the partial derivatives with respect to o, and w,
respectively.

We recall that D is a function of the variables (p,, o, @) once the eccen-
tricity e has been fixed. So, if we take e as an additional parameter, we get
some curves in the plane (pg, e) as solutions of (55). Using a continuation
method, we have computed these bifurcation curves. Three of them are
shown in Figs. 7, 8, and 9. We not that the scale in Fig. 7 is different from
the ones in Figs. 8 and 9.

As an example points (p,, e) = (10.031842, 0.000887), (po,e) =
(10.058603), 0.396653) and (pg, )= (10.047798, 0.749382) belong to the
curves of Figs. 7, 8, and 9, respectively.

Finally, we present the results obtained using the approximation given
by (53). Figures 10 and 11 shows the curves of zeros of function
Im{D(e, po, %y, @)} for some values of e and p, that can be compared with
Figs. 6b and 6¢. Figure 12 displays the bifurcation curves corresponding to
Im{D}.

505/111,2-9
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Po

0 30
FIGURE 9

We recall that the asymptotic formula has only meaning for large values
of r=2ep,. However, if r is large enough, we can approximate

Im{D} ~ép,{cos w(b, sin ay+ a, cos ap) + sin w(—b, oS ay+ a; sin &) },

where a,, and b, are given in (54), and so the bifurcation curves in the
plane (p,, e) are hyperbolas.

Pl [o 7

Fi. 10. po=10, e=0.39.
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Fig. 11. py=10, e=043.

FIGURE 12

8

-Po
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9. ON THE HoMocLINIC ORBITS

In a similar way as that for 4x,, from (20b) and (20c) if we neglect the
exponential terms we can write «,,, and p,. as

-y ¥ (po)m”"i t""’[B +Y (B, +B_S)]

mz1 n>=m i=0 520
where
2n 2n02n0
A% = (0) . 0
nglé (Po) [ 2n+1 L2 s1(0)
210 , 20,0 2 2 g
x Y (¢4 ™% sinsw-—|(1+0 ,
>0 500 sPo
E _Cm+2nm CcOoS Mo 3‘] 'y(’")
° °12mm+2n+j+1)°"
2Am+2n+ )1, .,
- mh T (0
m+2n+j+1 én m+2n+j( )
) ‘m)m+2n+j+2 j (m) }
+ sin mdo l:f" 2(m+2n +j) é
and

2\ . —
B, ,=crtm (;g) sin(mo, F sw)

e (=5 G- ()=o)}

In a similar way,

m+2n m
[z 5 wm’(—%) S (" (By— ¥ (B.,+B_Sn}
0

m=1 nz2n Jj=0 520

where

m n,m j i
Bo=cg "’ [COS " dm(m + 2 = 1) ma"l”‘”"”(o)]’

2 2
B, =(?> T cos(may T sw)
0

. 2 2 2
x[iiz(m+2n+j+1)—5+o(~—3) ]
m 5P

$Po

and n,=1if m=1, and n; =0 for m=2.
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Therefore, for a fixed value e, if p, is large enough we have that

113 9n  45n
ab_w=—[—n+e (—SE-T{cos2a0+805m 2a0)+0(e3))

1 /-1 1
+—2( ;ne €0s o, + S0e sin a0+0(e3)> +0 (;3)], (56)
0

1 {75 15
Pbow = —-e—3 {Se cos 20y +—5 [(—+-— e’ + O(e“)) cos a,
' poL\2 8

+<%§+gze + O( 5))smozo:l ( )}

where O(e”) are functions depending on a4 and w.

In order to have homoclinic points for small values of 4 we must solve
Dy(po, g, @) :=ay . (Po, %o, @) + %y o (Po, 21—y, —w)=0. Taking into
account (56), D,(pg, o, @) = py *(37/2) #0. Therefore, for a fixed value e
sufficiently small, if x4 is small enough and p, large enough, there are not
homoclinic points at the first intersection, in the sense that the third body
escapes to infinity for positive and negative time without crossing the
section {y=0}.

10. PrROOF OF THE MAIN RESULTS

Proof of Theorem A. We proved in Section 5 that the only integrals
that contribute to function D(p,, %, @) are [,(sé) and M, (sd) for k=2
and s> 0. In Section 6, it is shown that these integrals are exponentially
small in py. This proves the first part of the theorem.

The asymptotic expression for D(pg, o, @) is given in Section 7 where
the formula (53) is obtained.

The last part of the theorem follows from the expression of the limit
parameters (p.., %) and (g, d.,) given in Section 4 and (56). ||

Proof of Theorem B. 1In order to determine when the implicit function
theorem does not apply, we must look for the points (p,, a,, @) such that

D(p(]’ aO’ (l)) =Oa

5D(p0, %o, (,U)
Jw
We have seen that for a fixed value of e > 0 sufficiently small and p, large
enough, the zeros of D(pg, oy, w) are well approximated by the ones of
Im{D(e, po, %5, w)}. In the same way, we can approximate the zeros of
dD/dw by the ones of Re{D(e, py, 2y, w)}.

=0
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We consider the system of equations
Im D = cos(ag — ) épya, + sin(oy — w)(3 +épob,) =0, 7
Re D = cos(xg— w)(% + &pob,) — sin(o — @) épea, =0,

where a,(pq, %), bi(pyo, 4o) are given in (54). System (57) has a solution
for cos(a, — w), sin(ap, — ) if and only if

a,(po, %) =0,

. (58)
bl(p09 a0)+m=0
Let (pg, o) be such that a,(pe, 2,) =0 and
. . 3
sin (r sin @y — 3 ao) =0, (59)
where we recall that r =2ep,. Then

. 5 S5n

sm(—i aoi—z——)=0. (60)

There is a discret set 2 of values (pq, a,) which satisfy (59) and (60) that
can be written as

P= {(po, %) | @0 € {m/S, 3n/5, Tn/5, 9n/5 ),

1 3
= = k .
o= 2esin ag (2a0+ n),kel}

It is easy to check that if (pq, @) € 2, then b (py, ay) + (1/82p,) # 0.
Therefore, for any (p,, %) solution of (58) we have

_ 3sin(—(5/2) ao £ (57/2))
2 sin(r sin oy~ (3/2) ag)

r exp(r cos ay) = (61)

By substituting the left-hand side of the equation above in the second
equation of (58), we have

2 ./ sn U oo [ 3
—sin(rsinog+ag+t—=—|—{1—=c—]r"*sin({rsina,—=a,|=0.
\/,; 2 8ép, 2

(62)
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Note that the first term above is bounded, so Eq. (62) holds for large
values of r if and only if

3
rsina0—§a0=v+k1c, keZ (63)

for some small value v. However sinoag#0 for the solutions of (58),
because if sin ¢, =0 then (59) or (60) holds, but there is not any value of
po such that a,(p,, 2o) =0. So we can assume that sin «, is different from
zero and then from (63) we have for ke Z, |k| large enough

_ kn (1+v+(3/2)a0>= kn

r=- :
sin a, krn sin o

(1+0)), (64)

where O,(0,) stands for terms of order 1/lkr| (1/|k=n|").
Introducing the parameter v in (62), we have

12 5 1
tanv=F—=r "2 cos = a,

JT 277 (1= (1/(82po)) F (12/3/m) r~ 52 sin (5/2) o)
Using (64), we get

_ 12 5 (sinao
v=F —=cos-dg| ——
kn

\/7_! 2

Then sin(r sin ay— (3/2) ap) =(—1)*sinv=(—1)* (1(12/\/;)) cos((5/2)
o )((sin o )/(kn))*? (1 4+ 0,) and using (64) we get from (61)

exp[ kn (1+0,)]=—‘/j —1)*(.k"

tan o, 8 sin oty

572
) (1+0)). (65)

32
) (1+0)). (66)

Therefore, kK must be an even integer, positive for a, e (0, n) and negative
for age (m, 2m). Let us consider values of k as before with |k| large enough.
It is easy to see that for any k, there exist two solutions of (66),
corresponding to «y=n/2 —e¢ and a, = 37/2 + ¢ where £ >0 is a small quan-
tity that can be computed from (66). As a first approximation we get

£ ~ arctan {—1— In (—\é—;(kn)m)},

kn

and using (64), r~3n/4+kn or equivalently p,~ (1/2¢)(3n/4 + kn).
However, a bifurcation point (p,, 24, @) satisfies also that dD/dax, =0, that
is,

G,
cos(og — ) %1 + sin{og — @) Ea—l= 0.
0 0
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Some computations show that
tan(ay, — )

_ —(15/2) cos y, sin y, —sin ¥,[ 3r cos(y, +a) — (9/2) cos y, ]
sin y,[3 sin y, + 37 sin(y, + «)]

(67)

where v, = —(5/2) 2o + (57/2) and y, =r sin a5 — (3/2) a,.
Using the following approximation, cosy,=>~1, cos(y,+a)~¢ and
neglecting the terms in sin y, = v = O(1/|kxn|*?), we have

—(9/2)+3rsine
- - — Q.
3siny,+ 3rsin(y,+a) —®

tan(og — w) >~

Then, for any value, aq=7n/2 —¢& or ay=3n/2 + ¢, taking r(a,) given in
(64), there exist two values of w which satisfy (67). So if we fix po=p{® for
some k, with |k| large enough, there are four bifurcation points located
near the following ones

( ,_<M (23_" zz) (3_”§zz_|
%, W)=\ 5 ) 2 ) 2°2) 272 )

We remark that for the bifurcation curves computed in Fig. 12 the values
of r are 8.5405, 14.8915, and 21.2120, respectively. The corresponding
values using the expression (3n/4)+ kn given in the proof of Theorem B
gives the values 8.6394, 149225 and 21.2018 for k=2, 4 and 6,
respectively.

Proof of the Corollary. Given some values a € [0,2n) and p >0
large enough, we must show that there exist values of p,, «,, and w such
that

D(py, ap, @)+ 0, =0,
_cxoo+a0—n+ﬂ“boo(p0’ %o, (‘))+02=0’ (68)
—Po + Po+ UPs(Po, %o, @)+ 0, =0.

We recall that the first equation ensures that the initial conditions given
by p,, &, and @ correspond to a heteroclinic orbit. The second and third
equations are setting to demand that the heteroclinic orbit belongs to
W (p.,a,.) (see Section 4).

We have seen in the proof of Theorem B that on the points (p,, 24, @)
such that D(p,, oy, @)=0, dD/dw #0 except for a discrete set of points.
Then, for almost all values of p,, the implicit function theorem can be
applied to (68). The transversality of the invariant manifolds is also a
consequence of that.
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The relations between the limiting parameters (p.., %) and (P, d)
for positive and negative time follows from the estimates given by
Theorem B. |

11. CONCLUSIONS

We have seen that if e =0 in order to have a heteroclinic orbit, the three
bodies must be on a line.

Let ¢, a fixed value of eccentricity sufficiently small. If we increase p,, we
see from the bifurcation diagram of Fig. 12 that the line e = ¢, intersects the
bifurcation curves in a sequence {p{*’},., such that lim,_ , p{* = co.
Going from p§” to p**? for some i>1, some quantitative change
appears. More precisely, if we fix the pericenter passage of the primaries,
w, two new directions, a,, for a heteroclinic orbit appear as can be seen in
Fig. 6. Theorem B predicts this behaviour for p, sufficiently large. In this
case we have an asymptotic formula to compute p{?). These values show a
good agreement with the ones computed numerically using the complete
series even for values of p, not very large.

In the circular case, numerical computations show in [L1.S] that
increasing y, four heteroclinic orbits appear. Of course, in the elliptic case,
for large values of y, the behaviour can change from the one given by the
asymptotic formula; that is, either new heteroclinic orbit can appear or
some of them can be destroyed. We remark that to see which is the
situation in this case, we must compute numerically the intersection of the
stable manifold of the infinity, which has dimension 4, with the section
{y=0}. This gives a three-dimensional object. To obtain the intersection
of this object with its symmetrical, that is, the unstable manifold, could be
a difficult task.

We define the map

(G Poo) = (Goos ooy

where (d.,, p.,) are given in the Corollary.

We remark that from any fixed point of T we can ensure the existence
of a homoclinic orbit. For small fixes values of x4 and e, and large values
of p,, the map T does not have fixed points. However, the periodic points
of T will give a chain of heteroclinic orbits which begins and ends at the
same periodic orbit of the infinity. A more detailed study of this map will
give this kind of information.
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