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Abstract-we study the problem of constructing a smooth approximant from a finite set of 
patches given on a surface defined by an equation 1s = f(zi, 22). As an approximant off, a discrete 
smoothing spline belonging to a suitable piecewise polynomial space is proposed. Error results and 
numerical results are given. @ 2002 Elsevier Science Ltd. All rights reserved. 
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1. INTRODUCTION 

The problem of constructing a surface from given patches on this surface appears, for instance, 
in geophysics or geology processes like migration of time-maps or depth-maps as shown in [l]. 
Classical algorithms used to solve this class of problems usually select points on the patches to 
define a Lagrange dataset, and subsequently make use of classical spline functions (e.g., [2-4]), 
bivariate spline [5-71, or spline functions in Hilbert spaces (see, for instance, [8,9]). In the available 
literature, to our knowledge there are no classical methods that explicitly take into account the 
continuous aspect of the data (surface patches). Meanwhile, an alternative approach has been 
developed by Le Mehaute [lo] using surface’s extensions. Le Mehaute proposes a rational scheme 
interpolating a Taylor field of order 1 (or a function and its first partial derivatives) given on the 
edge of a triangle T with acute angles. This approach is very interesting but difficult to use on 
real datasets, and it does not perform well to get a Cr (or higher) approximant. That is why qve 
propose to use a penalized least square approach, as done for instance in [7,11,12]. 

In this paper, our purpose is to devise an approximation method which takes into account the 
original aspect of the data. To do that, we use a fidelity criterion to the data of integral type 
related to the L2-norm of these data. It leads to the following abstract formulation: from a finite 
setofopensubsetswj,j=l,..., N, in the closure of a bounded nonempty open set R c R” (see 
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Figure 1. Example of an open set R with three subsets WI, ~2, and wg. From these 
1 three surface patches, the goal is to propose a method to reconstruct the surface 

on R. 

Figure 1) and from a function f defined on w = lJ,“=, wj, construct a regular function @ on 51, 
approximating f on w. 

In practice, n = 2 and w is the finite union of pairwise disjoint open subsets wj, j = 1,. , , , N 
of R, which are called patches (see again Figure 1). 

REMARK 1. As a fit criterion, we have chosen the L2-norms (which define a distance). Of 
course, it would have been possible to use the L’-norms (the fidelity criterion to the data being a 
minimization of the volume located between the patches and the approximant), but, in order to 
obtain a functional with “good properties”, we have chosen an L2-norm approach. This choice 
permits us to study the problem in Hilbert spaces (L’-norm only defines reflexive Banach spaces). 

The paper is organized as follows. We first introduce some notations and state an existence- 
uniqueness result. In Section 2, we focus on the quadrature formula used to approximate the 
fidelity criterion to the data. Section 3 is devoted to the proof of the convergence theorem which 
is the main result of the paper. We give numerical results in Section 4. 

We assume the following. 

R is a nonempty, connected, bounded open set in R”, with Lipschitz-continuous boundary 
(in the sense of NeEas [13]). 
For an integer j, j = 1, . . . , N, let wj be a nonempty connected subset in I$“. 
k E N and m > n/2. 
For simplicity, f is the restriction on w of a function f defined on Q, given on w(= U,“=, wj) 
and unknown on fi \ w, which belongs to the Sobolev space Hm(S2). Finally, we impose 
the condition that the approximant Q belongs to Hm(Q) n Ck(ii), where fi is the closure 
of R. The main interest of such a regularity for @ is that it allows one to obtain a final 
surface that can later be used directly as an input model in a different application, such 
as ray tracing, image synthesis, or numerical simulation (e.g., [14]). 

The problem of the approximation of f on w is a fitting problem on each surface patch 
((5, f(x)) : 2 E WI. 

When m > k + n/2, the corresponding interpolation problem @lw = fiw has an infinity of 
solutions because, in this case, ZP(Q) + Ck (a). We can obtain a solution using Duchon’s theory 
(see [8]). Unfortunately, Duchon’s theory leads to linear systems whose order increases rapidly 
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with the number of data points, which makes the method inefficient in the case of large datasets. 
We can obtain another solution using the following (interpolation) method. We introduce the 
convex set 

K = {TI E Hm(Q), WI, = &,} . 

Then we consider the following interpolation problem on the data patches: find u E K such that 

where 

with QI = (cyl,crp,. . . ,a,) E W, Ia/ = Cz, cq, 5 = (G)~=~, and 9% = a’-‘v 
az”‘az,2...az-“~ 1 7, 

Let L2(w) be equipped with the usual norm 

Then, Gout [15] h as established the existence and uniqueness of the problem of equation (1) 
using compactness argument (see [13]) to establish the equivalence of the usual norm of Hm(R) 
denoted by 

and the norm 

llblll = (ll4i., + IMJ2. 

Then, as K is a convex, closed, and nonempty set in Hm(n), the solution c of (1) is nothing but 
the unique element of minimal norm 11 I. 1 I I. 

Hence, we could take the solution Q = 0 when m > Ic + n/2. Unfortunately, it is often 
impossible to compute 0 using a discretization of problem (l), because in a finite-dimensional 
space, it is not possible to satisfy an infinity of interpolation conditions. Therefore, to take into 
account the continuous aspect of the data (fl,), we instead choose to define the approximant @ 
as a fitting surface. 

We propose to construct a “smoothing Dm-spline”, as defined by Arcangkli [9], that will be 
discretized in a suitable piecewise polynomial space. In order to do that, we introduce the 
functional J, defined on Hm(Cl) by 

JE(U) = lb - flli,, + E I4:,n ( (3) 

where E > 0 is a classical smoothing parameter. The key idea here is that the fidelity criterion 
to the data ]]v - f]]:,, honors their continuous aspect. 

We now need to numerically estimate this term, which is done using a quadrature formula. 
In this regard, the approach is quite different from more classical techniques that usually simply 
make use of a large number of data points on w in order to solve the fitting problem. 

In this paper, C denotes a generic positive constant and may take different values at different 
occurrences. 
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2. APPROXIMATION OF Il,llo,+j 

In this section, we propose a quadrature formula to approximate I(. 11~ with a certain order of 
approximation. 

We introduce a bounded subset E in W; for which 0 is an accumulation point, and for any 
r]~Eandforanintegerj,j=l,..., N, a set {<i}ili<~ of L = L(q,j) distinct points Ci = &(q,j) 
of ij+ such that 

> 
7 depends on 77, 

where 6 is the Euclidean distance in Rn and the & are the nodes of a numerical integration 
formulae. We also introduce a set {X .} E I~~SL of real numbers Xi = Xi(l),j) > 0. 

Then we define, for any n E E and any v E CO(l~lj), 

and for any v E C’(a), 

j=l,...,N. 
j=l 

In all that follows, we assume that there exists C, t > 0, such that, for any n E E, and for any 
u E HYQ), 

je~(v2)-~)UZdx~~Cljt,,v,,~,n, j=l,*.., Iv. 

For simplicity, we shall write v instead of VI,+ or 01, and we shall consider 0 as a linear 
continuous form defined in CO(a), or in Co(@) for all open sets a’ such that 0 c 0’. 

REMARK 2. When the hypothesis (4) is satisfied, the relation ]]v]]i,+, N Cn(v2) gives us an abstract 
numerical integration formula for I] .]I&. In order to obtain the convergence of this integration 
formula when 77 tends to 0, the nodes <i must satisfy 

where a(., .) represents the Euclidean distance in IV’. 
Let us assume, for example, that w is a polyhedron. One can introduce a suitable triangula- 

tion IV on LJ by means of n-simplexes T of diameter 5 n, and a Pm_.1 integration formula on 
each T, 

s T 
v(x) da: = me= (T) g -w(h-), 

i=l 

where the (Xi)i=i,...,~ and the (~i)+i,...,~ are classically the weights and the nodes of the inte- 
gration formula. In that context, Arcangeli et al. [16] showed that when m 2 n, relation (4) is 
satisfied with t = m and 

N 

eyv) = 1 (meas T) C~ivu(CiT). 
TE7, i=l 

In practice, when n = 2, one can use the q-exact formula on a triangle T with vertices (ai)i=i,s,s, 
with midpoints of the sides (bi)i=r,s,a, and with barycenter c 

J v dx N meas (T) f $ v(ai) + & $ v(bi) + &I(C) . 
T z=l 2=1 I 
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Thus, for any 77 E E and for any v E Co (ij), we obtain 

When w is not a polyhedron, one can use quadrature formulas adapted to the geometry of w (see, 
for instance, [17,18]). I 

3. DISCRETE SMOOTHING Dm-SPLINE 

In order to compute a discrete approximant @, we could use Bezier-polynomials space or any 
other finite-dimensional space. We select a finite element representation of @, which allows us to 
obtain a very small sparse linear system (see [19,20] for more details) and makes the study of the 
approximation error easier. 

Let H be a bounded subset in lR; for which 0 is an accumulation point, let fi be a bounded 
polygonal open set in EP such that R c fit, and, for any h E H, let & be a triangulation on 6 by 
means of elements K whose diameter hK are 5 h and let I$ be a finite-element space constructed 
on ?j such that 

vh is a finite-dimensional subspace of Hm (i”) n Ck (ii). (5) 

Furthermore, to study the convergence of the approximation, we assume that there exists a family 
of operators (I&),,, c L(H”(fl), VJ) satisfying 

(9 3C>OsuchthatforanyhEH, foranyl=O,...,m-1, 

(6) 

(ii) for any v E Hm 

Condition (6) does not need the classical hypothesis of regularity of the finite element method 

Hm(fi) L-$ Cs(6), where s is the maximal order of the derivatives appearing in the definition of 
the degrees of freedom of the generic finite element of (vh)he~, but it is assumed that 

the family ?jj 
( > 

hEH is regular (see [21]). (7) 

Moreover, condition (6) needs the following hypothesis: the generic finite element (K, PK, CK) 
of the family (I&)he~ satisfies the inclusion PK > P,(K). 

In fact, (i) only uses the inclusion Pm-l(K) C PK, and a property of uniformity of the generic 
finite element of (vh)he~, which is satisfied in the usual cases (see [22,23]). 

REMARK 3. In most problems, one would want to solve in practice, the value of m would be either 
2 or 3, allowing one to get either a C1 or a C2 approximant. When m = 2, the finite elements 
used to solve the problem could typically be classical elements of class C1 or C2, such as the 
Argyris or the Bell triangle (see [12,24]) or the Bogner-Fox-Schmit quadrangle (e.g., [19,25]). 
When m = 3, one could use the same finite element of class C2 as for m = 2. When m > 3, one 
could generalize the Bogner-Fox-Schmit quadrangle into a finite element of class P-l. Other 
elements, such as isoparametric finite elements [19] or rational finite elements [26] could also 
be used. Isoparametric finite elements are useful to impose boundary conditions, but this is 
not usually a critical problem in the context of surface approximation. On the other hand, the 
use of rational finite elements is expensive, therefore, we choose to use the Bogner-Fox-Schmit 
quadrangle of class Cl, which allows us to obtain a Cl-approximant. Note that in certain classes 
of interpolation problems, each data point must also be a node of the finite element grid, in which 
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Figure 2. Definition of the sets R, Rh, and fi. 

case the use of triangles, as opposed to quadrangles, greatly facilitates the creation of a suitable 
finite element mesh to numerically solve the problem. This is not the case in a surface fitting 
problem (data points do not need to be linked with the geometry of the finite element grid), and 
as rectangles are less expensive than triangles, we will use the Bogner-Fox-Schmit rectangles. In 
all cases, we could verify that conditions (5) and (6) are satisfied under (7). I 

Now, for any h E H, we consider the subset flh (see Figure 2) defined by 

flh is the inside of the union of the rectangles K of Th such that K fl R # 0. (8) 

It is clear that the family (&)~EH satisfies the following relations: 

VhEH, fl c &, c i=& (9) 
lim mea8 (ah \ fi) = 0. 

hd0 
(10) 

For any h E H, we define vh as follows: 

vh is the vector space of the restrictions to flh of the functions of vh. (11) 

For any E > 0, any h E H, and any q E E, we consider the minimization problem of finding 
az,,h E vh satisfying, for my z(h E vh, 

JE”,h ( > u$, 5 JE”,h (‘uh) 7 (12) 

where Jzh is the functional defined by 

J;h (vh) = e’ [( vh - fj2] + E bhi;,nh 

Then, we consider the variational problem of finding CT~,~ E vh satisfying 

vvh E Vhr c” (“:,hvh) + E (o:@ uh)m,12,, = e’ (f’uh) ? (13) 

where (2~, v),,~,, = Cl,,=, &,, Pu(z)Pv(z) dx. Then, we have the following theorem. 

THEOREM 3.1. We assume that 0, w, m, and f are defined as in Section 1 and that hypotheses 
(4), (5), (8), and (11) axe satisfied. Then, for any E > 0, any h E H, there exists ~0 > 0 such 
that for any 77 E E, q < 70, problems (12) and (13) have the same unique solution u,“,~. 

PROOF. This proof is divided into two parts. 
PART 1. Using compactness arguments (see [13]), we show, under the relation 

for any p E pm_1 (ah) , 
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that the function [l.l]h defined on Hm(Rh) by 

[bllh = (IbJll:,, + lMi,n,,) 1’2 
is a norm on Hm(Rh) which is equivalent to the usual norm 

l/2 

lbll m,% = ES (Pv)~ dx . 
lal<rn ch 

PART 2. As a consequence of the definition of P, the symmetric bilinear form 

is continuous on Vh x Vh. Likewise, this form is Vj-elliptic for 77 small enough because using (4), 
we have 

2 mW,E) [bhlli - Cvt Ibhll& (14) 

> (C’min(l,E) - C$) Il~ll~,~,, , 
where C’ is a constant related to the equivalence of norms ([l.l]h and Il.llm,n,,). 

Let us assume (see also [16] f or more details) that there exists p > 0, such that VE > 0, 
Vq E E, $/min(l,&) < fl. Taking ,B = C//C, there exists C” > 0 such that PJ(vi) +EJ~~I&~ 2 

C” llda,n,; Then, the Lax-Milgram lemma gives the result. I 

The function 02,~ is called the Vh-discrete smoothing Dm-spline of f relative to w, 77, and E. 

REMARK 4. Denoting by A4 = M(h) the dimension of Vh and by (‘pj)l<js~ a basis of Vh, we 
set 

with CE~ E R, 1 5 j 5 M. Introducing the matrices 

A = (eq (Pi%))l<i,j<M 7 

72 = (PC PJ,,cl,, l<i j<M 7 ( > _Y- 
and 

F = (al7 (f~~))~<~<~, -- 
we see that (13) is equivalent to the problem 

find IY = (cY~, . . . , cq,. . . , a~) E RM solution of (A+&) a = 3. 

Then, we can take as an approximation off the function @ = o$+ which, using the hypotheses 
(5), (8), and (ll), belongs to Hm(R) n C”(a). We have to know in which sense Cp is an approx- 
imation of f. The next result proves the convergence of 02~ , to the solution CT of (1) and gives 
an error result between 0: h , and f on w. Other convergence results are given in [15,27] when the 
number of data patches increases to infinity. 

THEOREM 3.2. Under the hypotheses of Theorem 3.1, if moreover we assume that (6) is satisfied, 
then the solution u,” ,, , of (12) and (13) satisfies the following. 

(9 

where 0 is the solution of (l), and where /? is introduced in Theorem 3.1. 
(ii) There exists a positive constant C such that 

//o:,,-fllI,w <~(h~~+~~o(l)+E), whenc+0, T -+o, f <p. 
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PROOF. The proof of Point (i) will be split into four steps. 
STEP 1. Let u be the unique solution of (1). We have 01~ = fiU and 

We obtain, using (4), 

Then, from (12), we have 

vVh E vh,eq (@,h - u)2), +Elu:,hl:,nh 5 eq (h -d’) +Ebhlf,&, . (16) 

Let 5 be an m-extension of u on fi, taking (with (6)) ‘uh = fihc E Hm(fi), we obtain 

but from (6)(ii), there exists hc E H such that 

(15) 

(17) 

(18) 

Moreover, using (4), we have 

and finally, with (6)(i), 

Thus, using (6), we get 

Prom (17) and (19), we deduce that 

and therefore, using (15), we have 

(21) 

Likewise, the relations (16) with VJ~ = &C?., (18) and (19) involve that 

(22) 
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We finally obtain, using (21) and (22), 

where III.Ill is defined in (2). B ecause the norm I ll.JI I is equivalent to the usual norm J(.llm,n in 
H”(0), we deduce from (23) that 

Let n’ be a positive constant less than (l/C) ‘It Therefore, the family (~:,~)~+,h is bounded in . 
IP(fl) if 

h2m t 
& --) 0, - --) 0, 77 5 77’3 f 5 0. (24) & 

The previous result involves that I-P(a) contains a sequence (r$I,&s~+ extracted from the 
family (u:,~) and a function U* E Hm(fl) such that 

in Hm (0) , 

(25) 
with liens,, = lim 

h2m 
71 = 0, (77,) c (0,~‘) and 

n-rfm E, 

STEP 2. Now, we have to show that g* = u. Let us consider the relations (20) and (22) applied 
to the sequence (a:“& 

3c>o, 

But, for n large enough, we have, knowing that lim,,+, Ifi~,Slm,o,,, = I&,o, 

I I fih*cT 2 
%%, 

I I&, + P27 p > 0 arbitrarily small, 

and then it comes that 

(27) 

From (4), we have 

thus, using (26), and because the sequence (g,“,-,,,) is bounded in H”(R), we obtain 

II a::,h,, - ’ II 2 I C% h2”’ , n-++c0. (28) 
ON *+ Eo(l) + Ial;,, + p2 + 2 > 

Therefore, from (27) and (28), we finally have 

(29) 
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It comes from (29), as /.J is arbitrarily small, 

u* E Hrn (cl) 1 

la’l,,, 5 bl,,, 1 

u=u*, on w. 

And thus, u = g* in Hm(R) by considering the existence and uniqueness of the solution of the 
problem of equation (1) (see Section 1). 

STEP 3. We now have to show that limn++ca u:,;,~,, = 0 in Hm(R). Using the compact embed- 
ding of Hm(Q) in Hmml(fl) and knowing that (T = o* in Hm(R), we have o~~,hrr+n_+oo~ in 
HmM1(fl). Furthermore, for any n E N, 

Therefore, using (27), we obtain 

and when n + +oo, it comes because u:;,~,,, - u in Hm(R) that 

Jy,, Ie:,h, - u 1 R 
I 2 IuIL,n + P2 - 2 (u,4,,* = P27 

and the result follows because p is arbitrarily small. 

STEP 4. To achieve this proof, we now assume that 

with E 4 0, h2”/& + 0, $/E 5 p. It means there exists a sequence (d;, $, E;, hL),EW such that 
lim,,+, E; = lim,,+, h$?m/sk = 0 , T$/E; 5 p satisfying for any n E N*, 

But such a sequence is bounded in Hm (0) and using the previous argument, we reach a contra- 
diction. 

Point (ii) is an immediate consequence of equation (21) and Point (i), taking into account that 
U - fw. IW - I 

4. NUMERICAL RESULTS 

The CPU time for each of the following examples was less than 15 seconds (on a PC Intel 
Pentium III 500 Mhz, 256 Megabytes). 

We have chosen two functions f and g defined by 

f (z,y) = e-(3s-1)*-(3Y-1)2 

and 

g (& y) = ~,(-(1/4)(s.-2)~-(1/4)(su-2)~) + 3e(-(1/49)(92+1)~-(1/10)02) 
4 

+ ~,(-(1/4)(9.-7)1-(1/4)(9Y-3)1) --e ; (-(9z-4)2-(9y-7)2). 
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Figure 3. Function f .  
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Figure 4. Data corresponding to f , ~ l  

The open gt is ]0, 1[ × ]0, 1[. The chosen generic finite element is the Bogner-Fox-Schmit rectangle 
of class C 1. For the numerical integration on the given subsets, we use the P3 formula on triangles: 

udx ~- meas (T) u(a~) + -~-~u(bi)  + u(c) 
i = l  

as introduced .in Remark 2. 
We take s -- 10 -6. To our knowledge, there is no mathematical  method to optimize this 

choice. In Deshpande and Girard [28,29], cross validation methods are studied for a similar kind 
of problems. 

For the function f (see Figure 3), the data  corresponding to the first example are reproduced in 
Figure 4. Only one surface patch wl is used and the triangulation is made using 288 triangles (a 
total  of 288 distinct vertices for w). We use a finite element grid which divides ~ into 81 (=  9 x 9) 
rectangles. Therefore, the dimension of the associated finite element space Vh is equal to 400. 
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Z 
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Figure 5. C 1 approximant .  

z 

Figure 6. Da ta  corresponding to flwl,2,a. 

For the second example, data are reproduced in Figure 6. In this case, w has three connected 
components (Wl,W2,w3) and the triangulation is made using two triangles with a common side 
per wi:i=1,2,3 (a total of 12 distinct vertices for w). We use a finite element grid which divides 

into four rectangles (dim Vh = 36). We show the three surface patches. The corresponding 
approximant surface are given, for the first example, in Figure 5, and for the second one in 
Figure 7. 

For the function g (see Figure 8), we have used the same kind of data (and the same finite 
element grids) as for the function f ,  one surface patch (see Figure 9) or three surface patches 
(see Figure 11). The corresponding approximating surfaces are displayed in Figures 10 and 12, 
respectively. 

In all cases, we have evaluated the approximant on a regular 40 x 40 grid of points. To estimate 
the accuracy of the method, we evaluate the quadratic error (see Tables 1 and 2) on ~ (for the 
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Figure 7. C 1 approximant. 
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Z 
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e~ e5 

Figure 8. Function g. 

approximant  and a usual Dm-spline (see, for instance, [9]) based upon the classical formula 
1600 

Qerror (xi,  yi, zi) = i=11600 
Z z? 
i = 1  

where zi represents the z-data  value, and where 2i is the z-approximant for the same (xi, yi). 
For the usual Dm-spline, the Lagrange data  are the nodes of the triangulation, and of course, 

we have chosen exactly the same finite element grid (and the Bogner-Fox-Schmit finite element 
of class C 1). 

Considering the dataset  corresponding to the first triangulation (288 triangles), such values 
are considered very good in the context of surface approximation. The second triangulation (six 
triangles) illustrates the method in the case of fewer data  points. 



402 C .  G O U T  

z 

o 
d ~  q 

¢ ~ .  ¢u ~ ° 

o i~. r,o o 

Figure 9. Data corresponding to g~a,1. 
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Figure 10. C 1 approximant. 

We now give a numerical  example from a set of 7049 da t a  points  (Figure 13) in the  Big Is land 
area  in Hawaii. The  maximum height of the  big island is 4.Tkm, and the dep th  of the  seafloor 
reaches more than  4 k m  in several places. The  topogaphy  and ba thyme t r y  of the  Hawaiian 
Is lands in the  Pacific Ocean result  from the ac t iv i ty  of a huge hot  spot  combined wi th  the  effect 
of erosion. Being able to  describe the  topography  of such regions exhibi t ing rapid  local var ia t ions  
wi th  at  least  C o regularity, or even C 1 regularity, is impor tan t  in many  fields in geophysics. For 
example ,  this  descr ipt ion of the  topography  can be an input  to  numerical  model ing codes tha t  
s tudy  the  propagat ion  of pyroclast ic  flows or lava flows, and related hazard;  o ther  examples  are 
seismic site effects and ground motion amplification due to topographic  features. The  d a t a  points  
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F i g u r e  11. D a t a  c o r r e s p o n d i n g  t o  g,~1,2,3'  
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in the  digi ta l  elevation model  (DEM) have been obta ined by digit izing a not  complete  map  of 
the  seafloor. A zone wi thout  d a t a  is located from the northwest  corner to the  southeas t  one (see 
Figure  13). This  zone divides the  domain into two regions. We have made a t r iangula t ion  on each 
region using the software Mefisto (see [30]). We use a 23 x 23 rec tangular  C1-BFS finite element  
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Table 1. 

Function f Qerror (lJi (si,~i,zi)) Data 

Approximant 9.5 10-d ~1: 1152 data points 

Dm-Spline 1.17 10-s ~1: 1152 data points 

Approximant 8.91 1O-3 wi:i=1,2,3: 33 data points 

Dm-Spline 1.07 10-Z wi:i=1,2,3: 33 data points 

Table 2. 

Function 9 Qerror (lJi (G,Y~, G,) Data 

Approximant 1.34 10-S ~1: 1152 data points 

Dm-Spline 1.30 10-s WI : 1152 data points 

Approximant 0.18 wi:i=1,2,3: 33 data points 

Dm-Spline 0.24 wi+1,2,3: 33 data pomts 

I 
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Figure 13. Dataset of 7049 points, Big Island, Hawaii. 

grid. We give the C1 approximant in Figure 14. We also evaluate the approximant obtained at 
the 7049 data points of the dataset. To estimate the error quantitatively, we then evaluate the 
quadratic error on the dataset: we obtain a value of 1.02 10m4, which is a satisfactory result. 

For the reader interested in learning more about possible applications of this technique to 
realistic cases (and more complicated datasets), numerical examples to real geophysical data 
(large datasets up to several hundreds of thousands data points coming from an old glacial valley 
located in the Vallee d’Ossau, Pyrenees Mountains, France) are given in [l]. The regularity 
obtained, which can be Co, C’, or higher, allows us to describe the topography of real geophysical 
surfaces accurately. Future work will focus on investigating automatic methods to choose the finite 
element grid and, when necessary, the local refinement, as well as on the choice of quadrature 
formula with better order of approximation. 
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Figure 14. C’ approximant (evaluated on a regular 250 x 250 grid of points). 
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