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Abstract

It is shown that the8O(3) gauge field configurations can be completely characterised by certain gauge invariant vector fields.
The singularities of these vector fields describe the topological aspects of the gauge field configurations. The topological (or
monopole) charge is expressed in terms of an Abelian vector potential.
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1. Introduction

In this Letter we develop a formalism to describe
generic topological field patterns of the Yang—Mills

theory. This is done using certain gauge invariant spe-

cial directions (actually orthonormal frames) [1] pro-
vided by the non-Abelian magnetic fields. These are
the analogues of the Ricci principal directions [1] in
general relativity. The singularities of these frames
locate the topological aspects. We illustrate this ex-
plicitly in the case of the 't Hooft—Polyakov mono-
pole [2]. This formalism provides a characterisation
of the 't Hooft—Polyakov monopole using only the
gauge fields, even in the interior. The framework is
in the spirit of the Abelian projection procedure of
't Hooft [3]. The procedure has some connection with
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Ref. [4], but our emphasis is to use only the gauge
fields and not the Higgs.

The topological character of the 't Hooft—Polyakov
monopole [2] is mainly described by the behaviour
of the Higgs fieldp®(x), a =1, 2, 3, at spatial infin-
ity: ¢%(x) ~ x?/r for larger (= +/x%x4). It has been
recognized from the beginning [5] that such a behav-
iour of the Higgs field requires it to be zero at some
point xo in the interior which may be identified with
the ‘centre’ of the 't Hooft—Polyakov monopole. Using
the Higgs field, we can construct the Poincaré—Hopf
current [5]

1 Yaq 2ba ic
ki = Efijkfabcd’ 00”0k p°, (1.1)
where ¢¢ = ¢%/(¢?$?)Y/2 is the normalized Higgs
field. This is divergenceless except at the cenige
whereg¢? is undefined:

diki (x) = 478 (x — x0). (1.2)
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The monopole charge is thereby related to the A gauge invariant characterisation of monopole

topological charge, using only the non-Abelian gauge field is as follows:
1 consider a 3 3, real, symmetric matrix
- = 3, 9.k
M= o /d x 0;k; (x) Sij (x) = B¢ (x) B (x) (2.1)

1 ; 13 which is gauge invariant. Consider the eigenvalue
=E?§ds ki (x), (1.3) equation
S Sii(x)cA(x) =aA A =172 2.2
ij (¢ () =2"(x)¢" (x), A=123. (2.2)

Here there is no summation ovar Sinces;; is sym-
metric, the normalised eigenvectqu.é(x) provide an
orthonormal frame at each i.e.,

where the surface integration can be carried over any
surfaceS enclosing the centre. This counts the number
of times the normalized Higgs field covers the unit
sphere in the isospace when we cover the surface
once. In this way the Poincaré—Hopf index of the ;If“(x)giB(x) —§AB (2.3)
isolated zero of the Higgs field gives the topological
character of the 't Hooft—Polyakov monopole.

The 't Hooft—-Polyakov monopole may also be
described by gauge field using the 't Hooft Abelian
magnetic field [2]

This frame is invariant under the local gauge transfor-
mations. The topological aspects of the monopole con-
figuration can be related to the singularities of these
three vector fields;/‘ (x),A=1,2,3. To be specific,
one of these, sag?, will appear to be diverging from

bi — Ja B 1 3938 Dude 14 the centre of the monopole. Thus here we have three

i=¢"B; + 26’11‘6‘”’6‘15 j®" D" (1.4) orthonormal vectors to characterise the topological as-
“ . 1 b acs pects completely in contrast with one unit vector used

where B’ = ;jx(9; A} — 2€abeAjAL) 1S the NON- " in the Faddeev-Niemi ansatz [7].

Abelian magnetic field an®; ¢¢ = 3;¢* — eapc AP ¢° It is to be noted that the set*(x) and ¢(x)

is the covariant derivative of the (normalized) Higgs together provide the complete gauge invariant infor-

field. We have mation about the non-Abelian gauge potentigl.

Clearly A? (or B{') have nine degrees of freedom at
bi =€jjidjar + ki, (1.5)  eachx, of which three are gauge degrees. The six

gauge invariant degrees can be now described by the
three fieldsi“(x) and the 3x 3 orthogonal matrix
Cx)ia = ;l.A(x) (this matrix has three degrees of
freedom, e.g., the Euler angles).

Instead of using the eigenvectors 6f; which
is quadratic in non-Abelian magnetic field, we may
construct the framef‘ as follows. The 3x 3 matrix
(B)ia = B can be made symmetric at eaghby

. o an appropriate local gauge transformation. This is
It is to be noted that the above characterisation Us- pacause any real matrix can be expresseds-
l

ing th_e nor_1—AbeIian gauge potentia!, nec_essarily Uses (50);,, where S is a real symmetric matrix (not
the Higgs field also. In the asymptotic regiony> oo, to be confused withs;;) and O is an orthogonal
generalised Stokes’ theorem can be used to charac-patrix. Here.O can be removed by the local gauge
tgrise the monopole using only the non—Abe!ian gauge transformationB? — OabB,-b- In this special gauge,
field [6]. But this approach does not work in the in- S;; = (B2);;, and sa:'s are the eigenfunctions dfe.
terior region. A topological characterisation of mono- tet anojtﬁer way of constructing the frameélis
pole using only gauge field everywhere including the as follows. By an appropriate local gauge tlransfor-

interior has been realised recently [1]. mation, we may make the three columns of the ma-
trix B mutually orthogonal (but not normalised). Af-
1 see Section 5.8 of Ref. [6] and references therein. ter normalisation, these columns give the framlés

wherea; = qS“A?. The magnetic chargéb; comes
entirely from the topological charge defined above:
3ib; (x) = 48® (x — x0).

2. Topological characterisation using only gauge
fields
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The reason is that ang;’ = (01TA02),-,1, where 01 are themselves not singular at the origin. This provides
and O» are orthogonal matrices andl is a diagonal a way to define centres of the monopoles (and other
matrix. By gauging away),, we getB;’ = (OlTA)m topological objects) for an arbitrary Yang—Mills field

(which has mutually orthogonal columns). Substitu- configuration.
tion into (2.1) then shows th&;S0! is diagonal, im-
plying (0]);4 = ¢. By normalizing the columns of
OlTA, one obtains precisely this matr{XlT. 3. Abelian vector potential for Poincar é-Hopf
For the subsequent analysis, we find it more useful current
to consider the symmetric tensor
The eigenvectoga1 has unit topological charge at
the origin. We construct the Poincaré—Hopf current for
which is gauge covariant, instead of the gauge invari- €ach of the three vectogg':
ant tensors;;, and the normalised eigenfunctiog);%:

59 (x) = B (x) BY (x), (2.4)

1
K= Seike 806 el @D
SPEr () =2 (0EA ), A=1,2,3. (2.5) i T 5C 0 9j5h kS,
i i i A
It can readily checked that the eigenvalues are indeedWhere there is no summation ovér Sinced; k" =0
the same for both the tensors, while the eigenfunctions (€xcept perhaps for Dirac dilta function contribution
are relatedB¢¢2 is same ag;* up to a normalisation. due to the singularities of/ (x)) we can express

(For Yang—Mills field configurations, generically the %; @s a curl of a vector potential. We now obtain a
3 x 3 matrix B (x) is invertible [8].) formal expression for this vector potential. Regarding
1

the orthogonal matrixé),4 = &2 as a local gauge

For each ofA = 1,2 and 3,2 which is con- : ,
transformation, we get the corresponding pure gauge

structed from the non-Abelian gauge field, provides X
an isotriplet scalar, like the (normalised) Higgs field Potentialas

of the 't Hooft—Polyakov monopole. We will use these 2 L oapcBa.c

Higgs like fields to characterise the topological aspects @i = 56 §q 0iby - (3.2)
of the non-Abelian gauge fields. We first illustrate this

for 't Hooft—Polyakov monopole for whick® hasthe ~ Using thiso/!, we re-express; in terms ofw/ as
general form 1

kA = Zejipe
S — a(r)8% 4 B(r)x x?, 6 2%

x ePC8;Ef 02 (no summation oven)

ABC

where @ and g are functions of only the radial L
dlstancelr. One of the eigenvectors is the radial _ _El,jkEABwawkC’ (3.3)
vector, &, = x%/r. The other two can be chosen 2

to be any linearly independent combination of the where we have used the fact §gt = 1 in the first step
basis vector®) and ¢ of the spherical coordinate ande48CABDACE — (ADE (ng sum overd) in the
system, and these two are degenerate eigenfunctionsecond. Sinca){‘ is a pure gauge, the corresponding
of $%». This double degeneracy is a consequence non-Abelian magnetic field vanishes, i.e.,
of the spherical symmetry of the 't Hooft—Polyakov
monopole solution. _ o an (ajw? _ }eABcwfwkc) _0. (3.2)

It is important to note that the singularities in 2
the eigenvector fields appear only at points where __ . . )
the eigenvalues become degenerate (because onIyThIS allows us to wntek{‘ as a curl:
at those points, the direction of an eigenvector can A = 9mh (3.5)
be indeterminate) [3]. For example, in the case of @ K% %k: '
't Hooft—Polyakov monopole, the eigenvalues are When monopole and other topological objects are
triply degenerate at the origin. Such a property is present, some&” have singularities at the centres.
necessary because the entries of the maifixor 54° Then, in generalp;k{* will have Dirac delta function
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singularities. For such a situation (3.5) is to be mod-
ified exactly in the same manner as Dirac’s construc-
tion of the vector potential of a monopole:

(3.6)

In this casew{‘ is not strictly a pure gauge, and (3.4)

k* = €;jx9;wft — Dirac string contributions

gets modified to
1
€ijk (8]’6{);(4 — Ee‘“”wfw,f)

= Dirac string contributions 3.7
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Using (3.2), we find the vector potentiad»%4 forthe
't Hooft—Polyakov monopole are

~ coto
Wl =—i — (3.12)
L1
w; =¢i;,
~1
w? = —b; . (3.13)

The potentia}ui1 is to be compared with (appropriately

By this procedure, we have succeeded in describing scaled, vizA — eA) Dirac potential for a monopole

the topological objects of the non-Abelian gauge fields
in an Abelian fashion. The topological features are
contained in the (ordinary) curl of a vector potential
(a){‘) without requiring the non-linear terms. We will
now illustrate these features in the case of 't Hooft—
Polyakov monopole.

The Poincaré—Hopf currents' for the 't Hooft—
Polyakov monopole are as follows. We have already
takens! = £¢. Let us choosé? = §¢ and&3 = ¢°.

On going over to spherical polar coordinates, (3.1)
becomes

1

A
4—6abc$A@%
"r2sing

¢ 90 ¢’
from which, for the 't Hooft—Polyakov monopole, we
get

kA =%

1

(3.8)

1
1 ~
k; =Xir—2,
> . cotd
k,‘ ZXIT,
k=0 (3.9)

Here we note thalti1 is precisely the magnetic field of
a Dirac monopole. The flux over any surface enclosing
the origin is then given by

?gds" ki = 4m.

Note that the magnetic current corresponding te 2,
viz. kl? is also non-zero. However, the corresponding
magnetic charge is zero, i.e.,

?édSi k?=0.

It corresponds to a radial flux from the regipr: O to
the regiorg > 0.

(3.10)

(3.11)

~ eM (1—cos9)
Ai(x) =¢1—W

3.14
4rcr ( )

wheree is the electric charge an¥f is the magnetic
charge. This has the Dirac string along the negative
z-axis. Consider the average of the Dirac potentials
with string along the positive-axis and positive-axis
(obtained from (3.14) by changirlg— = + 6). This
gives the magnetic field of a monopole of Schwinger
chargeM = 4n /e exactly same as thai1 in (3.12).

It can be explicitly checked that, on ignoring the
Dirac string contribution.e;jxd;w; gives precisely
the same Poincaré—Hopf currek‘;‘é, and the same
winding numbers. Thus, the vector potential foe= 2
gives magnetic flux without monopole, while the
vector potential ford = 3 does not give magnetic flux.
Their relevance is elucidated later.

4. ‘Abédlianisation’ of Yang—Mills potential

Consider a gauge transformation using the orthog-
onal matrix (§),a = %}f‘- The transformed potentials
are

1
SeN el vigy
2
= Al + of.

afl =£1 A7 +
(4.1)

Here AiA is the Abelian vector potential of 't Hooft
now constructed using the three Higgs like fieig%
(compares; given just after (1.5)). When monopoles
are present, this gauge transformation is singular due
to singularities ok (see (3.7)). As an explicit exam-
ple we consider the 't Hooft—Polyakov monopole [2]:
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A

= —€aijX:

/1—K(r)
r 9

A4

1

(4.2)

whereK (r) - 0 asr — oo andK (r) =1+ 0(r?) as
r — 0. So we get

Al =0,
- ~1—K(r)
A? =~ :
r
- ~1—-K
i) (4.3)
r

Making use of (3.12) and (3.13), we then obtain

. . cotd
a; = —@ )
r
~ K(r)
a,‘2=¢i ,
r
~ K
3= -5, X0 (4.4)

r

For A = 1 we recover the Dirac potential of a point
monopole (zl? and al-?’ vanish asymptotically) while
the orthogonal transformation provided by rotates
X% into 1-direction. This is similar to the singular
gauge transformation rotating the Higgs fiedd to
the 3-direction in Ref. [5]. However, we obtained this
transformation using only the gauge potential.

The relevance ofi2 anda? is the following. In
an Abelian theory, the energy of the Dirac monopole
would diverge due to the singularity o}‘ at the origin.
Now howevera? and a? also diverge in a specific
way to ensure that the non-linear tereag a?a? in B!
cancel the singular contribution of.

The three new potentialg?!, when regarded as
three Abelian vector potentials, carry all the informa-
tion of the non-Abelian topology. Fof = 1 we have a
Dirac monopole charge, while the= 2, 3 cases have
none.

Note thata? = 4 (A% — &f) whereaf = Seqpe x
gP0;£8. Both A} andaf transform inhomogeneously
as gauge potentials under local gauge transformation.
ThereforeA¢ — &f transforms homogeneously as a
triplet, and its scalar product witl* is invariant. Thus
aiA are gauge invariant under the non-Abelian gauge
transformation acting on the subscriptn (4.1). The
superscriptA provides gauge invariant directions as
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obtained from the eigenfunctions §f;. Instead of the
non-Abelian Wilson loop TP exp(i § dx' A;), we can
consider three Abelian Wilson loops

).

These are gauge invariant (under the non-Abelian
gauge transformation) and carry all topological infor-
mation about the non-Abelian gauge fields.

A

wACl = exp(i % dx' a; (4.5)

C

5. Conclusion

In this Letter, we have shown that the non-Abelian
(S0(3)) gauge field configurations can be completely
characterised by certain gauge invariant vector fields.
The singularities of these vector fields describe the
topological aspects of the gauge field configurations.
Our procedure provides an Abelianisation of the non-
Abelian gauge theory in two ways:

1. The topological (or monopole) charge is charac-
terised by the curl of an Abelian vector potential;

2. The non-Abelian gauge field is transformed to
three ‘gauge invariant’ vector potentials and they
capture the topological aspects when treated as
Abelian vector potentials.

Using this approach, we can obtain the most general
topological field patterns of the Yang—Mills fields. For
example, one finds that the generic configuration has
half the 't Hooft—Polyakov monopole charge. Also
there are vortices of half-integral winding number.
These aspects will be elaborated elsewhere [9].
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