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Recent data collected by ATLAS and CMS at 13 TeV collision energy of the LHC indicate the existence 
of a new resonant state φ with a mass of 750 GeV decaying into two photons γ γ . The properties of φ
should be studied further at the LHC and also future colliders. Since only φ → γ γ decay channel has 
been measured, one of the best ways to extract more information about φ is to use a γ γ collider to 
produce φ at the resonant energy. In this work we show how a γ γ collider helps to verify the existence 
of φ and to provide some of the most important information about the properties of φ, such as branching 
fractions of φ → V 1 V 2. Here V i can be γ , Z , or W ±. We also show that by studying angular distributions 
of the final γ ’s in γ γ → φ → γ γ , one can obtain crucial information about whether this state is a spin-0 
or a spin-2 state.

© 2016 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Recent data collected by ATLAS and CMS at 
√

s = 13 TeV col-
lision energy of the LHC indicate the existence of a new resonant 
state φ with a mass of 750 GeV decaying into two photons [1]. The 
production cross section σ(pp → φ → γ γ ) is about 6 fb with the 
ATLAS data hinting that φ has a broad width about 45 GeV having 
a local significance of 3.9σ , while CMS data favor a narrow width 
of order 100 MeV having a local significance of 2.6σ [1]. Combin-
ing ATLAS and CMS data, one obtains: σ(pp → φ → γ γ ) = (6 ±
2) fb at 13 TeV. With the assumption that φ is mainly produced by 
gluon fusion, gg → φ, one obtains �gg�γγ /�total ∼ 1 MeV. Here 
�ii is the partial decay width of φ → ii. If one also assumes that 
φ dominantly decays into two gluons and is produced by gluon 
fusion, gg → φ, one can extract a lower bound of about 1 MeV 
for �γγ . If one takes the total width to be 45 GeV indicated by 
ATLAS, the branching ratio of φ → γ γ is only about a few times 
10−5. More data are needed to confirm the existence of this new 
state. The LHC will continue to run and will soon have more to 
tell about the properties of φ. At future colliders, more aspects of 
this resonant state can be studied. At present, only limited infor-
mation about φ is available, namely φ is produced at pp collision 
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and it decays into γ γ final state. Regarding γ γ decay from a state, 
the situation is similar to that of the 125 GeV Higgs boson discov-
ered at the LHC. Therefore some of the strategies at future collider 
for the study of φ can be employed except that the energy has to 
be increased. In particular we note that a γ γ collider may be an 
ideal place to study some of the most important properties of the 
possible new resonant state φ similar to the study of Higgs boson 
properties [2].

The possibility of the existence of φ has generated a lot of the-
oretical speculations. If φ exists, it must come from beyond the 
standard model (SM). We will concentrate on how a γ γ collider 
can provide information about the properties of the 750 GeV res-
onant state. The resonant state φ can be produced through γ γ
collision. The problem of course is that whether it has a large lu-
minosity to generate enough events to study the properties of φ. 
We confirm previous studies [3,4] that a γ γ collider constructed 
by using the laser backscattering technique on the electron and 
positron beams in an e+e− collider with center of mass (CM) 
frame energy of around 1 TeV and integrated luminosity of or-
der one thousand fb−1, many properties of φ can be studied. In 
particular some of the expected decay modes φ → V 1 V 2 with 
V i = γ , Z , W ± can be studied cleanly.

Since φ can decay into two on-shell photons, according to 
Landau–Yang theorem, the state cannot be a spin-1 state [5]. The 
two likely possibilities with low spins are spin-0 and spin-2. Fur-
ther studies are needed to know the spin property of φ [6,7]. We 
show that by studying angular distribution of the final γ γ through 
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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on-shell production of φ and its subsequent decays into a γ γ pair, 
one can easily determine whether φ is a spin-0 or spin-2 state. The 
work presented closely follow previous study of Higgs boson at a 
γ γ collider by one of us (He) [2].

2. γ γ → φ and φ → X, γ γ , and V 1 V 2

Assuming that φ is a spin-0 scalar state, the φ → γ γ decay 
amplitude M( J = 0, γ γ ) has the form: M(0, γ γ ) = A(k2μk1ν −
gμνk1 · k2)ε

μ∗(k1)ε
ν∗(k2), which gives the decay width

�0,γ γ = A2m3
φ/64π . (1)

If φ is a spin-0 pseudoscalar state, the decay amplitude has the 
form: M(0, γ γ ) = Aεμναβkμ

1 εν
1 kα

2 ε
β

2 . The expression for �0,γ γ has 
the same form as in eq. (1).

The cross section σ(s)0,X for producing an on-shell φ at a 
monochromatic γ γ collider with a center of mass (CM) frame en-
ergy 

√
s followed by φ’s decay into a final state X , γ γ → φ → X , 

is directly related to the decay width �0,γ γ [8]. For φ being a 
scalar (also for a pseudoscalar), we have

σ(s)0,X = �0,γ γ
8π2

mφ

δ(s − m2
φ)Br0,X , (2)

where Br0,X is the branching ratio of φs’ decay into the final 
state X .

A γ γ collider can be constructed by using the laser backscat-
tering technique on the electron and positron beams in an e+e−
collider. For example the e+e− ILC collider. Such a collider has 
been shown to be useful to study physics beyond SM [2,9]. In this 
case the energy Eγ of the photons are not monochromatic, but 
have a distribution f (x = Eγ /Ee) for a given electron/positron en-
ergy Ee [10]. In the e+e− CM frame, the cross section σ L

0,X for 
γ (x1)γ (x2) → φ → X is given by

σ(s)L
0,X =

xmax∫

xmin

dx1

xmax∫

xmin

dx2σ(x1x2s)0,X f (x1) f (x2)[1+λ(x1)λ(x2)] ,

(3)

where x1 and x2 are the fractions of photon energy come from e−
and e+ beams, xmax = ξ/(1 + ξ) with ξ = 2(1 + √

2), and xmin =
y/xmax with y = m2

φ/s. λ(x) is the mean helicity of the γ beam 
which depends on the e− (e+) polarization λe− (λe+ ) and the laser 
polarization λl , and is given by

λ(x) = 2πα2

σcξm2
e f (x)

{λl(1 − 2r)(1 − x + 1

1 − x
)

+ λeξr[1 + (1 − x)(1 − 2r)2]}, (4)

where r = x/ξ(1 − x). The distribution function f (x) is given by

f (x) = 2πα2

σcξm2
e
[ 1

1 − x
+1− x−4r(1− r)−λlλeξr(2r −1)(2− x)],

(5)

with σc = σ
np
c + λlλeσ1 and

σ
np
c = 2πα2

ξm2
e

[(1 − 4

ξ
− 8

ξ2
) ln(1 + ξ) + 1

2
+ 8

ξ
− 1

2(1 + ξ)2
] ,

σ1 = 2πα2

ξm2
e

[(1 + 2

ξ
) ln(1 + ξ) − 5

2
+ 1

1 + ξ
− 1

2(1 + ξ)2
]. (6)

For unpolarized laser and unpolarized electron/positron beams, 
λl = λe = 0, λ(x) is also zero.
Fig. 1. I(y) as a function of y. Dashed and solid curves are for unpolarized and 
polarized cases, respectively.

Fig. 2. The γ γ → φ cross section σ(s)L
0 (in unit of fb) as a function of √s with 

�0,γ γ = 1 MeV. The dashed curve is for unpolarized photon beam and the solid 
curve is for polarized photon beam.

Integrating out x2, we have

σ(s)L
0,X = I(y)

8π2

m3
φ

�0,γ γ Br0,X , (7)

where the function I(y) is given by

I(y) =
xmax∫

xmin

dx
y

x
f (x) f (y/x)[1 + λ(x)λ(y/x)]. (8)

The function I(y) plays a crucial role in gauging at what en-
ergy the production of φ will be maximized. We plot I(y) for both 
polarized and unpolarized photon beams in Fig. 1. We see that for 
unpolarized case I(y) peaks at about 0.4 when y � 0.6. For the 
polarized case the peak value of I(y) can be enhanced by suitable 
choice of the laser and electron and positron polarizations. For ex-
ample with λe = 1 and λl = −1, the peak value of I(y) can reach 
1.8 for y ∼ 0.6. The enhanced peak value is at the cost of polar-
ization of the beams. On the other hand, unpolarized case may be 
easier to achieve in practice.

In Fig. 2, we plot the cross section σ L
0 for γ γ → φ at an e+e−

linear collider as a function of 
√

s using �0,γ γ = 1 MeV. We con-
firm the results obtained in Ref. [3]. We see that with 

√
s = 1 TeV, 

an integrated luminosity of 1000 fb−1 will produce more than 
3 × 104 and 105 φ for unpolarized and polarized cases, respec-
tively. As long as Br0,X is larger than a few times of 10−4, φ → X
may be studied by a unpolarized γ γ collider. Depending on the 
efficiency of identifying the final γ ’s, the φ → γ γ may be con-
firmed at a γ γ collider. For the case of a polarized beams, the 



168 M. He et al. / Physics Letters B 759 (2016) 166–170
Fig. 3. Ri as functions of b. The solid, dashed and dotted curves are for Rγ Z/γ γ , 
R Z Z/γ γ and RW + W −/γ γ , respectively.

enhanced production cross section allows one to study properties 
of φ to good precisions.

In principle, there should be other possible decay modes other 
than φ → γ γ , although at present only φ → γ γ has been ob-
served. One can easily measure the relative branching ratios for 
other decay modes, because [2]

σ L
0,X

σ L
0,γ γ

= Br0,X

Br0,γ γ
= �0,X

�0,γ γ
. (9)

An immediate interesting measure is to decide whether gg → φ

is the main production mechanism for φ at the LHC. Approximat-
ing �(φ → 2 jets) ≈ �(φ → gg), �0,gg can be easily determined [3,
4].

Assuming φ is a SM singlet, the interaction inducing φ → γ γ
should respect the SM gauge symmetry and can be parameterized 
as

L = φ(ãBμν Bμν + b̃Wμν W μν) , (10)

where Bμν and Wμν are the U (1)Y and SU (2)L gauge field 
strengthes, respectively. If φ is a pseudoscalar, one replaces 
Bμν Bμν and Wμν W μν in the above by B̃μν Bμν and W̃μν W μν , 
respectively. Here X̃μν = (1/2)εμναβ Xαβ .

The above Lagrangian will not only induce φ → γ γ , but, in 
general, also φ → γ Z , Z Z , W +W − . None of the later three de-
cays have been observed experimentally. Using eq. (9), one can 
study the decay widths for φ → γ Z , Z Z , W +W − at a γ γ col-
lider [3]. We now look at this in a slightly different way than 
that carried out in Ref. [3]. For convenience, we normalize ã(b̃) =
(4π�/m3

φ)1/2a(b). We have

�0,γ γ = �(ac2
W + bs2

W )2 , (11)

where cW = cos θW and sW = sinθW .
Taking � = �0,γ γ implies that (ac2

W + bs2
W )2 = 1. One can ex-

press a = (1 − bs2
W )/c2

W . We then have

Rγ Z/γ γ = σ L
0,γ Z

σ L
0,γ γ

= �0,γ Z

�0,γ γ
= 2 tan2 θW (1 − b)2(1 − m2

Z /m2
φ)3 ,

R Z Z/γ γ = σ L
0,Z Z

σ L
0,γ γ

= �0,Z Z

�0,γ γ

= (tan2 θW (1 − b) + b)2(1 − 4m2
Z /m2

φ)3/2 ,

RW +W −/γ γ = σ L
0,W +W −

σ L
0,γ γ

= �0,W +W −

�0,γ γ
= 2b2(1 − 4m2

W /m2
φ)3/2 .

(12)

sim
sh
w
th
th
stu
low
on
sh
no
11
co
m
th
1

3. 

tic
sta
ied
sp

on
in

σ

ph
tio
In
th
be
an
θL

in

co

sp
tio
Fig. 4. The angle θ of a final photon in γ γ → φ → γ γ .

In Fig. 3, we show Ri as functions of b. Note that one cannot 
ultaneously make all Ri to be zero. At least two of them will 

ow up at some level. The worst scenario is that b is about 0.3 
here all three Ri are below 0.25. This may be the reason that 
ese decay modes have not been observed at the LHC run II. If 
is is indeed the case, these decay modes may be difficult to be 
died at a unpolarized γ γ collider for �0,γ γ taking its present 
er bound. But for the polarized case, it is still possible. Once 

e of the Ri is measured, the other two can be predicted. One 
ould be aware that at the LHC, the production mechanism may 
t be due to gg → φ. Photo-production may also be possible [7,
]. In that case �0,γ γ can be much larger than 1 MeV. A γ γ
llider with unpolarized photon beams can also study the decay 
odes to good precision. We conclude that it is possible to verify 
e existence of φ at a γ γ collider with a CM frame energy of 
TeV and an integrated luminosity of 1000 fb−1.

Angular distribution of γ and spin of φ

Since the LHC has observed φ → γ γ , φ cannot be a spin-1 par-
le due to Landau–Yang theorem [5]. The two possible low spin 
tes 0 and 2 are not ruled out. The consequences should be stud-

[6]. A γ γ collider can provide detailed information about the 
in of φ by studying the angular distribution of the final photons.
For a scalar or a pseudoscalar φ, the angular distribution for 

e of the final photon respecting to the incoming γ beams shown 
 Fig. 4 is isotropic in the γ γ CM frame [2,12]

1

(s)0,γ γ

dσ(s)0,γ γ

d cos θ
= 1 . (13)

In the e+e− CM frame (laboratory frame), collision of the two 
otons is not in the γ γ CM frame and therefore the distribu-
n of the photons is not the same as that predicted by eq. (13). 
 the laboratory frame, depending on the values of x1 and x2, 
e two photons may have different energy. The φ produced will 
 boosted to the direction of the photon with a larger xi . The 
gle θ when seeing from laboratory frame will be changed to 
. The relation between θ and θL can be written as the follow-
g

s θ = cos θL + β

β cos θL + 1
,

d cos θ

d cos θL
= 1 − β2

(β cos θL + 1)2
, β = x1 − x2

x1 + x2
.

(14)

The laboratory frame angular distribution A(0, θL) of θL for a 
in-0 scalar can be studied by the following convoluted distribu-
n,
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Fig. 5. Angular distribution A( J = 0,2, γ γ ) in γ γ → φ → γ γ with different energies
√

s.

Fig. 6. Histogram plots for Ni/N distributions for spin-0 and spin-2 cases with a fixed total event number N . Left and right panel are for N = 290 and N = 1070, respectively.
A(0, θL) = 1

σ(s)L
0,γ γ

xmax∫

xmin

dx1

xmax∫

xmin

dx2 f (x1) f (x2)
dσ(x1x2s)0,γ γ

d cos θL
.

(15)

One can also define a similar quantity for the case of φ be-
ing a particle with a different spin, spin-J, A( J , θL). We find that 
this quantity can give information about the spin of φ. To see 
how this works, we take an example of a spin-2 tensor coupled 
to γ γ , in a similar fashion as a scalar couples to two gravi-
tons, to study A(2, θL) and compared with A(0, θL) for a spin-0 
scalar. In this case the matrix element for φ → γ γ can be written 
as [13]

M(2, γ γ ) = −κ

2
[(k1 · k2)Cμν,�σ

+ Dμν,�σ (k1,k2)]ερ∗(k1)ε
σ∗(k2)ε

μν ,

Cμν,�σ = ημ�ηνσ + ημσ ηνρ − ημνηρσ , (16)

Dμν,�σ (k1,k2) = ημνk1σ k2ρ − [ημσ k1νk2ρ + ημρk1σ k2ν

− ηρσ k1μk2ν + (μ ↔ ν)] .

In the γ γ CM frame, we have [2]

1

σ(s)2,γ γ

dσ(s)2,γ γ

d cos θ
= 5

16
(cos4 θ + 6 cos2 θ + 1) . (17)

Note that in the γ γ CM frame, the final γ has a non-trivial 
angular distribution for spin-2 tensor. This also shows up in the 
laboratory frame. We find that comparing A(0, θL) and A(2, θL), 
one can distinguish different cases even without knowing �i,γ γ

and Bi,γ γ separately.
In Fig. 5, we plot A(0, θL) and A(2, θL) for several different 
√

s. 
We see that at 

√
s = 1 TeV, the differences for spin-0 and spin-2 

laboratory frame angular distribution are substantial. This can be 
used to distinguish whether φ is a spin-0 or a spin-2 state. For 
spin-0 case, the distribution is almost flat despite of the boost ef-
fect shown in eq. (14) in the laboratory frame. This is because that 
at 1 TeV, the particle produced has a small kinetic energy and it 
is almost at rest. However, the boost effects show up with higher 
energies which can be clearly seen in Figs. 5.b and 5.c where the 
laboratory frame energies are 1.5 TeV and 2 TeV, respectively. Also 
note that at 1 TeV laboratory frame energy, there is almost no dif-
ference between the polarized and unpolarized cases despite the 
distributions for these two cases are different and therefore the 
boost effects should be different. Again this is because that at 
1 TeV laboratory energy, the boost effects are small. At higher en-
ergies, the effects become visible as can be seen from Figs. 5.b and 
5.c.

For the purpose of studying the 750 GeV resonant state φ, if 
energy is higher than 1 TeV, the production cross section drops 
and therefore the event rate becomes smaller. So, in practice one 
prefers energy not much larger than 1 TeV. Also the angular differ-
ences between the spin-0 and spin-2 cases become smaller when 
energies go higher. Energy higher than 1 TeV is, again, not favored. 
We now take 

√
s = 1 TeV to estimate theoretical statistical error in 

angular distribution measurements. We will assume the total inte-
grated luminosity to be 1000 fb−1 as our input.

To obtain event numbers, one needs to know �2
J ,γ γ /� J ,total . 

We use � J ,gg� J ,γ γ /� J ,total ∼ 1 MeV as an input for our esti-
mate. Theoretical estimate of δ = � J ,γ γ /� J ,gg has a large range. 
For example, in scenarios of a warped extra dimension contain-
ing bulk SM fields, δ is estimated to be of order [14] 0.1 for 
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φ with spin-2, and in other models, it ranges from 10−2 to 
10−3 [4]. We will take a middle value δ = 10−2 as an example 
for estimate. In this case �2

J ,γ γ /� J ,total ∼ 10−2 MeV. With the to-

tal integrated luminosity to be 1000 fb−1 and information from 
Fig. 2 one would obtain an event number N ∼ 290 for unpolar-
ized case, and N ∼ 1070 for polarized case for 

√
s = 1 TeV. In 

Fig. 6 we show histogram plots for Ni/N as a function of cos θL

with Ni being the event number in a bin for an interval of 0.2 for 
cos θL .

From Fig. 6, we see that the separation at cos θL close to 0 or 
±1 for unpolarized case in some bins the significance can be about 
2σ , but for polarized case separation can be much more significant 
as can be seen in Fig. 6. Note that in Ni/N the factor product of lu-
minosity times �2

J ,γ γ /� J ,total is cancelled out, it does not depend 
on N . The error in Ni/N scales as 1/

√
N . Therefore with higher 

luminosity or larger δ, the error bars will shrink and make the dis-
tinction of spin-0 and spin-2 cases even more obvious. In the worst 
scenario case where �γγ = 1 MeV and �total = �gg = 45 GeV, with 
integrated luminosity of 1000 fb−1, even for polarized case the 
event number is only a few, there is not enough statistics for de-
ciding whether φ has spin-0 or spin-2. A much larger luminosity 
is needed.

4. Summary

To summarize, we have studied how a γ γ collider can help to 
provide some of the most important information about the φ res-
onant state hinted by LHC run II data. We have shown that a γ γ

collider constructed by using the laser backscattering technique on 
the electron and positron beams in an e+e− collider can verify 
whether φ indeed exists, and probe some important properties of 
it. The optimal 

√
s is slightly below 1 TeV. With an integrated lu-

minosity of 1000 fb−1, different models can be tested by studying 
φ → γ Z , φ → Z Z and φ → W +W − . Studying angular distribution 
of the γ γ through on-shell production of φ and its subsequent de-
cays into a γ γ pair can provide useful information whether the φ
is a spin-0 or a spin-2 state.
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