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Abstract

This paper addresses the analysis of nondelay, nonpreemptive, nonclairvoyant online schedules for independent jobs on m identical
machines. In our online model, all jobs are submitted over time. We show that the commonly used makespan criterion is not well
suited to describe utilization for this online problem. Therefore, we directly address utilization and determine the maximum deviation
from the optimal utilization for the given scheduling problem.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Consider the following problem: George owns m servers and uses them to deliver web services j ∈ �. Due to
performance and security constraints, a server executes only a single service at a time. George gets paid for the time a
web service is occupying a server even if the web service is interactive and the server is partially idle due to a slow user
response. As the individual behaviour is highly dynamic George’s scheduling system does not allow any reservations
but uses a simple first-come-first-serve approach. George observes high average utilization of his servers during core
business hours while there are only few customers at night, that is, most customers are not willing to postpone their
activities to off-business hours but rather switch to another provider if they see that George’s servers are occupied.
Now, George likes to know whether it pays off to install additional servers.

In this example, customers can monitor the availability of servers. They may submit jobs even if all servers are busy.
In this case, the job is queued. But of course, there may be other customers who decide not to submit a job when no idle
server is available. Therefore, George cannot estimate the additional server capacity that is requested by customers.
He can only identify two simple cases: on the one hand, if all servers are always or almost always busy during core
business hours and if there are additional customer requests, George’s revenue can most likely be increased by installing
another server. On the other hand, if at least one server is always idle, George can save maintenance expenses by retiring
a server. However, typically there will be periods where all servers are busy alternating with periods of idle servers
during core business hours. Is such a situation due to missing overall customer demand or due to the inability of the fair
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scheduling method to handle demand peaks caused by an unfortunate arrival sequence of jobs? How much idleness in
the schedule should be tolerated?

Unfortunately, George does not know much about those jobs executed on his servers. Neither the submission time
rj of a job j is announced in advance nor the servers have any knowledge of the remaining processing time of a running
job as this may be at the discretion of the customer. Without any of this information about the jobs, no intelligent
scheduling strategy can be employed. Forcing the customers to provide the processing times pj of their jobs in advance
may be a hassle to most customers and is typically of little help as experiments with users of parallel computers have
shown that those estimates are very unreliable, even for batch jobs [4]. The use of statistic workload models can only
provide some benefits if the dynamics of the process are not too high. In addition, it is expensive to generate those
models and to tailor scheduling algorithms accordingly.

Therefore, George wants to determine first the influence of his simple online scheduling method. To this end, he likes
to compare the achieved utilization of his servers with the utilization that would be produced by an optimal scheduling
algorithm having a perfect oracle. Once he knows the maximum deviation from the optimal utilization, George may
consider using a more complex approach based on a statistical workload model.

Formally, we have a job system � consisting of independent jobs that must be scheduled on m identical machines
without preemption. Each job j ∈ � is characterized by its processing time pj > 0 and its release date rj �0. Further,
a job is not known before it is released (release over time) and its processing time is only determined once the job has
completed (nonclairvoyant scheduling). Contrary to some other online scheduling problems [1], no assignment of a
waiting job to a machine must be made before the machine is actually available. We denote the completion time of
job j in a schedule S by Cj (S). Schedule S is legal if no machine is executing more than a single job at any time, no
job starts before its release date rj , and each job is fully processed without interruption. Therefore, job j starts at time
Cj (S) − pj in schedule S. Due to those conditions, it only makes sense to employ nondelay schedules [7], that is, no
machine is kept idle while a job is waiting for processing.

We have not yet mentioned the evaluation criterion. Together with a brief review of previous related work, this will
be the main subject of the next section. To provide appropriate tools for the evaluation, we then define a basic job
system and a basic nondelay schedule. Then we show that those basic job systems suffice to determine the worst-case
ratio for utilization. Finally, in Section 4, we derive the maximum deviation of any nondelay schedule from the optimal
utilization for a given job system.

2. Makespan and utilization

First, we formally define the utilization within interval [t1, t2) of schedule S by

U[t1,t2)(S, �) = ∑
j∈�

max{0, min{t2, Cj (S)} − max{t1, Cj (S) − pj }},

that is the amount of machine resources used by job system � within this interval. This formal definition agrees with the
intuitive understanding most people have about utilization. Clearly, jobs that are partially processed within the interval
[t1, t2) only partially contribute to the utilization of the interval. Note that this definition can also be applied in a case
where � is only a subset of all jobs in S. In this case, utilization is restricted to the jobs from this subset which are
processed within the given interval. Without restriction of generality, we assume that the start time of the interval is 0,
that is, for a job system � and its schedule S, we want to maximize the utilization U[0,t∗)(S, �) for a fixed target time t∗.
The optimal utilization of job system � within the interval is denoted by U∗

[0,t∗)(�). Note that there may be jobs j with

rj � t∗ that are processed before time t∗ in a schedule with optimal utilization while they start after time t∗ in schedule
S. Those jobs contribute to U∗

[0,t∗)(�) but not to U[0,t∗)(S, �).

For parallel machines, the makespan criterion Cmax(S) = maxj∈� Cj (S) is usually considered to represent utilization
of a schedule S, see, for instance, Pinedo’s book [7]. Commonly, it is taken for granted that a schedule with a smaller
makespan has a higher utilization. But this relation does not always hold in the case of a target interval. The simple
example of Fig. 1 shows that in the interval [0, 5), a schedule with the optimal makespan may have a worse utilization
than a schedule with a nonoptimal makespan.

Further, it is easy to show that Cmax(S)/C∗
max �2−1/m holds with S being an arbitrary nondelay schedule and C∗

max
denoting the optimal makespan, see Shmoys et al. [9]. This factor is tight. According to this result, George must assume
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Fig. 1. Comparison of Makespan and Utilization for 2 Schedules.

Table 1
Comparison between utilization and makespan for two job systems

U∗[0,m)
(�i )

U[0,m)(Si ,�i )
Cmax(Si )
C∗

max(�i )

i = 1 m2

m2−m+2
< 1 + 1

m
2 − 2

m

i = 2 1 + 1
3 1.5

that the selection process may be responsible for up to 50% idleness. It is one objective of this paper to determine
whether George’s assumption is correct.

Finally, we quantitatively compare the worst case ratio (competitive factor) of the makespan criterion with the
utilization criterion for two job systems �1 and �2 executed on an even number of machines m. All jobs are released
at time 0 and the target time is m. In job system �1, we have m short jobs of processing time 1 and m long jobs of
processing time m − 1. In the nondelay schedule S1, we start m − 1 long jobs at time 0 and execute all short jobs on a
single machine in the interval [0, m). This requires a single long job to start at time m− 1 and to run until time 2m− 2.
In the optimal schedule, all long jobs start at time 0 and all short jobs are executed in parallel in the interval [m−1, m).

In job system �2, there are m2/2 jobs of processing time 1 and m/2 jobs of processing time m. In the nondelay
schedule S2, we execute all short jobs in the interval [0, m/2) using all machines and start all long jobs at time m/2
while in the optimal schedule, all long jobs start at time 0 and all short jobs are processed in the interval [0, m) using
only m/2 machines. Note that in all schedules, all jobs are started in the target time interval [0, m). The results in
Table 1 demonstrate that there is no quantitative relation between both criteria.

Therefore, the makespan criterion may not always be an appropriate criterion to represent utilization in all scheduling
problems.

Nonclairvoyant scheduling has been investigated first by Motwani et al. [5]. It is mainly used in connection with
preemptive scheduling, resource augmentation, see Kalyanasundaram and Pruhs [2], and flow time minimization, see
Kalyanasundaram and Pruhs [3]. Competitive factors have been determined for many online scheduling problems, see
Sgall’s survey [8]. However, we are not aware of any work that is closely related to the problem addressed in this paper.
It may only be worth mentioning Naroska and Schwiegelshohn [6] who showed that the competitive factor 2 − 1/m

also holds for the nonclairvoyant online makespan problem if the jobs are parallel, that is, if a job requires more than
one machine to be concurrently available. But to our knowledge, no theoretical analysis has been provided for the
utilization criterion yet.

3. Basic job systems

We start with some definitions and notations that are used in the later sections. We call an interval [ta, tb) of a schedule
S fully utilized or simply full if all m machines are busy executing jobs at any time instant of this interval. A full interval
is max-full if it is not a true subset of another full interval in this schedule. Note that in any max-full interval [ta, tb) of
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a nondelay schedule, at least one job is released and starts at time ta . For a given schedule S, we define [ta(S), tb(S))

to be the last max-full interval of S. If S has no full interval then we set ta(S) = tb(S) = 0.
Now, we introduce a basic job system. We will later show that the worst-case ratio is produced by such a job

system.

Definition 1. A job system � is called a basic job system if there is a nondelay schedule S for � such that the following
conditions are valid for any max-full interval [ta, tb) of S and a fixed � > 0:
1. Cj (S) − pj > rj + (tb − ta) holds for all jobs j ∈ � with rj < ta < rj + pj .
2. pj �� holds for all Cj (S) − pj ∈ [ta, tb).
3. rj = ta holds for all jobs Cj (S) − pj ∈ [ta, tb].
Schedule S is called a basic nondelay schedule.

Every job of basic job system � with pi �� is called a short job while all other jobs are long jobs. In a basic nondelay
schedule, long jobs are either started at their release dates or immediately after a max-full interval while short jobs are
also started within a max-full interval. Without restriction of generality we can assume that all jobs start in order of
their release dates in a basic nondelay schedule, that is, job j1 does not start after job j2 if rj1 < rj2 holds.

Consider a nondelay schedule in which all long jobs of a basic job system start at their release date. We say that such
a schedule is a utilization schedule of this basic job system.

Property 1 guarantees that such a utilization schedule exists for each basic job system, as shown in the next
corollary.

Corollary 2. In a utilization schedule, at most m − 1 long jobs of a basic job system � can execute concurrently.

Proof. Clearly, at most m − 1 long jobs of � execute concurrently in the corresponding basic nondelay schedule.
Therefore, we only need to consider the situation when long jobs do not start at their release dates in a basic nondelay
schedule, that is, when they start at the end of a max-full interval.

Let [ta, tb) be a max-full interval of the basic nondelay schedule of �. Due to Property 1 of Definition 1, for every
long job j ∈ � with rj < ta < rj + pj , we have Cj (S) > rj + pj + tb − ta > ta + tb − ta = tb. Therefore, those jobs
cannot complete at or before time tb in the basic nondelay schedule. Therefore, at most m − 1 long jobs can execute
concurrently in the utilization schedule at time ta . �

Consider two machines and a time interval [t1, t2) of the basic nondelay schedule, such that only short jobs of the
same release date are executed at those machines within this interval. Due to Property 2 of Definition 1, the makespans
of both machines within this interval differ at most by �.

Property 3 generates the maximum amount of flexibility for the optimal schedule thus increasing the worst case ratio
between the utilization of a schedule and the optimal utilization.

Next, we want to show that any job system �′ with a nondelay schedule S′ can be transformed into a basic job system
� with a basic nondelay schedule S such that we have U∗

[0,t)(�
′)/U[0,t)(S

′, �′)�U∗
[0,t)(�)/U[0,t)(S, �) for all t � t∗. t∗

denoting an arbitrary but fixed target time. Then it is sufficient to only consider basic job systems and basic nondelay
schedules for the purpose of a worst case analysis. To this end, we first discuss a simple modification of a given
job system.

Corollary 3. Let �′ be a job system and S′ be a schedule for �′ on m identical machines. Job system � is generated
from �′ by dividing an arbitrary job j ∈ �′ into two jobs j1 and j2 such that 0 < pj1 < pj , rj1 = rj , pj2 = pj − pj1 ,
and rj2 = rj + pj1 hold. Schedule S is derived from schedule S′ by simply starting job j1 instead of job j and starting
job j2 immediately after the completion of job j1.

Then the inequality U∗
[0,t)(�

′)/U[0,t)(S
′, �′)�U∗

[0,t)(�)/U[0,t)(S, �) holds for all t � t∗.

Proof. Note that the completion time of each job j ′ �= {j, j1, j2} is identical in both schedules S and S′. Further,
the release date rj2 of job j2 does not interfere with scheduling j2 immediately after the completion of j1 if schedule
S′ is legal.

Therefore, Cj1(S) = Cj (S
′) − pj2 and Cj2(S) = Cj (S

′) hold and S is a legal schedule as no job starts before its
release date and no machine is used to execute two jobs at the same time.
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Clearly, we have U[0,t)(S, �) = U[0,t)(S
′, �′) for all t � t∗. U∗

[0,t)(�)�U∗
[0,t)(�

′) holds for all t � t∗ as the splitting of
job j cannot decrease U∗

[0,t)(�
′) for any t � t∗. This leads to

U∗
[0,t)(�

′)
U[0,t)(S′, �′)

�
U∗

[0,t)(�)

U[0,t)(S, �)
for all t � t∗. �

Splitting a job within or at the end of a full interval produces again a nondelay schedule if the original schedule was
already a nondelay schedule.

Now, we transform an arbitrary job system and its nondelay schedule into a basic job system and its basic nondelay
schedule.

Corollary 4. For any job system �′, a nondelay schedule S′, and an arbitrary but fixed � > 0, there is a basic job
system � and a basic nondelay schedule S such that U∗

[0,t)(�
′)/U[0,t)(S

′, �′)�U∗
[0,t)(�)/U[0,t)(S, �) holds for all t � t∗.

Proof. Consider a max-full interval [ta, tb) in schedule S′.

Property 1. We assume a job j ∈ �′ with rj < ta < rj + pj and Cj (S
′) − pj �rj + (tb − ta), that is, Property 1

of Definition 1 is violated by j. Therefore, we have Cj (S
′) − pj − rj + ta � tb. The inequality rj �Cj (S

′) − pj leads
to ta �Cj (S

′) − rj − pj + ta , that is, Cj (S
′) − rj − pj + ta ∈ [ta, tb]. Similarly, we obtain immediately Cj (S

′) >

Cj (S
′) − rj − pj + ta > Cj (S

′) − pj , that is, job j is processed in schedule S′ at time instance Cj (S
′) − rj − pj + ta .

Hence, we split job j in schedule S′ at time Cj (S
′) − rj − pj + ta by using Corollary 3.

Property 2. We repeatedly apply Corollary 3 to all jobs j starting in [ta, tb) with pj > � such that
pj1 �min �, tb − Cj + pj holds.

Property 3. The smallest release date of all jobs starting in interval [ta, tb] is ta as schedule S′ is a nondelay sched-
ule. Therefore, we set the release date of all jobs starting in [ta, tb] to ta . Clearly, the resulting schedule will again
be nondelay.

The same transformations are applied to all other max-full intervals of S′. As each transformation cannot decrease
the ratio U∗

[0,t)(�
′)/U[0,t)(S

′, �′) for any t � t∗, we have U∗
[0,t)(�

′)/U[0,t)(S
′, �′)�U∗

[0,t)(�)/U[0,t)(S, �) for all t � t∗ for

the resulting basic job system � and its basic nondelay schedule S. �

Next assume a decreasing sequence of �i with limi→∞ �i = 0. Then Corollary 4 produces a sequence of basic
job systems �i from a given job system �′. For those basic job systems, we consider the utilization schedules. In the
following corollary, we show that the utilization of those utilization schedules approaches the optimal utilization for
all t � t∗ if i → ∞.

Corollary 5. Let �i be an infinite sequence of basic job systems �i derived from job system �′ such that limi→∞ �i = 0.
For all corresponding utilization schedule Si , limi→∞ U[0,t)(Si, �i ) = U∗

[0,t)(�i ) holds for all t � t∗.

Proof. Only short jobs that start within or at the end of a max-full interval of the utilization schedule can produce a
deviation from the optimal utilization. If schedule Si has k max-full intervals then U[0,t)(Si, �i ) − U∗

[0,t)(�i ) < m · k · �
holds for all t � t∗ due to Property 2 of Definition 1. Therefore, we have limi→∞ U[0,t)(Si, �i ) = lim�→0 U[0,t)(Si, �i ) =
U∗

[0,t)(�i ) for all t � t∗. �

Therefore, we assume a sufficiently small � and say that utilization schedule of a basic job system is an optimal
schedule. As we need only one optimal schedule for our worst case analysis we can ignore all other optimal schedules
for these job systems if they exist. Without restriction of generality we assume that in such an optimal schedule, all
short jobs also start in order of their release dates. But note that in a utilization schedule, a long job with a higher release
date can start before a short job with a lower release date.
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4. Utilization range

This section proves the main result of our paper. Due to the results of the previous section, we only need to analyze
basic job systems with a sufficiently small �, their basic nondelay schedules, and their utilization schedules in order to
determine a worst case deviation. Without mentioning it explicitly, we assume that � is always small enough.

For such a basic job system �, its basic nondelay schedule S and its optimal schedule �, we want to determine the
difference

Dt(S, �) = U∗
[0,t)(�) − U[0,t)(S, �) = U[0,t)(�, �) − U[0,t)(S, �) = U[t,∞)(S, �) − U[t,∞)(�, �)

for each time instant t � t∗. Intuitively, this value describes the machine resources that are not busy executing jobs from
� in schedule S before time t while they are used to process jobs from � before time t in the optimal schedule. From this
definition, we obtain the following relation for t ′ < t :

Dt(S, �) = Dt ′(S, �) + U[t ′,t)(�, �) − U[t ′,t)(S, �). (1)

An upper bound of Dt(S, �) for a basic job system � is given by the following lemma.

Lemma 6. Dt(S, �)� 1
4U∗

[0,t)(�) holds for each basic job system � with a sufficiently small �, its basic nondelay schedule

S, and every time instant 0 < t � t∗.

Proof. We prove this lemma by induction on the number k of different release dates. The lemma trivially holds for
k = 0, that is, if � is empty. Therefore, we assume that it is true for all basic job systems with at most k different release
dates. Then we consider a basic job system � with k + 1 different release dates.

We define the last release date r = max{rj |j ∈ �}, the set of all jobs with the last release date �r = {j ∈ �|rj = r},
and the set of all other jobs �k = {j ∈ �|rj < r} = �\�r . Note that �k is a basic job system with k different release dates
and that every job j ∈ �k starts before time r in the basic nondelay schedule S. Further, we define the time instances
tS = max{r, tb(S)} and t� = max{r, tb(�)}. Schedules � and �k are the utilization schedules for basic job systems � and
�k , respectively, while Sk is the basic nondelay schedule for �k . Schedules � and �k are identical in the time interval
[0, r) as no job j ∈ �r can start before time r in any schedule and all long jobs start at their release dates in both
schedules. Similarly, schedules S and Sk are identical for all jobs in �k . The main part of the proof is divided into three
steps:

Step 1: We show that it is sufficient to determine Dt�(S, �). Due to the last statement of the previous paragraph and
our induction assumption, there is

Dt(S, �) = Dt(S, �k) = Dt(Sk, �k)� 1
4U∗

[0,t)(�k) = 1
4U∗

[0,t)(�) for all t �r.

As no additional jobs are released after time r and S is a nondelay schedule, there are at least as many machines idle
at time t2 as at time t1 in schedule S with r � t1 < t2.

Let [t1, t2) be a subinterval of [r, t�) such that no machine becomes idle in (t1, t2) of schedule S and let the number
of busy machines in [t1, t2) be mt1 . Then we have

U[0,t2)(�, �) = U[0,t1)(�, �) + U[t1,t2)(�, �)

= U[0,t1)(�, �) + m(t2 − t1)

and

Dt2(S, �) = Dt1(S, �) + U[t1,t2)(�, �) − U[t1,t2)(S, �)

= Dt1(S, �) + m(t2 − t1) − mt1(t2 − t1).

This leads to

Dt2(S, �)

U[0,t2)(�, �)
= Dt1(S, �) + (m − mt1)(t2 − t1)

U[0,t1)(�, �) + m(t2 − t1)
.
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Therefore, exactly one of the two following sequences of inequalities is valid:

Dt1(S, �)

U[0,t1)(�, �)
<

Dt2(S, �)

U[0,t2)(�, �)
< 1 − mt1

m

or

Dt1(S, �)

U[0,t1)(�, �)
� Dt2(S, �)

U[0,t2)(�, �)
�1 − mt1

m

As mt1 is decreasing monotonically with growing t1 in the interval [r, t�) this results in

max
t∈[r,t�)

{
Dt(S, �)

U[0,t)(�, �)

}
= max

{
Dr(S, �)

U[0,r)(�, �)
,

Dt�(S, �)

U[0,t�)(�, �)

}
.

Further, we have U[t�,t)(S, �)�U[t�,t)(�, �) with t > t� as no long job can complete earlier in schedule S than in the
optimal schedule � and no job starts at time t� or later in schedule �. This leads to

Dt(S, �) = Dt�(S, �) + U[t�,t)(�, �) − U[t�,t)(S, �)�Dt�(S, �) for all t > t�.

Step 2: We assume tb(�k)�r .
t� � tS immediately leads to Dt�(S, �)/U[0,t�)(�, �)�Dr(S, �)/U[0,r)(�, �). Hence, we assume that t� > tS > 0

holds and have

U[t1,t2)(S, �k) = U[t1,t2)(Sk, �k)�U[t1,t2)(�k, �k) = U[t1,t2)(�, �k) for all r � t1 < t2

as no short job from �k completes after time r in schedules � and �k due to the assumption of this step.
We define

m� = U[t�,∞)(S, �r ) − U[t�,∞)(�, �r )

tS − r
.

For each long job j ∈ �r , its contribution to the term U[t�,∞)(S, �r ) − U[t�,∞)(�, �r ) is upper bounded by tS − r as all
those jobs start at time tS in schedule S and at time r in schedule �, respectively. Therefore, the value m� is at most
the number of long jobs from �r that complete after time t� in schedule S. Hence, at most the machine time product
(t� − tS)(m − m�) can be idle in time interval [r, t�) in schedule S. This results in

m(t� − r) = U[r,t�)(�, �)

= U[r,t�)(�, �k) + U[r,t�)(�, �r )

= U[r,t�)(�, �k) +
∑
j∈�r

pj − U[t�,∞)(�, �r )

and

m(t� − r)�U[r,t�)(S, �k) +
∑
j∈�r

pj − U[t�,∞)(S, �r ) + (t� − tS)(m − m�).

With the definition of m�, this leads to the inequality

U[r,t�)(�, �k) + (tS − r)m� = U[r,t�)(�, �k) + U[t�,∞)(S, �r ) − U[t�,∞)(�, �r )

� U[r,t�)(S, �k) + (t� − tS)(m − m�)

and yields

m� � (t� − tS)m + �

t� − r
(2)

with

� = U[r,t�)(S, �k) − U[r,t�)(�, �k) = Dr(S, �k) − Dt�(S, �k),
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see Eq. (1). Remember that all jobs from �k must start before r in schedules � and S. This produces the following chain
of inequalities:

m(t� − r) > U[r,t�)(S, �k)�U[r,t�)(S, �k) − U[r,t�)(�, �k) = ��0.

From Inequality 2, we obtain

(tS − r)m� � (tS − r)(t� − tS)m + �(tS − r)

t� − r
.

The right-hand side of this inequality becomes maximal for tS = (t� + r)/2 + �/2m. This results in

(tS − r)m� � m(t� − r)

4
+ �

2

(
1 + �

2m(t� − r)

)
= 1

4
U[r,t�)(�, �) + �

2

(
1 + �

2m(t� − r)

)
.

Finally, we obtain

Dt�(S, �) = U[t�,∞)(S, �k) + U[t�,∞)(S, �r ) − U[t�,∞)(�, �k) − U[t�,∞)(�, �r )

= Dt�(S, �k) + U[t�,∞)(S, �r ) − U[t�,∞)(�, �r )

= Dt�(S, �k) + (tS − r)m�

= Dr(S, �k) − � + (tS − r)m� � 1

4
U∗

[0,r)(�) − � + 1

4
U[r,t�)(�, �) + �

2

(
1 + �

2m(t� − r)

)

= 1

4
U∗

[0,t�)(�) − �

2

(
1 − �

2m(t� − r)

)
� 1

4
U∗

[0,t�)(�).

Step 3: Alternatively, we assume tb(�k) > r .
In this step, we transform basic job system � into another basic job system �′ with the basic nondelay schedule S′

such that Dt�(S, �)�Dt�(S
′, �′) and U∗

[0,t�)(�)�U∗
[0,t�)(�

′) hold and �′ either has only k different release dates or the
situation of Step 2 applies to �′. To this end, we distinguish four cases:
1. There is no long job in �r or tS = r holds, that is, all long jobs with release date r start at time r in schedule S. Then

we have Dt�(S, �) = Dt�(S, �k) and U∗
[0,t�)(�)�U∗

[0,t�)(�k) as no short job completes after t� in both schedules S

and �, and Cj (S) = Cj (�) holds for all long jobs j ∈ �r . This leads to

Dt�(S, �)

U∗
[0,t�)(�)

� Dt�(S, �k)

U∗
[0,t�)(�k)

.

2. Cj (S)� t� holds for a long job j ∈ �r . Then job j is split into short jobs with release date r. This transformation results
in job system �′ and schedules S′ and �′ with U[t�,∞)(S

′, �′)�U[t�,∞)(S, �) and U[t�,∞)(�′, �′) = U[t�,∞)(�, �).
Hence, we have

Dt�(S
′, �′)

U∗
[0,t�)(�

′)
� Dt�(S, �)

U∗
[0,t�)(�)

.

3. tS > r holds and there are long jobs j1 ∈ �r with Cj1(S) > t� and j2 ∈ �k with tS �Cj2(S)� t�. Then we create �′
from � by replacing j1 and j2 with jobs j ′

1 and j ′
2 such that rj ′

1
= rj1 = r , pj ′

1
= max{pj2 + rj2 − r, 0}, rj ′

2
= rj2 ,

and pj ′
2

= pj1 + pj2 − pj ′
1

= min{r − rj2 , pj2} + pj1 . Note that there is no job j1 if the transformation leads to
pj1 = 0. Further, the starting times of job j2 in S and job j ′

2 in the new basic nondelay schedule S′ are identical,
that is, we have Cj2(S) − pj2 = Cj ′

2
(S′) − pj ′

2
. Similarly, there is Cj1(S) − pj1 = Cj ′

1
(S′) − pj ′

1
= tS . In the new

optimal schedule �′, we obtain

Cj ′
1
(�′) = rj ′

1
+ pj ′

1
= max

{
Cj2(�), r

}
and

Cj ′
2
(�′) = rj ′

2
+ pj ′

2
= min{r, rj2 + pj2} + pj1 = min{Cj1(�), Cj2(�) + pj1}
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which leads to U[t�,∞)(�′, �′)�U[t�,∞)(�, �) due to Cj2(�)�Cj2(S)� t�. Further remember that tS − r < Cj2(S)−
pj2 − rj2 follows directly from Property 1 of Definition 1. This leads to

Cj ′
2
(S′) = Cj2(S) − pj2 + pj ′

2= Cj2(S) + pj1 + min{r − rj2 − pj2 , 0}� tS + pj1 = Cj1(S)

and

Cj ′
1
(S′) = Cj1(S) − pj1 + pj ′

1= Cj1(S) + pj2 − pj ′
2

= Cj1(S) + Cj2(S) − Cj ′
2
(S′)�Cj2(S).

Therefore, we obtain U[t�,∞)(S
′, �′)�U[t�,∞)(S, �). This results in

Dt�(S
′, �′)

U∗
[0,t�)(�

′)
= 1 − U[0,t�)

(S′, �′)
U∗

[0,t�)(�
′)�1 − U[0,t�)

(S, �)
U∗

[0,t�)(�) = Dt�(S, �)

U∗
[0,t�)(�)

.

4. tS > r holds and there is no long job j ∈ � with tS �Cj (S)� t�. Let mS be the number of machines that are
idle in the interval [tS, t�) of schedule S, and let mr be the number of short jobs from �r that start at time r in
schedule S.
(a) mS �mr : We split every long job j ∈ �r into a long job j ′ with pj ′ = pj − � and an additional short job. Both

jobs have release date r ′ = r + �. Then we increase the release date of all short jobs from �r to r ′ as well.
This results in job system �′, basic nondelay schedule S′ with tS′ = tb(S

′) and utilization schedule �′. Due to
mS �mr , we have tS′ � tS + �, U[t�,∞)(S, �)�U[t�,∞)(S

′, �′), and U[t�,∞)(�, �) = U[t�,∞)(�′, �′). This yields

Dt�(S
′, �′)

U∗
[0,t�)(�

′)
� Dt�(S, �)

U∗
[0,t�)(�)

.

This process is repeated until r ′ = tb(�k) (start situation of Step 2) holds.
(b) mS > mr : We combine every long job from �r with a short job from �r with processing time �. The resulting jobs

all have release date r ′ = r − �. Further, we decrease the release date of all other short jobs from �r to r ′ as well.
This leads toU[t�,∞)(�′, �′) = U[t�,∞)(�, �) for the new utilization schedule�′. Due tomS > mr , tS′ � tS−�holds
for the new basic job system �′ and its basic nondelay schedule S′. This results in U[t�,∞)(S

′, �′)�U[t�,∞)(S, �).
Therefore, we have

Dt�(S
′, �′)

U∗
[0,t�)(�

′)
� Dt�(S, �)

U∗
[0,t�)(�)

.

Together with the transformation of Case 3, this process is repeated until we have tS′ = r ′ (Case 1) or the basic
job system �′ has only k different release dates. �

With this result, we can finally determine an upper bound for U∗
[0,t)(�)/U[0,t)(S, �) if schedule S is a nondelay

schedule.

Theorem 7. For any job system �and a nondelay schedule S for �on m identical machines, the inequalityU∗
[0,t)(�)/U[0,t)

(S, �)� 4
3 holds for all 0 < t � t∗. This bound is tight.

Proof. Due to Corollary 4, we only need to consider basic job systems with a sufficiently small � and their basic
nondelay schedules. Let � be such a basic job system and S be its basic nondelay schedule.

Lemma 6 yields Dt(S, �) = U∗
[0,t)(�) − U[0,t)(S, �)� 1

4U∗
[0,t)(�) for all 0 < t � t∗. This immediately results in

U∗
[0,t)(�)

U[0,t)(S, �)
� 4

3
.

Finally, assume m > 1 machines with m being even. Our job system � contains m/2 jobs of processing time 2 and
m jobs of processing time 1, all with release date 0. In schedule S, all m jobs with processing time 1 start concurrently
at time 0 while the longer jobs all start at time 1. Clearly, S is a nondelay schedule and U[0,2)(S, �) = 1.5m holds.
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In the optimal schedule �, all m/2 jobs of processing time 2 and m/2 of the other jobs start concurrently at time
0 while the remaining jobs of processing time 1 start at time 1. This results in U[0,2)(�, �) = U∗

[0,2)(�) = 2m and

U∗
[0,2)(�)/U[0,2)(S, �) = 4

3 . �

5. Concluding remarks

In this paper, we showed that the makespan criterion is not well suited to quantitatively describe utilization for
our online problem. Therefore, we used the criterion utilization directly and gave a worst case analysis for nondelay
schedules with this criterion. Due to this analysis, up to 25% idle time in the schedule may be due to the selected order
of the job execution while the corresponding value provided by the makespan criterion is 50%.

Also, the analysis suggested that a longest-job-first-strategy may be appropriate in a corresponding offline problem.
This confirms the small approximation factor achieved by this strategy for similar makespan problems [7]. However,
no analysis for the utilization criterion is available for offline problems. This may be subject of further research.
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