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ABSl-lUCT 

We describe and survey in this paper iterative algorithms for solving the discrete 
maximum entropy problem with linear equality constraints. This problem has appli- 
cations e.g. in image reconstruction from projections, transportation planning, and 
matrix scaling. In particular we study local convergence and asymptotic rate of 
convergence as a function of the iteration parameter. For the trip distribution 
problem in transportation planning and the equivalent problem of scaling a positive 
matrix to achieve u priori given row and column sums, it is shown how the iteration 
parameters can be chosen in an optimal way. We also consider the related problem of 
finding a matrix X, diagonally similar to a given matrix, such that corresponding row 
and column norms in X are all equal. Reports of some numerical tests are given. 

1. INTRODUCTION 

In this paper we will study the behavior of particular methods for solving 
the following maximum entropy problem with linear equality constraints: 

n 

xf min 2 rlln; subject to Ax=b, x20, (1.1) 
* i-1 I 

where u is a given nonnegative vector and A = {a i i} an m X n matrix, with all 
rows aT#O. We state for clarity the following lemma, which is easily 
verified. 

LEMMA 1. Assume that the set F={x(Ax=bnx>O} is twnempty and 
that u > 0. Then (1.1) has a unique solution, which is positive if F contains a 

positive element. 
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REIMARK. If some components of u equal zero, then we will always put 
the corresponding elements of x to zero. We then consider a reduced 
problem with a matrix x obtained from A by deleting all columns corre- 
sponding to uI=xl=O. Similarily it is always possible, at least in theory, to 
reduce the problem so that the nonempty set F has a positive element. We 
will assume throughout this paper that this reduction has taken place. This 
assumption will allow us to apply the usual Kuhn-Tucker theorem to (1.1). 

The need to solve the problem (1.1) may arise when a linear model is 
described in a statistical environment (usually then xxi= T, with T an a 
priori given constant) and a solution which is most objective with respect to 
the missing information is sought; cf. [22], where the problem is derived from 
a minimum information principle. We further refer to the work by Frieden 
[9] for a derivation of (1.1) for use in image restoration and image reconstruc- 
tion from projections. 

In Sec. 2 iterative methods for solving the problem (1.1) are described. 
The algorithms utilize the special structure of the Kuhn-Tucker conditions 
for the problem. We consider some specific schemes and also relate these 
with methods proposed in the literature. In the following section local 
convergence and asymptotic rate of convergence are studied. It is shown 
that the methods exhibit the same rate of convergence as the linear SOR and 
Jacobi methods [17] applied to a certain linear system. In particular we 
derive conditions on the iteration parameters which will insure local conver- 
gence. 

In some applications, e.g. in the unweighted model used in picture 
reconstruction [lo] and in the trip distribution problem in traffic planning 
[20], the matrix elements aii equal 0 or 1. We show in Sec. 4 how the 
algorithms simplify and unif>r in this case. In Sec. 5 the trip distribution 
problem is presented. This problem is identical with scaling a positive matrix 
so that the row and column sums take on prescribed values [21]. We give for 
this case the optimal values of the iteration parameters. The side conditions 
in this application have one redundant row. We shortly discuss how the rate 
of convergence is affected by deleting this redundant information. 

In Sec. 6 we consider the related problem of finding a matrix X, 
diagonally similar to a given matrix, such that X is balanced, i.e., correspond- 
ing row and column norms in X are all equal. We show that this problem can 
be written in the form (1.1) for appropriate choices of A and u. In the last 
section we present some numerical results. 

2. THE ALGORITHMS 

The Kuhn-Tucker conditions for the problem ming(x) s.t. Ax= b are 
given by (i) Vg(x)=ATp and (ii) b=Ax. For the problem (1.1) they become 
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r,=upxp[ (ATP)i-l], (ATB)r= 5 a&, j-1,2 ,..., ta. (2.la) 
i-l 

b=Ax. (2.lb) 

Note that the positivity constraint on x is automatically satisfied. We remark 
that (2.1) provide both necessary and sufficient conditions for x* >0 to be 
the unique solution of (1.1). However if rank(A) < m, then the corresponding 
dual vector is not unique. In fact, as seen from (2.la), if /? is a solution, then 
p+z, where II is any vector in the m&pace of A’, is also a solution. By 
combining (2.la) and (2.lb) it follows that 

h,(P)= i aiiuiexp[(ATP)i-l]-bi=O, i=1,2 ,..., m. (2.2) 
j=l 

The methods considered in this paper are based on solving (2.2) for a/l 
and retrieving (the unique) x from (2.la). We will consider algorithms of the 
following form: 

P k+Lpk+& k-0,1,2 )..., (24 

where w is an iteration parameter. By defining [cf. (2.la)] 

the corresponding primal iteration scheme becomes 

xF+‘=xFexp[ w(ATAk)i], i=1.2 ,..., n, k=0,1,2 ,... . (2.5) 

The starting vector x O is taken as any vector that can be written in the form 
(2.la), where p” is an arbitrarily vector of length m. 

We now first consider a class of methods, which will be referred to as 
Gauss-Seidel type schemes, where only one component in pk is changed in 
every step k: 

p/+1= P;+U& i=(kmodm)+l, 

P,“9 i#(kmodm)+l. 

The primal iteration then becomes 

(2.6) 

x~+l=x~exp(wa,jA~), i-1,2 ,..., n, i=(kmodm)+l. (2.7) 
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Let a: be the ith row of the matrix A. We first consider the two choices 

$=ln-& and A:=bi-af'xk, i=(kmodm)+l. (2.&b) 
I 

Here the first choice is restricted to matrices with nonnegative elements 

( aii > 0). We next describe the nonlinear SOR method [17] applied to the 

equations (2.2). Then h: is determined such that hi(PL+Xk) = 0. From (2.2), 

(2.4), and (2.6) this equation can be written 

(2.9) 

Note that T?j is uniquely determined (af/ax>O) from this equation. If 
Newton’s method is used for solving (2.9), the combined scheme is called the 

SO&Newton method. 
We now consider a second class of iterative schemes, which will be 

called Jacobi type methods. Here, in general, all components are changed in 
the dual iterate pk in every step. Hence the Jacobi iteration is described by 

(2.3) and (2.5) respectively. All methods presented so far have their corre- 

sponding Jacobi variant. As an example we consider 

(2.Sa), 

4 $=ln- 
a’fxk ’ 

i=1,2 )..., m. 
I 

the Jacobi version of 

(2.10) 

To clarify the difference between Gauss-Seidel and Jacobi type methods we 
write below the resulting primal schemes corresponding to (2.&r) and (2.10): 

j=1,2 ,..., n, i=(kmodm)+l 

(Gauss-Seidel), (2.11) 

xf”=x:exp[ w(ATAk)i] =xFt (-&)““‘, i= 1,2 ,...,n 
i 

(Jacobi), (2.12) 

Let Xk=diag(xt,r,k,..., xt). Then Newton’s method applied to (2.2) can be 
written 

(AXkAr)Xk=b-Axk. (2.13) 
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This method also belongs to the Jacobi type schemes, and the primal 
iteration is given by (2.5). If the linear SOR method is used for solving the 
semidefinite system (2.13), the combined algorithm is called the Newton-SOR 
method. Note the lack of commutativity in terminology: Newton-SOR and 

SOR-Newton denote two different schemes. 
The arithmetical work in the primal iteration for performing a whole 

cycle (going through all rows of A) is, in general, quite different between 

Jacobi and Gauss-Seidel methods. By comparing (2.5) and (2.7) it follows that 

while the Jacobi schemes require n evaluations of the exponential function, 

the corresponding number for Gauss-Seidel is at least equal to the number of 
nonzero elements in A. (Note that, from this point of view, the first formula 

in (2.12) rather than the second should be preferred.) We remark also that, 
for the case aii E { - IO, l}, as in the applications discussed later in this 

paper, no evaluations of the exponential are required (using w = 1). 

We end this section by giving some background to the algorithms just 
described. The method (2.11) was suggested by Gordon, Bender, and 
Herman [lo] for reconstructing an image from its projections. They called 
the method MART and conjectured that it converged towards the solution of 

(1.1). This was later proved by Lent [ 121 for the case 0 < aii < 1 and using 
w- 1. The main idea in Lent’s proof is to consider the related dual problem 
of (1.1) and then show that the dual objective function is monotonically 
increasing in pk. Andersson in [l, Proposition 2.31 uses a similar idea 

(applying a general theorem by Zangwill[25, p. 911) to establish convergence 
conditions for entropy maximization methods. We further remark that the 

nonlinear SOR method (2.9) [we will in the following-unless the method is 

explicitly specified, as e.g. (2.11)-refer to each method by its choice of hk] 

equals the convex programming method due to Bregman [3], applied to 
problem (1.1). Bregman’s method is also treated by Censor and Lent [4], 

Lamond and Stewart [II] describe the method for use in traffic planning. 
Newton’s method was treated in a paper by Erlander [7]. Eriksson [6] has 
implemented the method using the conjugate gradient method for solving 
the linear system (2.13). 

3. RATE OF CONVERGENCE 

We start this section by giving some basic results on local convergence 
and rate of convergence for one-step iterations of the form 

xk+‘=G(xk), k=O,l,..., (3.1) 

where G: D cR"+R". This presentation follows closely the one given by 
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Ortega and Rheinboldt [17, Chapters 9, lo]. By local convergence of (3.1) to 
a point x* we mean that the iterates of (3.1) will converge to x* whenever x0 
is sufficiently close to x*. This is made more precise by the following 
concept. Suppose there is an open neighborhood S of x* such that S c D and 
for any x0 E S, the iterates {x”} defined by (3.1) all lie in D and converge to 
x*. Then x* is a point of attraction of the iteration (3.1). We have the 
following theorem, [17, Chapter lo]: 

OSTROWSKI LINEAR CONVERGENCE THEOREM. Assume that G: DcR”+ 

R” has a fixed point x* E int(D) and is Frechet-differentiable at x*. Zf the 

spectral radius of G/(x*) satisfies p(G’(x*))=a< 1, then x* is a point of 

attraction of the iteration (3.1). Further, if the convergence factor (I is 

rwnzero, the iteration converges linearily. 

REMARK 1. The convergence factor u is a lower bound for any possible 
constant y in the estimate (]xk+‘--x*]] <y]]xk-xX*]], Vk>k,. 

REMARK 2. The size of the open neighborhood S of x* for which the 
starting points allow convergence depends, in general, on the nonlinearity of 
G in a neighborhood of x *. In the extreme case of an affine operator, we may 
conclude convergence from any starting point. 

We will now study local convergence and rate of convergence for the 
methods described in Sec. 2. We start by writing the primal iteration (2.5) in 
the following form: 

x ‘+‘=Dzkxk=g(xk), where z:=exp[ w(AT)\k)l], (3.2) 

where D, is a diagonal matrix such that the jth diagonal element equals xi. 
Let x* be a fixed point of (3.2), and let z* be the corresponding value of the 
vector z. Then obviously zt = 1, j= 1,2,. . . , n. We proceed (suppressing the 
iteration index k in the formulation and proof to simplify the notation) with 

LEMMA 2. g’(x*)=Z+wD,.A’n(x*), with 

Proof. From (3.2), g’(x) = D,+ DXz’. Further 

2 = tzi 2 2 =w .zi( A=*&. 
I 
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Here 

A+, $....,yT 
T I I 

is the rth column in A(x). It follows z’=wD,ArA(x) and thus z&.= 

mATA( which completes the proof. n 

Denote by P,(,) the orthogonal projection matrix onto the range of a 

matrix 2. We remind the reader of the relation PRca,, =(u~u~)-~u~u~ and 
consider now specially the Gauss-Seidel schemes (2.7). 

LEMMA 3. g/(x*) = D,‘(“(I- w~P~~~,~)DX;~‘~, iii = D;f’a,. Put w, = 

Zafixf. Then wi = wwi /bi for (2.8a), wi = wwi fm (2.8b), and wi =w for (2.9). 

Proof. Note by (2.6) that ?$, j#i, can be specified arbitrarily. We 
define h: =0, j#i. It follows A A(x*)=a,AT where is the ith, and only 

nonzero, row of A(x*). Consider now the nonlinear SOR method and let 
X(x) =X:(xk) be the solution of (2.9). Taking derivatives of this equation, we 

get 

af; ax v --z--L 
ax axi axi 9 

i-1,2 ,..., n, 

where 

aA 
[ I z x_T* = - w,#O. 

Hence by the implicit function theorem 

ax I 1 'ii 
--. ax, X_X*= wi 

It follows AT= -aT/wi, which implies g’(x*)=Z-wD,.u,u~/w,=D~~~(Z- 
I/‘. The proofs for m ethods (2.8) are simpler and are left to the 

n 

REMARK 3. Consider one full iterative step in (2.7), sweeping through all 
rows in cyclic order, starting with the first one. Then the resulting iteration 
operator is Gos(x(‘+‘)“)=g(g(...(g(xk”)...)), k=O,l,..., and it follows 
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easily by Lemma 3 that 

G&(x*)=D~f2Q,.(oi)D,-.“2, Qcs(Wi)= JfI (Z-W,‘R(~~,,)* 
m 

For the Jacobi schemes (for the moment disregarding Newton’s method) it is 

straightforward, using Lemma 2, to verify the following expression for g’( x*): 

G;(x*)=~‘(x*)=D,?/~Q++)D,;“~, 
1 

Here w, takes the same value as for the corresponding Gauss-Seidel method 

(see Lemma 3). 

The matrices Qcs(oi) and Q,(w~), appearing above, are the resulting 
iteration matrices when the linear SOR and Jacobi method respectively are 

applied to the following minimum norm problem (see [2], [5]): 

minIlxl12 s.t. &=b, AI=AD,‘(~. (3.4) 

By applying the Kuhn-Tucker conditions on (3.4) the following system arises: 

&&j=b, x=ATy. (3.5) 

We remark that the linear SOR method applied to (3.5) equals Kacmarz’s 

projection method and is a special case of a class of projection methods 
studied by Bauer and Householder; for references and further details see [2]. 

Let Q denote any of the iteration matrices QGs(wi) and Q,(w~). Similarly 

we denote by G’ any of the matrices G&(x*) and G;(x*). In [5] conditions 
on wi are given which insure that 

p(QPACir)) <l, and QU=U ti uEN(x). (3.&b) 

Here N(A) is the nullspace of a matrix A. We note that with u = Dp and 
using (3.6), G’u = u++( D~~/“QDxL ‘i2)u = veQD:f 2u = D,‘(“u. Hence by (3,6b), 
AD+ = 0~ = D,.u EN(A). It follows that 

G’u=u e u&V(A). (3.7) 

From (3.6a),(3.7), and the fact that G’ and Q are similarly equivalent it 
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follows that 

329 

u=p,(Q)=p,(G’)=p(G’P,(,~))<l, (3.8) 

where p,(Q) is the largest eigenvalue in absolute value, excluding + 1, of the 

matrix Q. Note by (2.4) that xk has the form (2.la) Vk. Hence the primal 
iteration (2.5), or equivalently (3.2), can be viewed as a scheme for obtaining 
a solution of the form (2.la) to the system b=Ax. Consider the correspond- 
ing iteration in the residual, r k= b- Ark= ql(xk), and denote by A+ the 
pseudoinverse of a matrix A. It follows rk=A+( b - rk) +z= %..( rk), where 
ZEN(A). Hence T k+l=\ki(xk+l)=*kl(G(\kz(rk)))=R(rk). We then obtain 

R’(r*)=AG’(x*)A+, and thus the condition (3.8) insures that the vector 

r*=b-Ax* is a point of attraction of rk+i=R(rk). But r*=O, and hence 
(3.8) is equivalent to x* being a point of attraction of the iterative schemes. 

For the Gauss-Seidel methods we have the following result: 

o<q<2 * ~=p(G~~(x*)P,(,=))<l. (3.9) 

REMARK 4. If wi = w, as for the nonlinear SOR method, then 0 <w < 2 is 

also a necessary condition for convergence. Lent [12] proves convergence of 

MART, (2.11), for the case 0 < aii < 1, w= 1. We note that o,=o~a~ixf/bi < 
w and hence that, provided 0 < aii < 1, 0< w < 2 is a sufficient condition for 
x* to be a point of attraction of MART. Assuming adi < 1, it follows similarly 
that 0 <w <2/(max bj) is a sufficient point of attraction condition for the 
method (2.8b). 

REMARK 5. Assume that the matrix H=AD,,A= appearing in (3.5) is 
two-cyclic, i.e. of the form 

where D, and Da are diagonal matrices. Then from the SOR theory 
[24], the convergence factor for the method (2.9) is minimized by wqt =2/(1 

+ v- ), where ui is the convergence factor using o- 1. Further, the 
minimum value is given by a,+ = w,,rt - 1. Note also, as remarked in [2], that 
this factor is invariant under row scalings of (A ( b) and permutation of the 
unknowns. However, it does depend on the ordering of the equations in 
Ax-b. 
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The restrictions on q for the Jacobi methods are more complex. We 
remark however that for the method (2.12), 0< w <2/7n provides a suffi- 
cient, but rather restrictive, point of attraction condition [5]. 

We finally comment on the two combined schemes, the SOR-Newton 
and the Newton-SOR method, described in Sec. 2. We first define a dual 
iteration step by P k+ ’ = H(pk). an assume that p* is a fixed point of this d 
iteration formula. The relation (2.4) will be written in vector form as 
xk=F(pk) and it follows that (i) F’(P*) =D,.A? Let A+ be the pseudoin- 
verse of A. From (2.4) it follows that pk=(Ar)+u+t=E(xk), where u,= 
ln(xi/ui)+l and teiV(A*) (t d oes not depend on xk). Hence, (ii) E’( x*) = 
(Ar)+D,;‘. Now xk+‘= F(j3k+1)=F(H(pk))=F(H(E(rk)))=G(rk). It fol- 
lows that G’(x*) =F’(P*)H’(P*)E’(x*), or by using the expressions (i) and (ii) 
above, 

c’(x*)=(o,.~r)~‘(p*)((~~)+D,;‘). (3.10) 

We conclude from (3.10) that if the two methods have the same dual rate of 
convergence, they also have the same primal rate of convergence. We can 
now apply the results given in [17, p. 325 ff.] for the two combined dual 
schemes. The first result is that the nonlinear SOR method has the same 
convergence factor u as the SO&Newton method. Hence it does not 
enhance the asymptotic rate of convergence to take more than one step with 
Newton’s method when solving (2.9) for X:. On the other hand, by combin- 
ing Newton’s method (2.13) with, say, tl steps of the linear SOR method 
[using the same value on w as in (2.9)], the convergence factor becomes 
aTt1. 

4. SIDE CONDITIONS WITH ZERO-ONE STRUCTURE 

We consider here a matrix A with the properties 

(4.la) 

and 

Ar=(Ai, As,..., A,), r<m, s.t. ATA1=Di Vi, (4.lb) 

where Dl is diagonal It follows easily from the property (4.la) that MART, 
(2.11), and the nonlinear SOR method for the same starting vector and the 
same value of w produce the same sequence of iterates. Note, with w- 1, 
that no evaluations of the exponential function are needed in (2.11). 
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It follows quite easily from the property (4.lb) that the methods (2.11) 
and (2.12) behave like block-SOR and block-Jacobi methods respectively. 
The expressions for the iteration matrices Q (note that oi=w in this case) 
become [5] 

(4.2a) 

and 

(4.2b) 

Examples of such a block structure include the unweighted picture recon- 
struction model, [lo, 51. Here the number of blocks, T, equals the number of 
projection angles. Further applications will be studied in Sec. 5. 

We also note the possibility, using the relation (2.4) and (4.la), of 
devising dual algorithms corresponding to (2.11) and (2.12), iterating in 
exp(&‘), such that no evaluations of the exponential function are needed. It 
is interesting to note that the continuous approach (minjflnf), studied in 
[14] in connection with inverting the Radon transform of f, gives rise to a 
method which behaves like a dual scheme of this type. We remark that even 
in the continuous case only a finite number of projection data are used, and 
hence that the dual vector is of finite length. 

5. APPLICATIONS WITH TRANSPORTATION CONSTRAINTS 

Assume that a given urban area has been partitioned into zones. In trip 
distribution the problem is to generate a table of demand for travel from 
each zone to every other. Let S= {k,, k,, . . ., kjo} be the set of all zones 
whence a trip may depart, and T- {m,, m,, . . . , mfo} the set of all zones 
where a trip may end. Denote by xtt the number of trips from zone k, to 
zone mi. If it is desired to avoid predicting intrazonal trips, any unknown x,~ 
such that k, =mj should be excluded from the model. We will assume that 
from some trip generation process, estimates b’= = (b;, bh, . . . , bjJ and b”= = 
(b;, b;,..., bj”) are available of the future number of trips departing and 
arriving in each zone. The transportation constraints are then defined by 
Ztxif = b; and Xixii = b;‘. By arranging the matrix x,~ rowwise into a vector 
of length n=i&, these constraints take the form 

Ar=b, AT=(A1, A,) and b=(b’=, b”=), xb;= xb,!‘. (5.1) 
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The following example, where i, =/a = 3, illustrates the nonzero structure of 

the matrices A’; (iaXn) and Ai (iaXn): 

1 1 

1 l 1 l 1' 1 
Note that these matrices have disjoint rows: 

ATA,=j,Z and A:A,=i,Z. (5.2) 

In a commonly used approach, called the gravity model, it is required that 

the solution of (5.1) have the multiplicative form xii= riuiisi, where the 
positive numbers, 5 and si, are unknowns and {uii} is a given estimation of 

the trip destination table. The name gravity model comes from the possible 
choice uii=l/dij, where d,, is the squared distance between zone k, and 

zone mi. It easily follows from (2.la) and the structure of the transportation 

matrix (5.1) that the gravity model solution also equals the solution of (Ll), 

where uii is arranged rowwise into a vector u, and A is the matrix in (5.1). 
The computation of ri and si can also be viewed as the problem of scaling 

a positive matrix {uii} to make the row and column sums of the scaled 
matrix {xii] equal certain values given by b’ and b” respectively [21, 131. 

The scaled matrix is of interest, e.g., when estimating the transition matrix of 
a Markov chain, which is known to be doubly stochastic (i.e. b; = b;’ = 1 
Vi, j). 

For w = 1 the method (2.11) is well known when applied to the problem 

(5.1). The algorithm is usually referred to as the balancing method (see [ll] 
for a recent survey). A mathematically equivalent, but computationally 
superior version was given by MurchIand in [ 161. Stewart in [23] provides a 
roundoff error analysis. Also for this problem Robillard and Stewart [20] 
proposed the NewtonSOR method, noting that the matrix is two-cyclic [cf. 
(5.2) and Remark 5 in Sec. 31. Andersson [l] analyzes the convergence and 
the rate of convergence of Newton’s method, solving (2.13) by Choleski 
factorization, and compares it with the balancing method. He further dis- 
cusses simplified Newton iterations, in the spirit of Erlander [8], for solving 

(5.1). 
We will now study the behavior of the methods (2.11) and (2.12) applied 

to the transportation problem. Recall from (3.8), using (4.2), that uGs= 
p,( QGs( w )) and u, = p,( Q,( 0)). We first derive useful equivalent expressions 
for the convergence factors a,, and u,, for the case w= 1. 
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LEMMA 4. Let w = 1. Then a,, = p,( Q1 ) and u, = p,( Qs), where 

Proof. Consider first the methpd (2.12). Put RT= ((A^:)‘, (A<)‘). By 
direct computation and using A,? Ai = Z it follows that Q2 = Z-M_, yhere 

p=(Ai, A,). On the other hand, from (4.2b) and using PR,,-,,=AiAT, it 

follows that Q,(l)=Z-A%. Observe that Q2=Z-R_6? and Q](l)=Z-A% 

have the same set of eigenvahres, excluding + 1, for any matrices ZI (m X n) 
and 2 (n Xm). Thus u,=p,(_Q,(l)) = p,(Q2), which completes the proof for 

(2.12). With RT=((i,+)T, [A~(Z-P,~~,,)]T) a simihu argument gives the 
proof for the method (2.11). n 

The optimal values of w and u for the transportation problem can now be 
derived. 

LEMMA 5. 6l+ =2/(1+sin\k), a,,, =wopt - 1 for (2.11); w,+ = 1, uopt = 

cos 9 for (2.12). Further, if w= 1 in (2.11), then u=cos2’4’. 

Proof. Consider the eigenvalue problem Q,x=hr, x’=(x:, xl). By 
eliminating xi it follows easily that Qlx2=X2x2. Hence by defining o,(Q2) = 
cos \k the results for w = 1 are proved. The optimal value for w (in the sense 

that uOr,t = mm, a) in (2.12) are given by aopt= 2/(a+ b), where a is the 
smallest nonzero eigenvalue of zPx(~,, and b the largest [S]. We further note 
that -cos P is also an eigenvalue of the matrix Q2 [with eigenvector 

(-~~,x~)].ItfoUowsthata=1-cosPandb=1+cos\k,andhencew,~~=1. 
The expression for tiopt in (2.11) follows by (5.2) and Remark 5 in sec. 3. l 

REMARK. The angle \k can-be identifie$ as the smahest nonzero angle 

between the two subspaces R(A,) and R(A,) [S]. Note, by Lemma 5, that 
the method (2.11) requires asymptotically a factor of log( aopt - 
l)/log(cos2\k)x2/sin\k fewer iterations using w=wOat than using w= 1 to 
achieve a certain accuracy. 

One of the rows in (5.1) is redundant (since the sum of all rows in A’; 
equals the sum of all rows in A:). In fact, any row can be deleted without 
changing the solution of the problem. It is our computational experience, 
however (cf. Table 2) that the rate of convergence of the balancing method 
decreases by deleting a redundant row. We will briefly discuss this issue. 

Let C=ATD,.A,. It is straightforward to verify that the i, jth element of 
C equals x$ Further it can be verified that ATD,. A, = D,,. It follows, using 
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the expression A: = (ArA .) - ‘AT, that the matrix Qi appearing in Lemma 4 
can be written Qi =L$&D~‘C. Assume that the kth row is deleted in A’;. 
This corresponds to deleting the kth row, af, in C and the kth row in D,,. 
Denote by QNS the resulting expression for Qi. Let ek be the kth unit vector, 
and put E=C-e,c$. We then get 

QNS = D;?ETD;‘E = Q1 - $ D;?ap;. 
k 

Put R=CD,;‘CTD,’ (note that Qi and R have the same set of nonzero 
eigenvalues) and denote by R,, the corresponding matrix when the kth row 
in Ai is deleted. Let Pk be the kth column in C. It follows that 

R,,=R- &,D,‘p,p:. 
k 

(5.4) 

In general it seems hard to carry this analysis further. We observe 
however the following simple case, which is easily verified using the given 
expressions for Qi, QNS, and R,, respectively. 

LEMMA 6. Let w= 1, and suppose x;= 1 tli, i. Then the cmvergence 
factor for (2.11) becomes a=0 if all rows in A are kept, (I= 1 -l/i, if one 
row in AT is deleted, and (I= 1 - l/j, if one row in A$. is deleted. 

6. MATRIX BALANCING 

Let V= {v,/} be a given irreducible, nonsymmetric matrix of order m X m 
with no null rows or null columns. Matrix balancing is the problem of finding 
D, a nonsingular diagonal matrix, such that X= D-‘VD is balanced, i.e., 
corresponding row and column norms are all equal. This routine is recom- 
mended to precede the computation of eigenvalues of V. An algorithm for 
balancing in Zs-norm has been given by Osborne [18]. Parlett and Reinsch 
[19] describe this method for any I,-norm, restricting all scalings to numbers 
that are integer powers of the machine base. 

We will show that the balancing problem can be written on the form 
(1.1). We start by defining the balancing conditions, 

2 xP,=,~i$9 i=1,2 ,..., n (xit >O). (6.1) 
j#li 
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These equations can also be written 

EDT-‘x=0, 

with 

E=E,-E, and x=(xis,xis ,..., xsi,~~ ,..., ~,.,_i)r. 

The matrices E, and E, have the same structure as A, and A, [with 
iO=jO=m and n=m(m- l)] defined in Sec. 5, except that columns corre- 

sponding to the unknowns xii, i = 1,2,. . . , m, have been deleted. 

LEMMA 7. Let x*=(x&, x& ,..., x2:, x.$, ,..., x:,,,_~)~ be the solution 

of the problem (1.1) with A=E and ut=lvjlPe (e=2.71...), j=l,2 ,,.,, n. 
Denote by /3* the corresponding value of the dual vector, and define 

d,=exp(-&+/p), i=l,2 ,..., 
Xii = (xgl’p 

m. Then the mutrix IXl={lxiJ}, defined from 

sign(vii), is a solution of (6.1) of the form xii=dilv,,d,. 

Proof. Obviously {I xii I} satisfies (6.1). From the dual relation (2.la) and 

the structure of the matrix E E 

E, eii E { - l,O, + l}, it is possible to compute explicitly the number 
h” occurring in (2.9). Thus from (2.9) and (6.1), with p= 1, it follows that 

A’; =0.51nt with t=Ei+rx~j/Ejpix~~. By Remark 4 in Sec. 3, x* is a point of 
attraction if and only if 0 < w < 2. However, and in contrast to the case with 
transportation constraints, the matrix EDx.ET is not, in general, two-cyclic, 
and thus the SOR theory is not applicable here. We also remark that (2.9), 
with o = 1, is identical to Osborne’s method, a fact that is readily verified. 
This fact was also recently pointed out by Lamond; see [ll] for further 
references. 

7. NUMERICAL RESULTS 

We first present some results which illustrate how the choice of the 
iteration parameter w in (2.11) affects the rate of convergence. The computa- 
tions were made on a DEC-10 computer with a relative precision of 8 
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TABLE 1 
BEHAVIOR OF C-NT RESIDUAL WHEN SCALING MATRIX C USING w = 1 IN (2.11) 

k ll~“ll2X1~ aa w 

30 0.207 
0.9951 1.87 

60 0.179 
0.9955 1.87 

90 0.156 
0.9958 1.88 

120 0.137 
0.9961 1.88 

150 0.122 
0.9963 1.89 

180 0.109 

“The convergence factor is estimated by (I w lO?exp, where exp = 

(Aloglls’Jl,)/Ak and 0=2/(1+-). 

decimal places. The iterations were terminated when llreslj .J 11 b 11 2 < lo-‘. 
Here sl= (res),=bi-arxk, i=(kmodm)+l. We will refer to the vector s 

(m x 1) as the current residual. In all tests the starting vector x0 was taken 

equal to u. 
Consider first the problem of scaling the following matrices, taken from 

[13], so that they become doubly stochastic [i.e. ( b’)T= ( b”)T= (1, 1, 1)]: 

Table 1 illustrates the computation of wOpt (cf. Remark 5 in Sec. 3). In Table 
2 we summarize the number of iterations and the CPU times required when 

TABLE 2 
NUMBER OF ITERATIONS, MEASURED CPU TIME, AND VALUE OF wOpt 

WHEN %3LVINGTHEkALING~OBLEMSWITIi (2.11) 

No. of iterations 
(CPU time [set]) 

Problem o=l &J = %&It aoF 
A 2 (0.16) 2 (0.16) 1 

A, 33 (0.12) 17 (0.22) 1.27 
c 2584 (2.07) 138 (0.38) 1.90 

CU.S 7833 (6.50) 294 (0.55) 1.94 



337 METHODS FOR ENTROPY MAXIMIZATION 

TABLE 3 
NUMBERS OF ITERATIONS AND MEASURED CPU TIME 

WHEN SOLVING TWO REC~N~TFXUCTION PROBLEMS 

MABT(w=l) Newton 

Total no. 

No. of CPU time No. of of inner CPU time 

Problem iterations (set) iterations iterations (=c) 

bl 7 1.2 5 19 3.3 

b2 10 1.2 16 85 6.3 

scaling A and C. The corresponding problems with the last row in AT deleted 

are also included. The results in the third column were obtained by using 

W+ during the whole computation. 

Finally we report on a numerical comparison between MART, (2.11), and 
Newton’s method. We have used the implementation of Newton’s method 

given by Eriksson [6], where the conjugate gradient algorithm is applied 
when solving (2.13). For Newton’s method we used res= b -Axk in the 

stopping criterion. The test example is taken from [15] and results from a 
modification of the unweighted picture reconstruction model, which com- 

pensates for the lack of weights in the case with three projection angles. The 
corresponding linear system has the structure (4.1) with r=3 and u a vector 
with all components equal to + 1 (there is no a priori information available 
about the unknown picture). We have solved this problem using m=63 and 
n=333 for two different right hand sides, namely (i) x, = I)+, i= 1,2,. . . , n, 
where ui is a uniformly distributed random number between zero and one, 

and bl =Ax, and (ii) x equals the test picture given in [15, Fig. 8a] and 
b2 = Ax. Table 3 shows the necessary number of iterations as well as the 
corresponding CPU times when solving these two systems. 

The matrix in this application has two redundant rows. By deleting two 
rows, giving a matrix with full row rank, the rate of convergence in MART 
was drastically changed. For example, in case (i) the spectral radius was 
increased from p = 0.07 (singular case) to p = 0.99 (nonsingular case). 
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