Mutual Information in Gaussian Channels

Masuyuki Hitsuda*
Department of Mathematics, Nagoya Institute of Technology
Communicated by T. Hida

In the Gaussian channel $Y(t)=\Phi(t)+X(t)=$ message + noise, where $\Phi(t)$ and $X(t)$ are mutually independent, the information $I(Y, \Phi)$ is evaluated. One of the results is that $I(Y, \Phi)<\infty$ if and only if $\Phi \in \mathscr{H}(X)=$ the reproducing kernel Hilbert space for $X(\cdot)$. And the causal formula of $I(Y, \Phi)$ is given.

1. Introduction

The model of Gaussian channels to be discussed here is

$$
\begin{equation*}
Y(t)=\Phi(t)+X(t) \quad 0 \leqslant t \leqslant T(\leqslant \infty), \tag{1.1}
\end{equation*}
$$

where $X(t)$ is a zero mean Gaussian noise and $\Phi(t)$ is a zero mean Gaussian message which is independent of $\{X(t) ; t \in[0, T]\}$, defined on a probability space (Ω, \mathscr{B}, P). The main interest of this paper is to evaluate the mutual information $I(Y, \Phi)$ between $\Phi(\cdot)$ and $Y(\cdot)$.

One of our results is that $I(Y, \Phi)<\infty$ if and only if $\Phi(\cdot) \in \mathscr{H}(X)$ with probability one, where $\mathscr{H}(X)$ is the reproducing kernel Hilbert space (RKHS) corresponding to the noise $X(\cdot)$ (Theorem 1).
Also, in case $I(Y, \Phi)<\infty$, the causal expression of the evaluation of $I(Y, \Phi)$ is given, by using a causal mean-square filtering error. In a special case where $X(t)$ is a Wiener process, the analogous result was given by Duncan [1] and Kadota-Zakai-Ziv [5].

Received August 25, 1973.
AMS classification: Primary 94A15, Secondary 60G15, 60G25, 60G35.
Key words and phrases: Gaussian channel, reproducing kernel Hilbert space, mutual information, canonical representation of Gaussian processes.

* The author was supported in part by the National Research Council of Canada Government, administered by Professor D. Dawson.

2. The Main Theorem

In this section, we concern the Gaussian channel which has been given by (1.1). The main theorem is stated as follows:

Theorem 1. The mutual information $I(Y, \Phi)$ is finite if and only if

$$
\Phi(\cdot, \omega) \in \mathscr{H}(X) \quad \text { (with probability one })
$$

where $\mathscr{H}(X)$ is the RKHS corresponding to the Gaussian noise $X(\cdot)$.
In proving Theorem 1, the following Lemma is used.

Lemma 1. The Gaussian process $Y(\cdot)$ given by (1.1) is equivalent to $X(\cdot)$ if and only if $\Phi(\cdot, \omega)$ belongs to $\mathscr{H}(X)$ with probability one.

Proof. Parzen [6] showed that the Gaussian process

$$
Y(\cdot)=X(\cdot)+a(\cdot), a(\cdot) \text { is a deterministic function }
$$

is equivalent to the process $X(\cdot)$ if and only if $a(\cdot) \in \mathscr{H}(X)$. In our case, in which $X(\cdot)$ and $\Phi(\cdot)$ are mutually independent, $Y(\cdot)$ is not equivalent to $X(\cdot)$ if $P(\Phi(\cdot) \notin \mathscr{H}(X))>0$, by the use of Parzen's result; while if $P(\Phi(\cdot) \in \mathscr{H}(X))=1$, $Y(\cdot)=X(\cdot)+\Phi(\cdot)$ is equivalent to $X(\cdot)$ for almost all fixed $\Phi(\cdot)$. According to the Fubini's theorem, it follows that $Y(\cdot)$ is equivalent to $X(\cdot)$. Thus the Lemma is proved.

Proof of Theorem 1

"Only if" part. Define μ_{Y}, μ_{Φ}, and $\mu_{(Y, \Phi)}$'s as measures on function spaces induced by the processes $Y(\cdot), \Phi(\cdot)$, and $(Y(\cdot), \Phi(\cdot))$, respectively. In order to realize the measure $\mu_{Y} \times \mu_{\Phi}$, we define three mutually independent processes $B_{1}(\cdot), \Phi_{1}(\cdot)$, and $\Phi_{2}(\cdot)$ on a probability space $\left(\Omega_{1}, \mathscr{B}_{1}, P_{1}\right)$ in such a way that $X_{1}(\cdot)$ is a version of the process $X(\cdot)$ and that both $\Phi_{1}(\cdot)$ and $\Phi_{2}(\cdot)$ are versions of the process $\Phi(\cdot)$. In such a scheme, the vector-valued process

$$
\begin{equation*}
\left(Y_{1}(t), \Phi_{2}(t)\right)=\left(X_{1}(t)+\Phi_{1}(t), \Phi_{2}(t)\right), \quad 0 \leqslant t \leqslant T \tag{2.1}
\end{equation*}
$$

induces the measure $\mu_{Y} \times \mu_{\Phi}$ on a certain function space W. Assume that $I(Y, \Phi)<\infty$. Then by the well-known result (Gelfand-Yaglom [2]), $\mu_{(Y, \Phi)}$ is absolutely continuous with respect to $\mu_{Y} \times \mu_{\Phi}$. Hence, there exists a density $M(\omega)$ such that on the probability space $\left(\Omega_{1}, \mathscr{B}_{1}, M(\omega) P_{1}\right), \mu_{(Y, \Phi)}$ is the induced
measure by $\left(Y_{1}(\cdot), \Phi_{2}(\cdot)\right)$. Therefore, the process defined on $\left(\Omega_{1}, \mathscr{B}_{1}, M(\omega) P_{1}\right)$ by

$$
\begin{equation*}
X_{2}(t)=Y_{1}(t)-\Phi_{2}(t), \quad 0 \leqslant t \leqslant T \tag{2.2}
\end{equation*}
$$

must be a version of the process $X(\cdot)$. On the other hand, the right-hand side of (2.2) is $X_{1}(t)+\Phi_{1}(t)-\Phi_{2}(t)$. Since $\Phi_{1}(t)-\Phi_{2}(t), 0 \leqslant t \leqslant T$, is independent of $X_{1}(t)$ in the space $\left(\Omega_{1}, \mathscr{B}_{1}, P_{1}\right)$, the process $\Psi_{1}(\cdot)=\Phi_{1}(\cdot)-\Phi_{2}(\cdot)$ belongs to $\mathscr{H}(X)$ with probability one by Lemma 1. As $\Phi_{1}(\cdot)$ and $\Phi_{2}(\cdot)$ are mutually independent Gaussian processes with the same covariance function, $\Psi_{1}(\cdot) / \sqrt{2}$ is a common version of $\Phi_{1}(\cdot), \Phi_{2}(\cdot)$, and $\Phi(\cdot)$. Therefore, $\Phi(\cdot)$ belongs to the space $\mathscr{H}(X)$. Thus the proof for the "only if" part is completed.

In order to prove the "if" part, Lemma 1 is applied again. To begin with, we see that the measure $\mu_{(Y, \Phi)}$ induced by the process $(Y(\cdot), \Phi(\cdot))$ is equivalent to the measure $\mu_{(X, \Phi)}-\mu_{X} \times \mu_{\Phi}$ induced by the process $(X(\cdot), \Phi(\cdot))$, because for any fixed Φ, the conditional measure $\mu_{Y \mid \Phi}$ induced by $Y(\cdot)=X(\cdot)+\Phi(\cdot)$ is equivalent to μ_{X} induced by $X(\cdot)$ by Lemma 1. Also, the measure $\mu_{Y} \times \mu_{\Phi}$ is equivalent to $\mu_{X} \times \mu_{\Phi}$. Therefore, $\mu_{(Y, \Phi)}$ must be equivalent to $\mu_{Y} \times \mu_{\Phi}$. Noting that the both measures $\mu_{(Y, \Phi)}$ and $\mu_{Y} \times \mu_{\Phi}$ are Gaussian, we deduce that

$$
E\left[\log \left(d \mu_{(Y, \Phi)} / d\left(\mu_{Y} \times \mu_{\Phi}\right)\right)(Y(\cdot), \Phi(\cdot))\right]<\infty
$$

by the use of the well-known Hajek-Feldman's theorem (see Rozanov [7]). On the other hand, since the mutual information is also given by

$$
I(Y, \Phi)=E\left[\log \left(d \mu_{(Y, \Phi)} / d\left(\mu_{Y} \times \mu_{\Phi}\right)\right)(Y(\cdot), \Phi(\cdot))\right]
$$

(Gelfand-Yaglom [2]), the proof is completed.
Remark. It is obvious from the proof that the "only if" part is still valid, even if $\Phi(t), 0 \leqslant t \leqslant T$, is not a Gaussian process without atoms.

Example. In the case where the process $X(\cdot)$ in (1.1) is a Wiener process, the RKHS is given by

$$
\mathscr{H}(X)=\left\{f(\cdot) ; f(t)=\int_{0}^{t} a(s) d s, a \in L^{2}(d s)\right\}
$$

Therefore, $I(Y, \Phi)<\infty$ if and only if

$$
\begin{equation*}
\Phi(t, \omega)=\int_{0}^{t} \varphi(s, \omega) d s, \quad \varphi(\cdot, \omega) \in L^{2}(d s) \tag{2.3}
\end{equation*}
$$

with probability one. As $\varphi(s, \omega)$ is Gaussian, (2.3) is equivalent to

$$
\int_{0}^{T} E\left[\varphi^{2}(s, \omega)\right] d s<\infty
$$

3. The Causal Evaluation of the Mutual Information

In case $I(Y, \Phi)<\infty$, the causal evaluation of the mutual information is given in this section. The method used here is based upon the so-called Lévy-Hida canonical representation with respect to the vector-valued Gaussian processes with independent increments.

Lemma 2 (Hida [3, Theorem 1.5]). A separable Gaussian process $X(\cdot)$ can be decomposed canonically in the form
$X(t)=\sum_{i=1}^{N} \int_{0}^{t} F_{i}(t, u) d B^{(i)}(u)+\sum_{\left\{t_{j} \leqslant t\right)} \sum_{\ell=1}^{L_{j}} b_{j}{ }^{f}(t) B_{t_{j}}^{\ell}, \quad N, L_{j} \leqslant \infty$,
where (i) $B^{(i)}(u)$'s are Gaussian processes with independent increments such that $E\left[d B^{(i)}(u)^{2}\right]=m_{i}(d u)^{\prime}$'s are continuous measures with the property $m_{i} \gg m_{i+1}$,
(ii) $B_{t_{j}}^{l}$'s are standard Gaussian variables,
(iii) all the $B^{(i)}(u)$'s and B_{t}^{t} 's are mutually independent, and
(iv) it holds that the σ-algebra $\mathfrak{X}(t)$ generated by $\{X(u) ; u \leqslant t\}$ is equal to the σ-algebra $\mathfrak{B}(t)$ generated by $\left\{B^{(i)}(u) ; u \leqslant t\right\},\left\{B_{t_{j}}^{l} ; t_{j}<t, l=1, \ldots, L_{j}\right\}$ and $\left\{B_{t_{j}}^{\ell} ; t_{j}=t, b_{j}^{\ell}(t) \neq 0\right\}$.

If we look at the representation (3.1), we can find an interesting fact that, for each t_{j}, there exists at most one integer l_{0} such that $b_{j}^{\ell_{0}(t)} \neq 0$. For, if not, the representation can not satisfy condition (iv).

According to Lemma 3, the RKHS $\mathscr{H}(X)$ for $X(\cdot)$ can be written in the form

$$
\begin{align*}
\mathscr{H}(X)= & \left\{f(\cdot) ; f(t)=\sum_{i=1}^{N} a_{i}(t)+\sum_{j} \sum_{\ell=1}^{L_{j}} d_{j}^{\ell}(t), \sum_{i} \int_{0}^{T} \alpha_{i}(u)^{2} m_{i}(d u)\right. \\
& \left.+\sum_{j} \sum_{\ell}\left(c_{j}^{\ell}\right)^{2}<\infty\right\} \tag{3.2}
\end{align*}
$$

where $a_{i}(t)=\int_{0}^{t} F_{i}(t, u) \alpha_{i}(u) m_{i}(d u), \alpha_{i} \in L^{2}\left(m_{i}\right)$, and $d_{j}^{t}(t)=c_{j}^{\ell} b_{j}^{f}(t), c_{j}^{f}$'s are constants. (See Hida [3] or Hitsuda [4].) By (3.2), any given signal $\Phi(\cdot, \omega)$ can be represented as

$$
\begin{equation*}
\Phi(t, \omega)=\sum_{i=1}^{N} \int_{0}^{t} F_{i}(t, u) \varphi_{i}(u, \omega) m_{i}(d u)+\sum_{\left\{j: t_{j} \leqslant t\right\}} \sum_{\ell} b_{j}{ }^{\ell}(t) \varphi_{j}{ }^{\ell}(\omega) \tag{3.3}
\end{equation*}
$$

with probability one, where the system $\left\{\varphi_{i}(\cdot), \varphi_{j}\right\}$ is Gaussian and is independent of $\left\{B^{(i)}(u), B_{t_{j}}^{\ell}\right\}$.

We now evaluate the information $I(Y, \Phi)$ using the representations (3.1) and (3.3) of the noise and the signal.

Theorem 2. If $X(\cdot)$ and $\Phi(\cdot)$ are defined by (3.1) and (3.3) respectively, and if all the L_{j} 's are finite, then the mutual information between $Y(\cdot)=X(\cdot)+\Phi(\cdot)$ and $\Phi(\cdot)$ is given by

$$
\begin{align*}
I(Y, \Phi)= & I_{T}(Y, \Phi) \\
= & \frac{1}{2}\left\{\sum_{i=1}^{N} \int_{0}^{T} E\left[\varphi_{i}(u)^{2}-\hat{\varphi}_{i}(u)^{2}\right] m_{i}(d u)\right. \\
& +\sum_{j, \ell_{0}: b_{j}^{\delta_{j}\left(t_{j}\right) \neq 0}} E\left[\log \left\{1+E\left[\left(\varphi_{j}^{\ell_{0}}\right)^{2}-\left(\hat{\varphi}_{j}^{\ell_{0}}\right)^{2} \mid \mathfrak{Y}\left(t_{j}-\right)\right]\right\}\right] \\
& +\sum_{j} E\left\{\log \left[\operatorname{det}\left(I+\mathbf{A}_{j}\right)\right]\right\}, \tag{3.4}
\end{align*}
$$

where $\hat{\varphi}_{i}(u)=E\left[\varphi_{i}(u) \mid \mathfrak{Y}(u)\right], \hat{\varphi}_{i}^{\ell_{0}}=E\left[\varphi_{j}^{\ell_{0}} \mid \mathfrak{Y}\left(t_{j}-\right)\right]$, for $\ell_{0}=\ell_{0}(j)$ such that $b_{j}^{f_{0}}\left(t_{j}\right) \neq 0, \mathfrak{Y}\left(t_{j}-\right)=\vee_{t<t_{j}} \mathfrak{Y}(t)$, and \mathbf{A}_{j} is the matrix whose entries $a_{j}^{t_{j}^{1} t_{2}}$'s are given by

$$
\begin{equation*}
a_{j}^{\ell_{1} \ell_{2}}=E\left\{\varphi_{j}^{\left.\ell_{1} \varphi_{j}^{\ell_{2}}-E\left[\varphi_{j}^{\ell_{1}} \mid \mathfrak{Y}\left(t_{j}\right)\right] E\left[\varphi_{j}^{\ell_{2}} \mid \mathfrak{Y}\left(t_{j}\right)\right] \mid \mathfrak{Y}\left(t_{j}\right)\right\} \quad \ell_{1}, \ell_{2} \neq \ell_{0} .}\right. \tag{3.5}
\end{equation*}
$$

Proof. By (3.1) and (3.3), $Y(t)$ can be represented as

$$
\begin{align*}
Y(t)= & \sum_{i=1}^{N} \int_{0}^{t} F_{i}(t, u)\left(d B^{(i)}(u)+\varphi_{i}(u, \omega) m_{i}(d u)\right)+\sum_{\left\{j: t_{j} \leqslant t\right\}} \sum_{\ell=1}^{L_{j}} b_{j}^{\ell}(t)\left(B_{t_{i}}^{\ell}+\varphi_{j}^{\ell}\right) \tag{3.6}\\
& =\sum_{i=1}^{N} \int_{0}^{t} F_{i}(t, u) d Z^{(i)}(u)+\sum_{\left\{j: t_{j} \leqslant t\right\}} \sum_{t=1}^{L_{j}} b_{j}^{\ell}(t) Z_{t_{j}}^{\ell}
\end{align*}
$$

where $Z^{(i)}(t)=B^{(i)}(t)+\int_{0}^{t} \varphi_{i}(u) m_{i}(d u)$, and $Z_{t_{j}}^{\ell}=B_{t_{j}}^{\ell}+\varphi_{j}^{\ell}$. We first note that the vector-valued process

$$
\begin{aligned}
Z(t)= & \left(Z^{(1)}(t), \ldots, Z^{(i)}(t), \ldots, \chi\left(t_{1}, T\right]\right. \\
& (t) Z_{t_{1}}^{1}, \ldots, \chi_{\left[t_{1}, T\right]}(t) Z_{t_{1}}^{t_{0}}, \\
& \ldots, \chi\left(t_{1}, T\right](t) Z_{t_{1}}^{L_{1}}, \chi\left(t_{2}, T\right] \\
& \left.t) Z_{t_{2}}^{1}, \ldots\right)
\end{aligned}
$$

is equivalent to the process

$$
\begin{aligned}
B(t)= & \left(B^{(1)}(t), \ldots, B^{(i)}(t), \ldots, \chi\left(t_{1}, T\right](t) B_{t_{1}}^{1}, \ldots, \chi_{\left[t_{1}, T\right]}(t) B_{t_{1}}^{\ell_{0}}\right. \\
& \left.\ldots, \chi\left(t_{1}, T\right](t) B_{t_{1}}^{L_{1}}, \chi\left(t_{2}, T\right](t) B_{t_{2}}^{1}, \ldots\right),
\end{aligned}
$$

because

$$
E\left[\sum_{i} \int_{0}^{T} \varphi_{i}^{2}(u) m_{i}(d u)+\sum_{j} \sum_{\ell}\left(\varphi_{j}^{l}\right)^{2}\right]<\infty .
$$

With this fact, we know that the σ-algebra $\mathfrak{Y}(t)$ generated by $\{Y(u) ; u \leqslant t\}$ coincides with the σ-algebra $3(t)$ generated by $\{Z(u) ; u \leqslant t\}$. In other words, the process $Y(t)$ is canonically represented with respect to $Z(t)$. Furthermore, if we set

$$
\begin{aligned}
\Psi(t)= & \left(\int_{0}^{t} \varphi_{1}(u, \omega) m_{1}(d u), \ldots, \int_{0}^{t} \varphi_{i}(u, \omega) m_{i}(d u), \ldots, \chi\left(t_{1}, T\right](t) \varphi_{1}^{1}, \ldots, \chi\left(t_{1}, T\right](t)\right. \\
& \left.\times \varphi_{1}^{t_{0}}, \ldots, \chi\left[t_{1}, T\right](t) \varphi_{1}^{L_{1}}, \chi_{\left(t_{2}, T\right]}(t) \varphi_{2}^{1}, \ldots\right),
\end{aligned}
$$

then the σ-algebra $\Phi(t)$ generated by $\{\Phi(u) ; u \leqslant t\}$ coincides with the σ-algebra generated by $\{\Psi(u) ; u \leqslant t\}$. Because the equation

$$
\sum_{i=1}^{N} \int_{0}^{t} F_{i}(t, u) \alpha_{i}(u) m_{i}(d u)+\sum_{j} \sum_{l} b_{j}^{\ell}(t) c_{j}^{l}=0
$$

implies that $\left(\alpha_{1}, \ldots, \alpha_{i}, \ldots, c_{1}{ }^{1}, \ldots, c_{1}^{\prime_{0}}, \ldots, c_{1}^{L_{1}}, c_{2}{ }^{1}, \ldots\right)=(0, \ldots, 0, \ldots, 0, \ldots, 0, \ldots, 0,0, \ldots)$, we can conclude that

$$
\begin{equation*}
I(Y, \Phi)=I(Z, \Psi) . \tag{3.7}
\end{equation*}
$$

Now, let us evaluate the right-hand side of (3.7). We know that

$$
\begin{align*}
\left(d \mu_{(Z, \Psi)} / d_{\left(\mu_{Z} \times \mu \Psi\right)}\right)(Z(\cdot), \Psi(\cdot)) & =\frac{\left.\left(d \mu_{(Z, \psi)}\right) d \mu_{(B, \Psi)}\right)(Z(\cdot), \Psi(\cdot))}{\left(d\left(\mu_{Z} \times \mu_{\Psi}\right) / d \mu_{(B, \Psi)}\right)(Z(\cdot), \Psi(\cdot))} \\
& =\frac{d \mu_{Z \mid \Psi(\cdot)} / d \mu_{B}(Z(\cdot))}{d \mu_{Z} / d \mu_{B}(Z(\cdot))}, \tag{3.8}
\end{align*}
$$

where $\mu_{(Z, \Psi)}, \mu_{(B, Y)}=\mu_{B} \times \mu_{\Psi}, \mu_{Z}$ and μ_{Ψ} are the induced measures on function spaces corresponding to the respective processes. The numerator and the denominator of the last expression of (3.8) are calculated as follows:

$$
\begin{align*}
\frac{d \mu_{\mathcal{Z | \psi}}}{d \mu_{B}}(Z(\cdot))= & \exp \left\{\sum_{i=1}^{N}\left(\int_{0}^{T} \varphi_{i}(u) d Z^{(i)}(u)-\frac{1}{2} \int_{0}^{T} \varphi_{i}^{2}(u) m_{i}(d u)\right)\right. \\
& \left.+\sum_{j} \sum_{l}\left[\frac{1}{2}\left(Z_{t_{j}}^{\ell}\right)^{2}-\frac{1}{2}\left(Z_{t_{j}}^{\ell}-\varphi_{j}^{\ell}\right)^{2}\right]\right\} \\
= & \exp \left\{\sum_{i=1}^{N}\left(\int_{0}^{T} \varphi_{i}(u) d B^{(i)}(u)+\frac{1}{2} \int_{0}^{T} \varphi_{i}^{2}(u) m_{i}(d u)\right)\right. \\
& \left.+\sum_{j} \sum_{l}\left[\frac{1}{2}\left(B_{t_{j}}^{\ell}+\varphi_{j}^{l}\right)^{2}-\frac{1}{2}\left(B_{t_{j}}^{\ell}\right)^{2}\right]\right\} . \tag{3.9}
\end{align*}
$$

Noting $\mathfrak{Y}(t)=\mathfrak{Z}(t)$, we have

$$
\begin{aligned}
\frac{d \mu_{Z}}{d \mu_{B}}(Z(\cdot))= & \exp \left\{\sum_{i=1}^{N}\left(\int_{0}^{T} \hat{\varphi}_{i}(u) d Z^{(i)}(u)-\frac{1}{2} \int_{0}^{T} \hat{\varphi}_{i}(u)^{2} m_{i}(d u)\right)\right. \\
& +\frac{1}{2} \sum_{b_{j}\left(\ell_{0}\right) \neq 0}\left[-\log \left(1+E\left[\left(\varphi_{j}^{\ell_{0}}\right)^{2}-\left(\hat{\varphi}_{j}^{\ell_{j}}\right)^{2} \mid \mathfrak{Y}\left(t_{j}-\right)\right]\right.\right. \\
& \left.+\left(Z_{t_{j}}^{\ell_{0}}\right)^{2}-\frac{\left(Z_{t_{j}}^{\ell_{0}}-\hat{\varphi}_{j}^{\ell_{0}}\right)^{2}}{1+E\left[\left(\varphi_{j}^{\ell_{0}}\right)^{2}-\left(\hat{\varphi}_{j}^{\ell}\right)^{2} \mid \mathfrak{Y}\left(t_{j}-\right)\right]}\right] \\
& \left.+\frac{1}{2} \sum_{j}\left[-\log \left(\operatorname{det}\left(I+\mathbf{A}_{j}\right)\right)+\tilde{\mathbf{Z}}_{j} \mathbf{Z}_{j}^{*}-\tilde{\mathbf{Z}}_{j}\left(I+\mathbf{A}_{j}\right)^{-1} \tilde{\mathbf{Z}}_{j}^{*}\right]\right\}
\end{aligned}
$$

where $\mathbf{A}_{j}=\left(a_{j}^{\prime}{ }^{\prime} \ell_{2}\right)$ is given by (3.5),

$$
\mathbf{Z}_{j}=\left\{Z_{t_{j}}^{\mathbf{1}}, \ldots, Z_{t_{j}}^{L_{j}}\right\}, \quad \text { and } \quad \tilde{\mathbf{Z}}_{j}=\left\{Z_{t_{j}}^{1}-\hat{\varphi}_{j}{ }^{1}, \ldots, Z_{t_{j}}^{L_{j}}-\hat{\varphi}_{j}^{L_{j}}\right\} .
$$

(If there exists an integer $\ell_{0}=\ell_{0}(j)$ such that $b_{j}^{\ell_{0}}\left(t_{j}\right) \neq 0$, then $Z_{t_{j}}^{\ell_{0}}$ and $Z_{t_{j}}^{\ell_{0}}-\varphi_{j}^{\ell_{0}}$ should be removed from \mathbf{Z}_{j} and $\tilde{\mathbf{Z}}_{j}$, respectively.) Combining.(3.7)-(3.10), the desired result follows:

Remark. In the case where some of the L_{j} 's are infinite, we define

$$
\begin{equation*}
X_{K}(t)=\sum_{i=1}^{N} \int_{0}^{t} F_{i}(t, u) d B^{(i)}(u)+\sum_{\left\{: t_{j} \leqslant t\right\}} \sum_{\ell=1}^{L_{j} \wedge K} b_{j}^{\ell}(t) B_{t_{j}}^{\ell} \tag{3.11}
\end{equation*}
$$

and define $\Phi_{K}(t)$ and $Y_{K}(t)$ analogously. The representation (3.11) is also canonical, and the σ-algebras $\mathfrak{Y}_{K}(t)=\sigma\left\{Y_{K}(u) ; u \leqslant t\right\}$ and $\Phi_{K}(t)=\sigma\left\{\Phi_{K}(u)\right.$; $u \leqslant t\}, K \geqslant 1$, increase up to $\mathfrak{Y}(t)$ and $\Phi(t)$, respectively, as K tends to ∞. We can therefore apply the standard limiting procedure to deduce

$$
I(Y, \Phi)=\lim _{K \rightarrow \infty} I\left(Y_{K}, \Phi_{K}\right)
$$

Example. If there are no discrete parts in the representation (3.1) of $X(t)$:

$$
X(t)=\sum_{i=1}^{N} \int_{0}^{t} F_{i}(t, u) d B^{(i)}(u)
$$

then $I(Y, \Phi)$ is easily computed, and the result is

$$
I(Y, \Phi)=\frac{1}{2} \sum_{i=1}^{N} E\left[\int_{0}^{T}\left(\varphi_{i}(u)^{2}-\hat{\varphi}_{i}(u)^{2}\right) m_{i}(d u)\right]
$$

For a special case where $X(t)$ is the Brownian motion, this formula was given by Duncan [1] and Kadota-Zakai-Ziv [5].

References

[1] Duncan, T. (1970). On the calculation of mutual information. SIAM J. Appl. Math. 19 215-220.
[2] Gelfand, A. M. and Yaglom, I. M. (1957). Calculation of the amount of information about a random function contained in another such function, Uspekhi Mat. Nauk. 12 3-52 (in Russian); translation in Amer. Math. Soc. Transl. Ser. 212 199-247.
[3] Hida, T. (1960). Canonical representation of Gaussian processes and their applications. Mem. Coll. Sci. Univ. Kyoto Ser. A (Math.) 33 109-155.
[4] Hitsuda, M. Multiplicity of some classes of Gaussian processes. To appear in Nagoya Math. J. 52.
[5] Kadota, T., Zakai, M., and Ziv, J. (1971). Mutual information of white Gaussian channel with and without feedback. IEEE Trans. Information Theory 17 368-371.
[6] Parzen, E. (1963). Probability density functionals and reproducing kernel Hilbert spaces. Proc. Symp. on Time Series Analysis. Wiley, New York.
[7] Rozanov, Yu. A. (1968). Infinite-dimensional Gaussian distributions. Trudy Mat. Inst. Steklov. 108 (in Russian); English translation by Amer. Math. Soc. (1971).

