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Abstract

We work out boundary conditions for the covariant open string in the type IIA plane wave background, which corresponds to
the D-branes in the type IIA theory. We use the kappa symmetric string action and see what kind of boundary conditions should
be imposed to retain kappa symmetry. We find half BPS as well as quarter BPS branes and the analysis agrees with the previous
work in the light cone gauge if the result is available. Finally we find that DO-brane is non-supersymmetric.

0 2003 Published by Elsevier Science B.V. Open access under CC BY license,

1. Introduction

Recently the string theory on the plane wave background has attracted much attention in relation to the
correspondence to th¥ = 4 Supersymmetric Yang—Mills (SYM) theory [1,2]. It is now well known that for
the usual AdS/CFT correspondence, the various checks have been done essentially on the supergravity states ol
the string side. In the seminal paper by Berenstein et al. [2], this major obstacle was overcome, thereby showing
the explicit correspondence between more general string states and the suitable Yang—Mills operators in the plane
wave background [3], which is the Penrose limit of the AdS [4]. After their paper, more progress was made on
how the string Hamiltonian is mapped to the anomalous dimension of the Yang—Mills operator and more precise
dictionaries for the correspondence have been developed [5-11].

The previously mentioned development was made in type 1IB side. In type IlA side, the matrix theory on
the plane wave background has been important focus in relation to the better understanding of the M-theory on
the plane wave background [2,12]. Recently, simple type IlA string theory on the plane wave background was
proposed by the Kaluza—Klein compactification of the M-theory [13,14]. The resulting string theory has many nice
features. It admits light cone gauge where the string theory spectrum is that of the free massive theory as happens
in type 1IB [1]. Furthermore the worldsheet enjais 4) supersymmetry [13]. The structure of the supersymmetry
is simpler than that of type 1IB in the sense that the supersymmetry commutes with the Hamiltonian so that all
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members of the same supermultiplet has the same mass. In the extended version, more detailed exposition was
given and the various/2 BPS D-branes states were analyzed in the light cone gauge [15], which are compatible
with the BPS branes in matrix model [16,17].

The purpose of this Letter is to carry out the analysis about the D-branes states in the covariant setting. We
follow the logic of Lambert and West [18] and consider the kappa symmetric string action in the plane wave
background and figure out how the supersymmetry is reduced when we impose suitable boundary conditions on
the boundary of the worldsheet. Similar work [19] has been done in type IIB side and given results in agreement
with the previous results [20—22]. See also [23,24] for recent alternative study. Various aspects of kappa symmetry
and worldsheet supersymmetry in the plane wave background is discussed in [25]. In our study, as expected, for the
D-brane located at the origin of the plane wave background, the analysis in the covariant setting coincides with that
in the lightcone gauge [15]. The merit of the covariant analysis is that we are able to work out other D-brane states,
which are difficult to analyze in the lightcone gauge. For example, we work out the supersymmetry of D-particle
(in fact, non-supersymmetry) and analyze the supersymmetry of D-branes located away from the origin. In the
investigation we found out some potential subtleties arising in the D-brane analysis in the lightcone gauge. We will
comment on this in the later section. We think that the analysis in the covariant setting is a good starting point to
sort out various, sometimes conflicting, claims [26] on the number of supersymmetry of various D-branes in the
pp-wave.

2. Covariant Wess-Zumino action of typellA string

The covariant description of D-branes via open string may be given by investigating the boundary contributions
in the kappa symmetry variation of the Wess—Zumino part of the superstring action [19]. In this section, starting
from the superspace geometryA&dS; x S’ [27] whose Penrose limit leads to the eleven-dimensional pp-wave
background, we derive the covariant Wess—Zumino action of type IIA superstring in the IIA pp-wave background
of Refs. [13,14] up to quartic order in the fermionic coordinate

The eleven-dimensional superspace geometAds;, x S7 [27] is encoded in the super elfoelit* = (E7, E)
and the three form superfiel?j.1 The super elfbein is

15
—~n PN 1 _ A ~
EM=dx?el 425y — = ar° M De,
et l;)(zwz)z

16

1 oy
E = _— DO 2.1
> G @

Whereég is the elfbein andé, the covariant derivative df, is given by
-~ 1. . PEPYYONN
DO =do + 70" I + & T3 Fogasf (2.2)

with the eleven-dimensional spin connectidii. The matrixAM? is

2 ~ o~

M, =2( fgtﬁﬁﬁffﬁﬁ@)a(éﬂ)b - Z(Fﬁe)a(éségﬁwFtﬁM))b‘ (2.3)

1 We note thatE meansE ¢. The index notations adopted here are as follaWsN, ... are used for the target superspace indices while
A, B, ... for tangent superspace. As usual, a superspace index is the composition of two types of indices\suclyasy) andA = (r, a).
u,v,... (r,s,...) are the ten-dimensional target (tangent) space-time indicgk.... (a, b, ...) are the ten-dimensional (tangent) spinor
indices. For the eleven-dimensional case, we denote quantities and indices with hat to distinguish from those of ten dimemsionare
the worldsheet vector indices with valuesndo. The convention for the worldsheet antisymmetric tensor is taken ¢%e- 1.
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The definitions for the tensor structures are as follows:

Fgfﬁa — 2_;8( F&fﬁﬁ _ &SEF{L;:;]), S;:g‘ﬁ“” — 7_2( ;’;ﬁﬁ’z’ I 245£55?Faw])_ (2.4)
The three form superfield is given by
1
E:%é%é%éfém—/wér;gﬁA E7 AES, (2.5)
0

o~

whereC;;; is three form gauge field whose field strengttfjs;; = 49(7C;;;1- We note that the super elfbeins in
the second term on the right-hand side hadependence in a way th@s in (2.1) are replaced a&— 6.
The component fields in Egs. (2.1) and (2.5) are forAl&; x S’. As shown in [4], by taking the Penrose
limit [28], they become the fields describing the eleven-dimensional pp-wave background. After some rotation in
a certain plane, say 49-plane, for our convenience in ten dimensions, the eleven-dimensional pp-wave background

becomes as follow$:
1
et =dxt, ¢ =dx 4+ EA(x’)der,
élzdxl, égzdxg-l- %x4dx+, j*:+123= w, (26)

whereu is constant characterizing the pp-waves 1, ..., 8 and

ATy = (%)Zé(xi)z—i- (%)2i(xf’)2. @7)

i'=5

We now turn to the ten-dimensional background, which is the type IIA pp-wave background obtained from the
circle compactification of the eleven-dimensional pp-wave (2.6). If we tdlas the direction of compactification,
then the usual Kaluza—Klein dimensional reduction leads us to have the following ten-dimensional background:

1
et =dx™T, (f:dx7+§A(x1)dx+,
7
el = dxl, Fi123= UL, Fig= —3 (2.8)

In terms of these ten-dimensional fields and by using the logic of the Kaluza—Klein reduction, one can express
the elementary pieces of the eleven-dimensional superfields (2.1) and (2.5), whibid ared the matrix\12.
Firstly, the eleven-dimensional supercovariant derivative becomes

Do = Do + %(F+4h_6)é9, (2.9)

whereD¢ is the ten-dimensional supercovariant derivativé ahdi . is the operator projecting spinor states onto
the states with eigenvalugl of 12349
1

he = E(l + 12349, (2.10)

The covariant derivativ®? is given by

1
D6 =d6 + 30" [0 + 26, (2.11)

2 For detailed derivation of this background and its ten-dimensional reduction, see [13].
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where the non-vanishing ten-dimensional spin connection is

1
wl= A dx™ (2.12)
and the definition fox?2 is

Q2= 1% [—et (F~ B4 2r%@2h. — hy)) + 26 T M8 4 264700, — o 1+ 1129], (2.13)
wherei =1,2,3 andi’ =5, 6, 7, 8. The explicit expression of matri%1? in term of ten-dimensional quantities is
obtained as

M2, = —16[(1“ %% 4 3r1%%) (Gr), + (r+'ri?%) 6r’), + (rrt¥) 6r),
+(r2rt#),(6r°), (FH,@) (Or=*'ri®), 4 (r+), (6r-rt?),
+(r*%), (er—*°rt?3), + rllg) (Er+7' ri®) 4 (%) (GrHtria)
+(r'"%) (Br+°r?d) 4+ ( F+'/9) (Grii ri2d), _ (r+iri2) (Grii),
—(rUe),Ertrs), ] (2.14)

Here we note that, going from eleven to ten dimensions, the fermionic coordisptis into two Majorana—\Weyl
spinors with opposit80(1, 9) chiralities measured by ®:

6 =61 +62, (2.15)

wherer%9 = 6! and %2 = —62.
We now have all the ingredients for writing down the covariant Wess—Zumino action of type IIA string in the
pp-wave background, (2.8). In the superfield formalism, the Wess—Zumino action is given by

1 1
SWZ = ﬁfdza Eem”H,ﬁH,?BBA, (216)
X

wherel14 = 3,,ZM E4, with supercoordinat€™ = (X*,6%) and Bg4 is the two form superfieldZ represents

the worldsheet of open string. In the context of this Letter, it is useful to remind the well known facjhat

can be viewed as the action obtained from the Wess—Zumino action for the eleven-dimensional super membrane
through the double dimensional reduction [29]. Since we compactify the super membrane alofglitleetion,

the two form superfield is identified with the eleven-dimensional three form superfield with the index 9, that is,
EgNM. Then the above Wess—Zumino action is rewritten as

1 1 -~
SWZ = ﬁfdzo— EémnaszanZNBgNM. (217)
X

Now by using Egs. (2.1), (2.5), (2.8), (2.9) and (2.14), the Wess—Zumino action is given in component form and
expanded in terms @&f. Although it has expansion up to 32th ordewinwe will give the expansion up to quartic

order since, as we shall see in Section 3, the non-trivial information for the description of D-branes is obtained
already at the quartic order. The resulting Wess—Zumino action of type IlA string in the IIA pp-wave background
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is then

i

Swz = f d?c e [—ér,gl)mee; - %(éfrgDmG)(éFanG) - ]%(G_F”F'Mh_e)efnefl

p))

2ma’

+ ilﬁz(éﬂr“h,e)(érrs Dyb)el + ilﬂz(érgr“h,@)(érg,Dme)e;

— i (B0 I h_0) (01" Dub)ey — i 15 (070 I *h-0)(FT°Dyb)e,
1 _
— = (050M?Dy6)e; — o (DT MPT*h_0)e], e} + 0(96)}, (2.18)

wheree), = 8mX/‘eL andD,,0 = 3, X*(D0),.

3. Boundary conditions from kappa symmetry

Thex symmetry transformation rules are read off from
SZMEL, =0,  8ZMES = (1-I1%"«?, (3.1)
wherel” = %e’"”]‘[,’nn,fl“”. From (3.1), one can see that the variatiorkéf is given by
SXM = —i1rHset —ig2rrse? + 0(63). (3.2)

Here we retain the variations up to the quadrati¢ Bince we are interested in the kappa variation up to the quartic
in 6. As shown in [19], the kinematic parts of the kappa symmetric action does not produce the boundary terms,
S0 we just consider the variations of the Wess—Zumino terms. We divide the resulting kappa variations as three
parts, i.e.u independent parjy dependent part with no position dependence and finally the part withybattd
position dependence.

wu independent part gives the same result as in the flat case, which gives the well-known result [18]. The relevant
variation is given by

5Swz — /[i(élnael — 021,86%) dX"'el, — (01, d0 9T 86 — 67, d62671" 567) |, (3.3)
ED>)
whered X' represents the boundary &f, that is, the boundary of open string worldsheet. Here the arrow means

that we are ignoring overall coefficients in front of the Wess—Zumino terms. In order to have vanishing variation
on the boundary, we impose the usual half-BPS boundary conditions,

6% = pot (3.4)
with
P = [Hiizeipen (3.5)

where+ —iyiz - - -i(p—1) denotes the Neumann directions of the D-brane consideredp/stauld be even since
61 and6? have opposite chiralities. Thén

71 1.
+0-1,80": reN, (3.6)

62r.80°={ 7%
" { —0'r.80: renD.

3 1 € N(D) means that is the direction of Neumann (Dirichlet) boundary condition.
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It is clear that the boundary conditions eliminate the boundary terms.
The kappa variation of the Wess—Zumino terms which have dependencevith no position dependence is
given by

85wz — de“ e;[(élrsaeuézrsaez)
X

X (él(zr[,szs] - %F,SFHh_)GZ . 9‘2<21“[,951 + %Fmr“h_)el)

+ (621°80%) (61 1$2,0%) — (61 1°80%) (62T, $2,0%)
_K
12

(8167 —6256%) (91171 *h 0" — 621 h6%) + %Z(ér,g/\/tzae)} (3.7)

(6117586% + 6217580 ) (01 THh_0Y + 6215 T +4h_6?)

First consider terms of the structuié}.;86

0:_ reN, seD(N), forp=2,6(4038),

201r,Ps0Y: reN, seN(D), forp=26(4,8). (38)

011,602 + 62r,,801 = {

We see that fop = 4, 8 (2, 6) with s € D (N), 01 r+4h_o1 4+ 621 r+t4h_62 should vanish. However, it does
not vanish only with the boundary conditiéd = P9*. Some constraints should be imposed on the structufe of
and thus picks up the branes with particular orientations. Let us label the mRdtsixhree non-negative integers
ngandn’ withn+nq+n"=p—1:

pnnan)
n(n’) denotes the number of gamma matrices with indices in 123 (5678) directionséahé presence or the

absence of " thus taking value of 0 or 1, respectively, in Eq. (3.5).
Careful analysis shows that

s r+4n_o'+0°r’r+4h_62=0 (3.9)
if we bear in mind that € N(D) for p =2, 6 (4, 8) and impose the following constraints,

p=2,6. n=o0dd ng4=0,

p=4,8 n=even ng=1 (3.10)

Interestingly, one can check, with lengthy calculation, that all other remaining terms in (3.7) vanishes if we
impose the constraints (3.10).
Possible D-brane configurations making the above boundary contributions vanish are given by the following
choices of(n, na, n") for Dp-brane.
p=2: (1,0,0),
p=4 (012, (210,
p = 6: (17 O’ 4)’ (37 O’ 2)’
p=8(2,14). (3.11)

This exactly coincides with the previous result obtained in the light-cone gauge formulation [15].
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Finally the kappa variations which have both dependenge and the position are given by

8Swz — f dx* e, [(9’11“591 +6%1°80%) (6w, ' Ty I o1 — 62w, ~ Iy r+'e?)
X

+ %(9’11”591) (F%w, ' I, rt10?) - %(9‘21“5592) (élw;’nr“el)]. (3.12)

Note that the position dependence comes from the spin connegtiarFrom this action, we need to consider only
for r € N sinced X" ej =0 forr € D. First term vanishes for € D or / € N. However, fors € N and/ € D, it
does not vanish and becomes

46 res0) (0w, ryrtiet). (3.13)
The remaining terms combine to vanish foe N but for 7 € D we have

£(01r750Y) (0w, I, rto%), (3.14)
where+(—) sign corresponds toe D(N). At this point, we have to impose additional boundary condition

1

rte+,,=0. (3.15)

This leads to 14-BPS.
What would be the physical consequence of the results obtained above? It is well known that the appropriate

sigma model of the open string coupled to open string background is given by

1 3 9.
S /dzo V=hh?3, X" X" — /ds(A —X“+¢’8—X’>, (3.16)
o
X

- 4o’ Has

for bosonic case wher¥'s denote the Dirichlet directions. If we consider supersymmetric case, we should consider
a suitable supersymmetric generalization of (3.16). For the flat background, such model were considered in [30]
in the RNS formalism. Even though the detailed form of the action is not known for the plane wave background,
we expect that the one-dimensional boundary theory defined above should have different form for the boundary
located away from the origin from that at the origin, since the number of supersymmetries are different. Part
of such differences can be captured by the Dirac—Born—Infeld action, which can be derived by the condition of
the vanishing beta function of (3.16) or its suitable supersymmetric generalization. Currently this issue is on the
investigation [31].

So far we work out the kappa variation up to the quartic term& @oordinates. Thus it is interesting to see
if the results obtained above are persistent at the higher orders, which we suspect so. Especially for the half BPS
branes where the analysis in the light cone gauge is available, the higher terms should not modify the analysis at the
guartic order. For the type IIB case, there are some hand waving argument that the quartic results will go through
the higher orders [19]. It will be interesting to see if we can find similar argument in the type IIA theory.

4. D-particle

Now we consider the possible constraints on the supersymmetry of the open string where the D-particle
boundary condition is given. This case cannot be covered by the lightcone analysis. As a first attempt, we take
P = I'" which means the D-particle whose worldline lies alarig Same thing happens fér= I"~. Then even

the boundary contribution (3.3) does not vanish. So we consider the boundary coaditohe® with

PZ%(F“M/F_), (“-1)
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wherey is a real constant. With this boundary condition, one can easily see that Eq. (3.3) vanishes.
Let us turn to the boundary contribution, Eq. (3.7). First look at the term with the structaié @, the third
line in (3.7). It does not vanish whene N ands € D, and is proportional to

@t psot)[etrsri(rtet +yr-o})l, (4.2)
where
61 =niot. (4.3)
We should impose additional boundary conditions as
+5l
r<6z|,, =0. (4.4)

The terms in the first line of (3.7) vanishes basically because of the antisymmetric property between the indices
ands, andr,s € N. (If r € D ors € D, it automatically vanishes.)

The terms in the second line of (3.7) do not vanish. For example da¥, thatis,I" = P, they are proportional
to, with (4.4),

@G1r+set +yatr-set)(etrir-er —eltrirter). (4.5)
To eliminate this contribution, we should further require boundary condition as
r*el|,,. =0, (4.6)

All other terms with each boundary conditions for indices vanish. For example, the first term vanishes basically
because of the antisymmetric property between the indieesls, andr, s € N. (If r € D ors € D, itautomatically
vanishes.)

We see that D-particle is not supersymmetric.
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