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Abstract

It is shown that theSO(3) gauge field configurations can be completely characterised by certain gauge invariant vecto
The singularities of these vector fields describe the topological aspects of the gauge field configurations. The topolo
monopole) charge is expressed in terms of an Abelian vector potential.
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1. Introduction

In this Letter we develop a formalism to descri
generic topological field patterns of the Yang–Mi
theory. This is done using certain gauge invariant s
cial directions (actually orthonormal frames) [1] pr
vided by the non-Abelian magnetic fields. These
the analogues of the Ricci principal directions [1]
general relativity. The singularities of these fram
locate the topological aspects. We illustrate this
plicitly in the case of the ’t Hooft–Polyakov mono
pole [2]. This formalism provides a characterisat
of the ’t Hooft–Polyakov monopole using only th
gauge fields, even in the interior. The framework
in the spirit of the Abelian projection procedure
’t Hooft [3]. The procedure has some connection w
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Ref. [4], but our emphasis is to use only the gau
fields and not the Higgs.

The topological character of the ’t Hooft–Polyak
monopole [2] is mainly described by the behavio
of the Higgs fieldφa(x), a = 1,2,3, at spatial infin-
ity: φa(x)∼ xa/r for larger (= √

xaxa ). It has been
recognized from the beginning [5] that such a beh
iour of the Higgs field requires it to be zero at som
point x0 in the interior which may be identified wit
the ‘centre’ of the ’t Hooft–Polyakov monopole. Usin
the Higgs field, we can construct the Poincaré–H
current [5]

(1.1)ki = 1

2
εijkεabcφ̂

a∂j φ̂
b∂kφ̂

c,

where φ̂a = φa/(φbφb)1/2 is the normalized Higgs
field. This is divergenceless except at the centrex0
whereφ̂a is undefined:

(1.2)∂iki(x)= 4πδ(3)(x − x0).
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The monopole charge is thereby related to
topological charge,

M = 1

4π

∫
d3x ∂iki(x)

(1.3)= 1

4π

∮
S

dSi ki(x),

where the surface integration can be carried over
surfaceS enclosing the centre. This counts the num
of times the normalized Higgs field covers the u
sphere in the isospace when we cover the surfacS

once. In this way the Poincaré–Hopf index of t
isolated zero of the Higgs field gives the topologi
character of the ’t Hooft–Polyakov monopole.

The ’t Hooft–Polyakov monopole may also b
described by gauge field using the ’t Hooft Abeli
magnetic field [2]

(1.4)bi = φ̂aBa
i + 1

2
εijkεabcφ̂

aDj φ̂
bDkφ̂

c,

where Ba
i = εijk(∂jA

a
k − 1

2εabcA
b
jA

c
k) is the non-

Abelian magnetic field andDiφ̂
a = ∂i φ̂

a − εabcA
b
i φ̂

c

is the covariant derivative of the (normalized) Hig
field. We have

(1.5)bi = εijk∂j ak + ki,

whereai = φ̂aAa
i . The magnetic charge∂ibi comes

entirely from the topological charge defined abo
∂ibi(x)= 4πδ(3)(x − x0).

2. Topological characterisation using only gauge
fields

It is to be noted that the above characterisation
ing the non-Abelian gauge potential, necessarily u
the Higgs field also. In the asymptotic region,r → ∞,
generalised Stokes’ theorem can be used to cha
terise the monopole using only the non-Abelian ga
field [6].1 But this approach does not work in the i
terior region. A topological characterisation of mon
pole using only gauge field everywhere including
interior has been realised recently [1].

1 See Section 5.8 of Ref. [6] and references therein.
A gauge invariant characterisation of monop
using only the non-Abelian gauge field is as follow
consider a 3× 3, real, symmetric matrix

(2.1)Sij (x)= Ba
i (x)B

a
j (x)

which is gauge invariant. Consider the eigenva
equation

(2.2)Sij (x)ζ
A
j (x)= λA(x)ζAi (x), A= 1,2,3.

Here there is no summation overA. SinceSij is sym-
metric, the normalised eigenvectorsζAi (x) provide an
orthonormal frame at eachx, i.e.,

(2.3)ζAi (x)ζ
B
i (x)= δAB.

This frame is invariant under the local gauge trans
mations. The topological aspects of the monopole c
figuration can be related to the singularities of th
three vector fieldsζAi (x),A = 1,2,3. To be specific,
one of these, sayζ 1

i , will appear to be diverging from
the centre of the monopole. Thus here we have th
orthonormal vectors to characterise the topological
pects completely in contrast with one unit vector us
in the Faddeev–Niemi ansatz [7].

It is to be noted that the setλA(x) and ζAi (x)

together provide the complete gauge invariant inf
mation about the non-Abelian gauge potentialAa

i .
ClearlyAa

i (or Ba
i ) have nine degrees of freedom

eachx, of which three are gauge degrees. The
gauge invariant degrees can be now described by
three fieldsλA(x) and the 3× 3 orthogonal matrix
(ζ(x))iA = ζAi (x) (this matrix has three degrees
freedom, e.g., the Euler angles).

Instead of using the eigenvectors ofSij which
is quadratic in non-Abelian magnetic field, we m
construct the frameζAi as follows. The 3× 3 matrix
(B)ia = Ba

i can be made symmetric at eachx by
an appropriate local gauge transformation. This
because any real matrix can be expressed asBa

i =
(SO)ia , where S is a real symmetric matrix (no
to be confused withSij ) and O is an orthogona
matrix. Here,O can be removed by the local gau
transformationBa

i → OabB
b
i . In this special gauge

Sij = (B2)ij , and soζ ’s are the eigenfunctions ofBa
i .

Yet another way of constructing the framesζAi is
as follows. By an appropriate local gauge transf
mation, we may make the three columns of the m
trix Ba

i mutually orthogonal (but not normalised). A
ter normalisation, these columns give the framesζAi .
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The reason is that anyBa
i = (OT

1 ΛO2)ia , whereO1
andO2 are orthogonal matrices andΛ is a diagonal
matrix. By gauging awayO2, we getBa

i = (OT
1 Λ)ia

(which has mutually orthogonal columns). Substi
tion into (2.1) then shows thatO1SOT

1 is diagonal, im-
plying (OT

1 )iA = ζAi . By normalizing the columns o
OT

1 Λ, one obtains precisely this matrixOT
1 .

For the subsequent analysis, we find it more us
to consider the symmetric tensor

(2.4)Sab(x)= Ba
i (x)B

b
i (x),

which is gauge covariant, instead of the gauge inv
ant tensorSij , and the normalised eigenfunctionsξAa :

(2.5)Sab(x)ξAb (x)= λA(x)ξAa (x), A= 1,2,3.

It can readily checked that the eigenvalues are ind
the same for both the tensors, while the eigenfunct
are related:Ba

i ξ
A
a is same asζAi up to a normalisation

(For Yang–Mills field configurations, generically th
3× 3 matrix Bai (x) is invertible [8].)

For each ofA = 1,2 and 3,ξAa which is con-
structed from the non-Abelian gauge field, provid
an isotriplet scalar, like the (normalised) Higgs fie
of the ’t Hooft–Polyakov monopole. We will use the
Higgs like fields to characterise the topological aspe
of the non-Abelian gauge fields. We first illustrate th
for ’t Hooft–Polyakov monopole for whichSab has the
general form

(2.6)Sab = α(r)δab + β(r)xaxb,

where α and β are functions of only the radia
distance r. One of the eigenvectors is the rad
vector, ξ1

a = xa/r. The other two can be chose
to be any linearly independent combination of t
basis vectorsθ̂ and φ̂ of the spherical coordinat
system, and these two are degenerate eigenfunc
of Sab. This double degeneracy is a conseque
of the spherical symmetry of the ’t Hooft–Polyak
monopole solution.

It is important to note that the singularities
the eigenvector fields appear only at points wh
the eigenvalues become degenerate (because
at those points, the direction of an eigenvector
be indeterminate) [3]. For example, in the case
’t Hooft–Polyakov monopole, the eigenvalues a
triply degenerate at the origin. Such a property
necessary because the entries of the matrixBa

i or Sab
s

y

are themselves not singular at the origin. This provi
a way to define centres of the monopoles (and o
topological objects) for an arbitrary Yang–Mills fie
configuration.

3. Abelian vector potential for Poincaré–Hopf
current

The eigenvectorξ1
a has unit topological charge a

the origin. We construct the Poincaré–Hopf current
each of the three vectorsξAa :

(3.1)kAi = 1

2
εijkε

abcξAa ∂j ξ
A
b ∂kξ

A
c ,

where there is no summation overA. Since∂ikAi = 0
(except perhaps for Dirac delta function contributi
due to the singularities ofξAa (x)) we can expres
kAi as a curl of a vector potential. We now obtain
formal expression for this vector potential. Regard
the orthogonal matrix(ξ)aA = ξAa as a local gauge
transformation, we get the corresponding pure ga
potential as

(3.2)ωAi = 1

2
εABCξBa ∂iξ

C
a .

Using thisωAi , we re-expresskAi in terms ofωAi as

kAi = 1

2
εijkε

ABC

× ξBb ξ
C
c ∂j ξ

A
b ∂kξ

A
c (no summation overA)

(3.3)= 1

2
εijkε

ABCωBj ω
C
k ,

where we have used the fact detξaA = 1 in the first step
andεABCεABDεACE = εADE (no sum overA) in the
second. SinceωAi is a pure gauge, the correspondi
non-Abelian magnetic field vanishes, i.e.,

(3.4)εijk

(
∂jω

A
k − 1

2
εABCωBj ω

C
k

)
= 0.

This allows us to writekAi as a curl:

(3.5)kAi = εijk∂jω
A
k .

When monopole and other topological objects
present, someξAa have singularities at the centre
Then, in general,∂ikAi will have Dirac delta function
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singularities. For such a situation (3.5) is to be m
ified exactly in the same manner as Dirac’s constr
tion of the vector potential of a monopole:

(3.6)kAi = εijk∂jω
A
k − Dirac string contributions.

In this case,ωAi is not strictly a pure gauge, and (3.
gets modified to

εijk

(
∂jω

A
k − 1

2
εABCωBj ω

C
k

)
(3.7)= Dirac string contributions.

By this procedure, we have succeeded in describ
the topological objects of the non-Abelian gauge fie
in an Abelian fashion. The topological features a
contained in the (ordinary) curl of a vector potent
(ωAi ) without requiring the non-linear terms. We w
now illustrate these features in the case of ’t Hoo
Polyakov monopole.

The Poincaré–Hopf currentskAi for the ’t Hooft–
Polyakov monopole are as follows. We have alrea
takenξ1

a = x̂a . Let us chooseξ2
a = θ̂ a and ξ3

a = φ̂a .
On going over to spherical polar coordinates, (3
becomes

(3.8)kAi = x̂i
1

r2 sinθ
εabcξAa

∂ξAb

∂θ

∂ξAc

∂φ
,

from which, for the ’t Hooft–Polyakov monopole, w
get

k1
i = x̂i

1

r2 ,

k2
i = x̂i

cotθ

r2 ,

(3.9)k3
i = 0.

Here we note thatk1
i is precisely the magnetic field o

a Dirac monopole. The flux over any surface enclos
the origin is then given by

(3.10)
∮

dSi k1
i = 4π.

Note that the magnetic current corresponding toA= 2,
viz. k2

i is also non-zero. However, the correspond
magnetic charge is zero, i.e.,

(3.11)
∮

dSi k2
i = 0.

It corresponds to a radial flux from the regionz < 0 to
the regionz > 0.
Using (3.2), we find the vector potentialsωAi for the
’t Hooft–Polyakov monopole are

(3.12)ω1
i = −φ̂i cotθ

r
,

ω2
i = φ̂i

1

r
,

(3.13)ω3
i = −θ̂i 1

r
.

The potentialω1
i is to be compared with (appropriate

scaled, viz.A→ eA) Dirac potential for a monopole

(3.14)Ai(x)= φ̂i
eM

4πr

(1− cosθ)

sinθ
,

wheree is the electric charge andM is the magnetic
charge. This has the Dirac string along the nega
z-axis. Consider the average of the Dirac potent
with string along the positivez-axis and positivez-axis
(obtained from (3.14) by changingθ → π + θ ). This
gives the magnetic field of a monopole of Schwing
chargeM = 4π/e exactly same as theω1

i in (3.12).
It can be explicitly checked that, on ignoring t

Dirac string contribution,εijk∂jωAk gives precisely
the same Poincaré–Hopf currentkAi , and the same
winding numbers. Thus, the vector potential forA= 2
gives magnetic flux without monopole, while th
vector potential forA= 3 does not give magnetic flux
Their relevance is elucidated later.

4. ‘Abelianisation’ of Yang–Mills potential

Consider a gauge transformation using the orth
onal matrix (ξ)aA = ξAa . The transformed potentia
are

aAi = ξAa A
a
i + 1

2
εABCξBa ∂iξ

C
a

(4.1)= ÃA
i +ωAi .

Here ÃA
i is the Abelian vector potential of ’t Hoof

now constructed using the three Higgs like fieldsξAa
(compareai given just after (1.5)). When monopole
are present, this gauge transformation is singular
to singularities ofξAa (see (3.7)). As an explicit exam
ple we consider the ’t Hooft–Polyakov monopole [2
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(4.2)Aa
i = −εaij x̂j 1−K(r)

r
,

whereK(r)→ 0 asr → ∞ andK(r)= 1+O(r2) as
r → 0. So we get

Ã1
i = 0,

Ã2
i = −φ̂i 1−K(r)

r
,

(4.3)Ã3
i = θ̂i

1−K(r)

r
.

Making use of (3.12) and (3.13), we then obtain

a1
i = −φ̂i cotθ

r
,

a2
i = φ̂i

K(r)

r
,

(4.4)a3
i = −θ̂i K(r)

r
.

For A = 1 we recover the Dirac potential of a poi
monopole (a2

i and a3
i vanish asymptotically) while

the orthogonal transformation provided byξAa rotates
x̂a into 1-direction. This is similar to the singula
gauge transformation rotating the Higgs fieldφa to
the 3-direction in Ref. [5]. However, we obtained th
transformation using only the gauge potential.

The relevance ofa2
i and a3

i is the following. In
an Abelian theory, the energy of the Dirac monop
would diverge due to the singularity ofa1

i at the origin.
Now howevera2

i and a3
i also diverge in a specifi

way to ensure that the non-linear termsεijka
2
j a

3
k in B1

i

cancel the singular contribution ofa1
i .

The three new potentialsaAi , when regarded a
three Abelian vector potentials, carry all the inform
tion of the non-Abelian topology. ForA= 1 we have a
Dirac monopole charge, while theA= 2,3 cases have
none.

Note thataAi = ξAa (A
a
i − ω̃ai ) whereω̃ai = 1

2εabc ×
ξBb ∂iξ

B
c . BothAi

a andω̃ai transform inhomogeneous
as gauge potentials under local gauge transforma
ThereforeAa

i − ω̃ai transforms homogeneously as
triplet, and its scalar product withξAa is invariant. Thus
aAi are gauge invariant under the non-Abelian ga
transformation acting on the subscripta in (4.1). The
superscriptA provides gauge invariant directions
obtained from the eigenfunctions ofSij . Instead of the
non-Abelian Wilson loop TrP exp(i

∮
dxi Ai), we can

consider three Abelian Wilson loops

(4.5)WA[C] = exp

(
i

∮
C

dxi aAi

)
.

These are gauge invariant (under the non-Abe
gauge transformation) and carry all topological inf
mation about the non-Abelian gauge fields.

5. Conclusion

In this Letter, we have shown that the non-Abel
(SO(3)) gauge field configurations can be complet
characterised by certain gauge invariant vector fie
The singularities of these vector fields describe
topological aspects of the gauge field configuratio
Our procedure provides an Abelianisation of the n
Abelian gauge theory in two ways:

1. The topological (or monopole) charge is char
terised by the curl of an Abelian vector potentia

2. The non-Abelian gauge field is transformed
three ‘gauge invariant’ vector potentials and th
capture the topological aspects when treated
Abelian vector potentials.

Using this approach, we can obtain the most gen
topological field patterns of the Yang–Mills fields. F
example, one finds that the generic configuration
half the ’t Hooft–Polyakov monopole charge. Als
there are vortices of half-integral winding numb
These aspects will be elaborated elsewhere [9].
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