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Abstract

We work out boundary conditions for the covariant open string in the type IIA plane wave background, which corresp
the D-branes in the type IIA theory. We use the kappa symmetric string action and see what kind of boundary condition
be imposed to retain kappa symmetry. We find half BPS as well as quarter BPS branes and the analysis agrees with th
work in the light cone gauge if the result is available. Finally we find that D0-brane is non-supersymmetric.
 2003 Published by Elsevier Science B.V.

1. Introduction

Recently the string theory on the plane wave background has attracted much attention in relation
correspondence to theN = 4 Supersymmetric Yang–Mills (SYM) theory [1,2]. It is now well known that
the usual AdS/CFT correspondence, the various checks have been done essentially on the supergravity
the string side. In the seminal paper by Berenstein et al. [2], this major obstacle was overcome, thereby
the explicit correspondence between more general string states and the suitable Yang–Mills operators in
wave background [3], which is the Penrose limit of the AdS [4]. After their paper, more progress was m
how the string Hamiltonian is mapped to the anomalous dimension of the Yang–Mills operator and more
dictionaries for the correspondence have been developed [5–11].

The previously mentioned development was made in type IIB side. In type IIA side, the matrix theo
the plane wave background has been important focus in relation to the better understanding of the M-th
the plane wave background [2,12]. Recently, simple type IIA string theory on the plane wave backgrou
proposed by the Kaluza–Klein compactification of the M-theory [13,14]. The resulting string theory has ma
features. It admits light cone gauge where the string theory spectrum is that of the free massive theory as
in type IIB [1]. Furthermore the worldsheet enjoys(4,4) supersymmetry [13]. The structure of the supersymm
is simpler than that of type IIB in the sense that the supersymmetry commutes with the Hamiltonian so
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members of the same supermultiplet has the same mass. In the extended version, more detailed expo
given and the various 1/2 BPS D-branes states were analyzed in the light cone gauge [15], which are com
with the BPS branes in matrix model [16,17].

The purpose of this Letter is to carry out the analysis about the D-branes states in the covariant set
follow the logic of Lambert and West [18] and consider the kappa symmetric string action in the plane
background and figure out how the supersymmetry is reduced when we impose suitable boundary cond
the boundary of the worldsheet. Similar work [19] has been done in type IIB side and given results in agr
with the previous results [20–22]. See also [23,24] for recent alternative study. Various aspects of kappa s
and worldsheet supersymmetry in the plane wave background is discussed in [25]. In our study, as expecte
D-brane located at the origin of the plane wave background, the analysis in the covariant setting coincides
in the lightcone gauge [15]. The merit of the covariant analysis is that we are able to work out other D-bran
which are difficult to analyze in the lightcone gauge. For example, we work out the supersymmetry of D-p
(in fact, non-supersymmetry) and analyze the supersymmetry of D-branes located away from the origin
investigation we found out some potential subtleties arising in the D-brane analysis in the lightcone gauge.
comment on this in the later section. We think that the analysis in the covariant setting is a good starting
sort out various, sometimes conflicting, claims [26] on the number of supersymmetry of various D-brane
pp-wave.

2. Covariant Wess–Zumino action of type IIA string

The covariant description of D-branes via open string may be given by investigating the boundary contr
in the kappa symmetry variation of the Wess–Zumino part of the superstring action [19]. In this section,
from the superspace geometry ofAdS4 × S7 [27] whose Penrose limit leads to the eleven-dimensional pp-w
background, we derive the covariant Wess–Zumino action of type IIA superstring in the IIA pp-wave back
of Refs. [13,14] up to quartic order in the fermionic coordinateθ .

The eleven-dimensional superspace geometry ofAdS4 × S7 [27] is encoded in the super elfbein̂EÂ = (Ê r̂ , Ê)

and the three form superfield̂B.1 The super elfbein is

Ê r̂ = dxµ̂ êr̂µ̂ + 2
15∑
n=0

1

(2n+ 2)! θ̄Γ
r̂M2nD̂θ,

(2.1)Ê =
16∑
n=0

1

(2n+ 1)!M
2nD̂θ,

whereê r̂
µ̂

is the elfbein and̂Dθ , the covariant derivative ofθ , is given by

(2.2)D̂θ = dθ + 1

4
ω̂r̂ŝΓr̂ŝ + êr̂T ŝt̂ ûv̂

r̂
F̂ŝ t̂ ûv̂θ

with the eleven-dimensional spin connectionω̂r̂ŝ . The matrixM2 is

(2.3)M2
ab = 2

(
T ŝt̂ ûv̂
r̂

F̂ŝ t̂ ûv̂θ
)
a

(
θ̄Γ r̂

)
b
− 1

4

(
Γ r̂ŝθ

)
a

(
θ̄St̂ûv̂ŵ

r̂ ŝ
F̂t̂ ûv̂ŵ

)
b
.

1 We note that̂E meansÊ â . The index notations adopted here are as follows:M,N, . . . are used for the target superspace indices w
A,B, . . . for tangent superspace. As usual, a superspace index is the composition of two types of indices such asM = (µ,α) andA = (r, a).
µ,ν, . . . (r, s, . . .) are the ten-dimensional target (tangent) space–time indices.α,β, . . . (a, b, . . .) are the ten-dimensional (tangent) spin
indices. For the eleven-dimensional case, we denote quantities and indices with hat to distinguish from those of ten dimensions.m,n, . . . are
the worldsheet vector indices with valuesτ andσ . The convention for the worldsheet antisymmetric tensor is taken to beετσ = 1.
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The definitions for the tensor structures are as follows:

(2.4)T ŝt̂ ûv̂
r̂

≡ 1

288

(
Γ ŝt̂ûv̂
r̂

− 8δ[ŝ
r̂
Γ t̂ûv̂]), St̂ ûv̂ŵ

r̂ ŝ
≡ 1

72

(
Γ t̂ûv̂ŵ
r̂ ŝ

+ 24δ[t̂
r̂
δû
ŝ
Γ v̂ŵ]).

The three form superfield is given by

(2.5)B̂ = 1

6
êr̂ ∧ êŝ ∧ êt̂ Ĉr̂ ŝt̂ −

1∫
0

dt θ̄Γr̂ŝ Ê ∧ Ê r̂ ∧ Ê ŝ ,

whereĈr̂ŝ t̂ is three form gauge field whose field strength isF̂r̂ ŝt̂ û = 4∂[r̂ Ĉŝ t̂ û]. We note that the super elfbeins
the second term on the right-hand side havet dependence in a way thatθ ’s in (2.1) are replaced asθ → tθ .

The component fields in Eqs. (2.1) and (2.5) are for theAdS4 × S7. As shown in [4], by taking the Penros
limit [28], they become the fields describing the eleven-dimensional pp-wave background. After some rot
a certain plane, say 49-plane, for our convenience in ten dimensions, the eleven-dimensional pp-wave ba
becomes as follows:2

ê+ = dx+, ê− = dx− + 1

2
A

(
xI

)
dx+,

(2.6)êI = dxI , ê9 = dx9 + µ

3
x4dx+, F̂+123= µ,

whereµ is constant characterizing the pp-wave,I = 1, . . . ,8 and

(2.7)A
(
xI

) =
(
µ

3

)2 4∑
i=1

(
xi

)2 +
(
µ

6

)2 8∑
i′=5

(
xi

′)2
.

We now turn to the ten-dimensional background, which is the type IIA pp-wave background obtained fr
circle compactification of the eleven-dimensional pp-wave (2.6). If we takex9 as the direction of compactificatio
then the usual Kaluza–Klein dimensional reduction leads us to have the following ten-dimensional backgr

e+ = dx+, e− = dx− + 1

2
A

(
xI

)
dx+,

(2.8)eI = dxI , F+123= µ, F+4 = −µ

3
.

In terms of these ten-dimensional fields and by using the logic of the Kaluza–Klein reduction, one can
the elementary pieces of the eleven-dimensional superfields (2.1) and (2.5), which areD̂θ and the matrixM2.
Firstly, the eleven-dimensional supercovariant derivative becomes

(2.9)D̂θ = Dθ + µ

6

(
Γ +4h−θ

)
ê9,

whereDθ is the ten-dimensional supercovariant derivative ofθ andh± is the operator projecting spinor states o
the states with eigenvalue±1 of Γ 12349:

(2.10)h± = 1

2

(
1± Γ 12349).

The covariant derivativeDθ is given by

(2.11)Dθ = dθ + 1

4
ωrsΓrsθ +Ωθ,

2 For detailed derivation of this background and its ten-dimensional reduction, see [13].



S. Hyun et al. / Physics Letters B 559 (2003) 80–88 83

is

l

in the

t
embrane

hat is,

rm and
ic
btained
round
where the non-vanishing ten-dimensional spin connection is

(2.12)ω−I = 1

2
∂IAdx+

and the definition forΩ is

(2.13)Ω = µ

12

[−e+(
Γ −Γ +123+ 2Γ 49(2h− − h+)

) + 2eiΓ +iΓ 123+ 2e4Γ +9h+ − ei
′
Γ +i′Γ 123],

wherei = 1,2,3 andi ′ = 5,6,7,8. The explicit expression of matrixM2 in term of ten-dimensional quantities
obtained as

(2.14)

M2
ab = −i

µ

6

[(
Γ −Γ +123θ + 3Γ 123θ

)
a

(
θ̄Γ +)

b
+ (

Γ +i′Γ 123θ
)
a

(
θ̄Γ i′)

b
+ (

Γ +4Γ 123θ
)
a

(
θ̄Γ 4)

b

+ (
Γ +9Γ 123θ

)
a

(
θ̄Γ 9)

b
+ (

Γ +i′θ
)
a

(
θ̄Γ −+i′Γ 123)

b
+ (

Γ +4θ
)
a

(
θ̄Γ −+4Γ 123)

b

+ (
Γ +9θ

)
a

(
θ̄Γ −+9Γ 123)

b
+ 1

2

(
Γ i′j ′

θ
)
a

(
θ̄Γ +i′j ′

Γ 123)
b
+ (

Γ i′4θ
)
a

(
θ̄Γ +i′4Γ 123)

b

+ (
Γ i′9θ

)
a

(
θ̄Γ +i′9Γ 123)

b
+ (

Γ +ij θ
)
a

(
θ̄Γ ij Γ 123)

b
− (

Γ +ij Γ 123θ
)
a

(
θ̄Γ ij

)
b

− (
Γ ij θ

)
a

(
θ̄Γ +ij Γ 123)

b

]
.

Here we note that, going from eleven to ten dimensions, the fermionic coordinateθ splits into two Majorana–Wey
spinors with oppositeSO(1,9) chiralities measured byΓ 9:

(2.15)θ = θ1 + θ2,

whereΓ 9θ1 = θ1 andΓ 9θ2 = −θ2.
We now have all the ingredients for writing down the covariant Wess–Zumino action of type IIA string

pp-wave background, (2.8). In the superfield formalism, the Wess–Zumino action is given by

(2.16)SWZ = 1

2πα′

∫
Σ

d2σ
1

2!ε
mnΠA

mΠB
n BBA,

whereΠA
m = ∂mZ

MEA
M with supercoordinateZM = (Xµ, θα) andBBA is the two form superfield.Σ represents

the worldsheet of open string. In the context of this Letter, it is useful to remind the well known fact thaSWZ
can be viewed as the action obtained from the Wess–Zumino action for the eleven-dimensional super m
through the double dimensional reduction [29]. Since we compactify the super membrane along thex9 direction,
the two form superfield is identified with the eleven-dimensional three form superfield with the index 9, t
B̂9NM . Then the above Wess–Zumino action is rewritten as

(2.17)SWZ = 1

2πα′

∫
Σ

d2σ
1

2!ε
mn∂mZ

M∂nZ
NB̂9NM.

Now by using Eqs. (2.1), (2.5), (2.8), (2.9) and (2.14), the Wess–Zumino action is given in component fo
expanded in terms ofθ . Although it has expansion up to 32th order inθ , we will give the expansion up to quart
order since, as we shall see in Section 3, the non-trivial information for the description of D-branes is o
already at the quartic order. The resulting Wess–Zumino action of type IIA string in the IIA pp-wave backg
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(2.18)

SWZ = i

2πα′

∫
Σ

d2σ εmn

[
−θ̄Γr9Dmθe

r
n − i

2

(
θ̄Γr9Dmθ

)(
θ̄Γ rDnθ

) − µ

12

(
θ̄ΓrsΓ

+4h−θ
)
erme

s
n

+ i
µ

12

(
θ̄Γ rΓ +4h−θ

)(
θ̄ΓrsDmθ

)
esn + i

µ

12

(
θ̄Γ 9Γ +4h−θ

)(
θ̄Γ9rDmθ

)
ern

− i
µ

12

(
θ̄ΓrsΓ

+4h−θ
)(
θ̄Γ rDmθ

)
esn − i

µ

12

(
θ̄Γ9rΓ

+4h−θ
)(
θ̄Γ 9Dmθ

)
ern

− 1

12

(
θ̄Γr9M2Dmθ

)
ern − µ

144

(
θ̄ΓrsM2Γ +4h−θ

)
erme

s
n +O

(
θ6)],

whereerm = ∂mX
µerµ andDmθ = ∂mX

µ(Dθ)µ.

3. Boundary conditions from kappa symmetry

Theκ symmetry transformation rules are read off from

(3.1)δZMEr
M = 0, δZMEa

M = (
1− Γ Γ 9)a

bκ
b,

whereΓ = 1
2!ε

mnΠr
mΠ

s
nΓrs . From (3.1), one can see that the variation ofXµ is given by

(3.2)δXµ = −iθ̄1Γ µδθ1 − iθ̄2Γ µδθ2 +O
(
θ3).

Here we retain the variations up to the quadratic inθ since we are interested in the kappa variation up to the qu
in θ . As shown in [19], the kinematic parts of the kappa symmetric action does not produce the boundar
so we just consider the variations of the Wess–Zumino terms. We divide the resulting kappa variations
parts, i.e.,µ independent part,µ dependent part with no position dependence and finally the part with bothµ and
position dependence.

µ independent part gives the same result as in the flat case, which gives the well-known result [18]. The
variation is given by

(3.3)δSWZ →
∫
∂Σ

[
i
(
θ̄1Γrδθ

1 − θ̄2Γrδθ
2)dXµerµ − (

θ̄1Γr dθ
1 θ̄1Γ rδθ1 − θ̄2Γr dθ

2 θ̄2Γ rδθ2)],
where∂Σ represents the boundary ofΣ , that is, the boundary of open string worldsheet. Here the arrow m
that we are ignoring overall coefficients in front of the Wess–Zumino terms. In order to have vanishing va
on the boundary, we impose the usual half-BPS boundary conditions,

(3.4)θ2 = Pθ1

with

(3.5)P = Γ +−i1i2···i(p−1) ,

where+ − i1i2 · · · i(p−1) denotes the Neumann directions of the D-brane considered. Andp should be even sinc
θ1 andθ2 have opposite chiralities. Then3

(3.6)θ̄2Γrδθ
2 =

{+θ̄1Γrδθ
1: r ∈ N,

−θ̄1Γrδθ
1: r ∈ D.

3 r ∈ N(D) means thatr is the direction of Neumann (Dirichlet) boundary condition.
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It is clear that the boundary conditions eliminate the boundary terms.
The kappa variation of the Wess–Zumino terms which have dependence onµ with no position dependence

given by

(3.7)

δSWZ →
∫
∂Σ

dXµ erµ

[(
θ̄1Γ sδθ1 + θ̄2Γ sδθ2)

×
(
θ̄1

(
2Γ[rΩs] − µ

12
ΓrsΓ

+4h−
)
θ2 − θ̄2

(
2Γ[rΩs] + µ

12
ΓrsΓ

+4h−
)
θ1

)
+ (

θ̄2Γ sδθ2)(θ̄1ΓsΩrθ
2) − (

θ̄1Γ sδθ1)(θ̄2ΓsΩrθ
1)

− µ

12

(
θ̄1Γrsδθ

2 + θ̄2Γrsδθ
1)(θ̄1Γ sΓ +4h−θ1 + θ̄2Γ sΓ +4h−θ2)

− µ

12

(
θ̄1δθ2 − θ̄2δθ1)(θ̄1ΓrΓ

+4h−θ1 − θ̄2ΓrΓ
+4h−θ2) + i

12

(
θ̄Γr9M2δθ

)]
.

First consider terms of the structureθ̄Γrsδθ

(3.8)θ̄1Γrsδθ
2 + θ̄2Γrsδθ

1 =
{

0: r ∈ N, s ∈ D(N), for p = 2,6 (4,8),
2θ̄1ΓrsPδθ1: r ∈ N, s ∈ N(D), for p = 2,6 (4,8).

We see that forp = 4,8 (2,6) with s ∈ D (N), θ̄1Γ sΓ +4h−θ1 + θ̄2Γ sΓ +4h−θ2 should vanish. However, it doe
not vanish only with the boundary conditionθ2 = Pθ1. Some constraints should be imposed on the structureP
and thus picks up the branes with particular orientations. Let us label the matrixP by three non-negative integersn,
n4 andn′ with n+ n4 + n′ = p − 1:

P (n,n4,n
′).

n(n′) denotes the number of gamma matrices with indices in 123 (5678) directions andn4 the presence or th
absence ofΓ 4 thus taking value of 0 or 1, respectively, in Eq. (3.5).

Careful analysis shows that

(3.9)θ̄1Γ sΓ +4h−θ1 + θ̄2Γ sΓ +4h−θ2 = 0

if we bear in mind thats ∈ N(D) for p = 2,6 (4,8) and impose the following constraints,

p = 2,6: n = odd, n4 = 0,

(3.10)p = 4,8: n = even, n4 = 1.

Interestingly, one can check, with lengthy calculation, that all other remaining terms in (3.7) vanishe
impose the constraints (3.10).

Possible D-brane configurations making the above boundary contributions vanish are given by the fo
choices of(n,n4, n

′) for Dp-brane.

p = 2: (1,0,0),

p = 4: (0,1,2), (2,1,0),

p = 6: (1,0,4), (3,0,2),

(3.11)p = 8: (2,1,4).

This exactly coincides with the previous result obtained in the light-cone gauge formulation [15].
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Finally the kappa variations which have both dependence onµ and the position are given by

(3.12)

δSWZ →
∫
∂Σ

dXµ erµ

[(
θ̄1Γ sδθ1 + θ̄2Γ sδθ2)(θ̄1ω[r−I Γs]Γ +I θ1 − θ̄2ω[r−I Γs]Γ +I θ2)

+ 1

2

(
θ̄1Γ sδθ1)(θ̄2ω−I

r ΓsΓ
+I θ2) − 1

2

(
θ̄2Γ sδθ2)(θ̄1ω−I

r ΓsΓ
+I θ1)].

Note that the position dependence comes from the spin connectionω−I
r . From this action, we need to consider on

for r ∈ N sincedXµ erµ = 0 for r ∈ D. First term vanishes fors ∈ D or I ∈ N . However, fors ∈ N andI ∈ D, it
does not vanish and becomes

(3.13)4
(
θ̄1Γ sδθ1)(θ̄1ω[r−I Γs]Γ +I θ1).

The remaining terms combine to vanish forI ∈ N but for I ∈ D we have

(3.14)±(
θ̄1Γ sδθ1)(θ̄1ω−I

r ΓsΓ
+I θ1),

where+(−) sign corresponds tos ∈ D(N). At this point, we have to impose additional boundary condition

(3.15)Γ +θ1
∣∣
∂Σ

= 0.

This leads to 1/4-BPS.
What would be the physical consequence of the results obtained above? It is well known that the app

sigma model of the open string coupled to open string background is given by

(3.16)S = 1

4πα′

∫
Σ

d2σ
√−hhab∂aX

µ∂bX
ν −

∫
∂Σ

ds

(
Aµ

∂

∂s
Xµ + φi ∂

∂σ
Xi

)
,

for bosonic case whereXis denote the Dirichlet directions. If we consider supersymmetric case, we should co
a suitable supersymmetric generalization of (3.16). For the flat background, such model were considere
in the RNS formalism. Even though the detailed form of the action is not known for the plane wave backg
we expect that the one-dimensional boundary theory defined above should have different form for the b
located away from the origin from that at the origin, since the number of supersymmetries are differe
of such differences can be captured by the Dirac–Born–Infeld action, which can be derived by the cond
the vanishing beta function of (3.16) or its suitable supersymmetric generalization. Currently this issue is
investigation [31].

So far we work out the kappa variation up to the quartic terms inθ coordinates. Thus it is interesting to s
if the results obtained above are persistent at the higher orders, which we suspect so. Especially for the
branes where the analysis in the light cone gauge is available, the higher terms should not modify the analy
quartic order. For the type IIB case, there are some hand waving argument that the quartic results will go
the higher orders [19]. It will be interesting to see if we can find similar argument in the type IIA theory.

4. D-particle

Now we consider the possible constraints on the supersymmetry of the open string where the D-
boundary condition is given. This case cannot be covered by the lightcone analysis. As a first attempt,
P = Γ + which means the D-particle whose worldline lies alongx+. Same thing happens forP = Γ −. Then even
the boundary contribution (3.3) does not vanish. So we consider the boundary conditionθ2 = Pθ1 with

(4.1)P = 1

γ

(
Γ + + γΓ −)

,
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whereγ is a real constant. With this boundary condition, one can easily see that Eq. (3.3) vanishes.
Let us turn to the boundary contribution, Eq. (3.7). First look at the term with the structure ofθ̄Γrsδθ , the third

line in (3.7). It does not vanish whenr ∈ N ands ∈ D, and is proportional to

(4.2)
(
θ̄1ΓrsPδθ1)[θ̄1Γ sΓ 4(Γ +θ1− + γΓ −θ1+

)]
,

where

(4.3)θ1± = h±θ1.

We should impose additional boundary conditions as

(4.4)Γ ±θ1∓
∣∣
∂Σ

= 0.

The terms in the first line of (3.7) vanishes basically because of the antisymmetric property between the ir

ands, andr, s ∈ N . (If r ∈ D or s ∈ D, it automatically vanishes.)
The terms in the second line of (3.7) do not vanish. For example, fors ∈ N , that is,Γ s = P , they are proportiona

to, with (4.4),

(4.5)
(
θ̄1+Γ +δθ1+ + γ θ̄1−Γ −δθ1−

)(
θ1+Γ 4Γ −θ1− − θ1−Γ 4Γ +θ1+

)
.

To eliminate this contribution, we should further require boundary condition as

(4.6)Γ ±θ1±
∣∣
∂Σ

= 0.

All other terms with each boundary conditions for indices vanish. For example, the first term vanishes b
because of the antisymmetric property between the indicesr ands, andr, s ∈ N . (If r ∈ D or s ∈ D, it automatically
vanishes.)

We see that D-particle is not supersymmetric.
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