Healthcare associated infections (HAI) perspectives

Jaffar A. Al-Tawfiq, Paul A. Tambyah

Specialty Internal Medicine Unit, Dhahran Health Center, Saudi Aramco Medical Services Organization, Dhahran, Saudi Arabia
Indiana University School of Medicine, Indianapolis, IN, USA
Department of Medicine, National University of Singapore, Singapore

Received 30 December 2013; received in revised form 1 April 2014; accepted 26 April 2014

KEYWORDS
Healthcare associated infection; Hand hygiene

Summary Healthcare associated infections (HAI) are among the major complications of modern medical therapy. The most important HAIs are those related to invasive devices: central line-associated bloodstream infections (CLABSI), catheter-associated urinary tract infections (CAUTI), ventilator-associated pneumonia (VAP) as well as surgical site infections (SSI). HAIs are associated with significant mortality, morbidity and increasing healthcare cost. The cited case-fatality rate ranges from 2.3% to 14.4% depending on the type of infection. In this mini-review, we shed light on these aspects as well as drivers to decrease HAIs.

© 2014 King Saud Bin Abdulaziz University for Health Sciences. Published by Elsevier Ltd. All rights reserved.

Introduction

Healthcare associated infections (HAI) are among the major complications of modern medical therapy due to the increasing age and complexity of patients, increased utilization of invasive devices and often inappropriate use of antimicrobial therapy. The most important HAIs are those related to invasive devices: central line-associated bloodstream infections (CLABSI), catheter-associated urinary tract infections (CAUTI), ventilator-associated pneumonia (VAP) as well as surgical site infections (SSI). Many of these device associated infections and SSI are caused by multi-drug resistant organisms (MDRO) such as Clostridium difficile, methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococci (VRE) and multi-resistant Gram-negative bacilli. While outbreaks often capture the attention of the media and the public, endemic HAI represent the majority of infections encountered in healthcare and are associated with

http://dx.doi.org/10.1016/j.jiph.2014.04.003
1876-0341/© 2014 King Saud Bin Abdulaziz University for Health Sciences. Published by Elsevier Ltd. All rights reserved.
significant morbidity, mortality and healthcare costs [1].

There are multiple factors contributing to HAI and include healthcare associated factors, environmental factors, and patient-related factors. Healthcare related factors include the use of invasive devices, surgical procedures, and selection pressure from excessive antibiotic use. Environmental factors include contaminated air-conditioning systems and the physical layout of the facility (e.g., open units with beds close together). These factors interact in any given healthcare system and multiple factors may play a role such as staffing (e.g., nurse-to-patient ratio) and the lack of effective intervention programs designed to reduce HAI. Patient-related factors include; severity of underlying illness, use of immunosuppressive agents, and prolonged hospital stays.

Mortality and morbidity

Hospital acquired infections are associated with significant mortality and morbidities. These have been quantified in a number of studies although the mortality impact is likely to be affected by the case mix. In a study from the USA, case fatality rates of CLABSI were 12.3%, VAP 14.4%, CAUTI 2.3%, and SSI 2.8% [2]. In a study in a surgical intensive care unit, the attributable mortality to CLABSI was 35% [3]. It was argued that for most HAIs additional studies are needed to determine the attributable mortality as it is difficult to attribute death in such patients to infection only in patients with multiple cofactors in intensive care units [4]. Of all HAIs, CLABSI and VAP are associated with the highest number of preventable deaths [6]. The calculated estimates of lives saved in the United States by reduction in the number of cases of CLABSI are 5520–20,239 lives, and for VAP 13,667–19,782 lives [4].

Costs

HAIs are associated with substantial cost and burden on healthcare organizations [2,5]. In the United States, it is estimated that HAIs occur in about two million patients a year with a total number of deaths of 99,000, and cost of $33 billion each year [2,5]. The SENIC (Study for Efficacy of Nosocomial Infection Control) study estimated the cost of HAIs to be $4.5 billion in 1992, which reached almost $6.6 billion in 2007 after adjusting for inflation [2]. The economic impact of HAIs in low- and middle-income countries is poorly studied. In a study from Mexico City ICUs, CLABSI was associated with a mean extra hospital cost of US$ 11,591, and an attributable extra mortality of 20% [6]. A systematic review is beyond the scope of this commentary but Stone et al. have recently reviewed the subject [7].

The relation between HAI rates and the country’s socioeconomic level

The country’s economic level is generally classified as low income, mid low income and high income. The relation between HAI rates and the socioeconomic level was recently analyzed and published [7,8] and showed that a higher country socio-economic level was correlated with a lower infection risk [7,8]. The device utilization rate in the developing countries’ ICUs was similar to that reported in US ICUs but the pooled rate of CLABSI and VAP in the International Nosocomial Infection Control Consortium (INICC) system was higher than the reported rate in comparable US ICUs [8]. Studies from Europe also shed light on the prevalence and incidence of HAIs in ICUs. For example in one study, 20.6% of patients had ICU-acquired infection including: pneumonia (46.9%), lower respiratory tract infection (17.8%), urinary tract infection (17.6%), and bloodstream infection (12%) [9]. Of a total of 3360 patients with HAIs in Europe, the commonest types of HAIs were respiratory tract infections (22.8%), urinary tract infections (UTI) (17.2%), and surgical site infections (SSI) (15.7%) [10]. In Africa, the overall prevalence of HAI range was 2.5–14.8% [11], and was twice the average rate from European prevalence as reported by the European Center for Disease Prevention and Control [12]. Benchmarking is being established in many regions and was established in the United Kingdom in the 1990s [13]. The Nosocomial Infection National Surveillance Scheme (NNISS) in United Kingdom is run by the Health Protection Agency (HPA) and is based on US NNIS system [14]. Similarly, the Krankenhaus-Infektions-Surveillance-System (KISS) is a German HAI surveillance system that was established in 1997 [15]. For decades, the CDC was the only source available to provide a basis for comparison of infection rates with hospitals worldwide. Comparing US CDC’s hospitals’ rates with those of hospitals from Western Europe and Oceania is considered valid, due to their similar socioeconomic conditions. The comparison of between CDC’s rates and hospitals with limited resources or with limited experience in the field of infection control—is difficult. The US hospitals
enjoy more than 50-year unrivaled experience in infection control and surveillance, sufficient human and medical supply resource availability, and a comprehensive legal framework backing infection control programs and including mandatory surveillance and hospital accreditation policies. These characteristics lead to significantly lower HAI rates for CDC’s hospitals, and hospitals from high income countries, in contrast to hospitals from developing economies or with insufficient resources and experience in infection control. The chosen benchmark should have similar data collection and presentation methods [16]. It is important also to take into consideration any differences in surveillance environments including regulations [16].

Strategies for reduction of HAI

For more than 30 years, it has been recognized that many of these infections are partially preventable and healthcare can be made safer. Two broad approaches have been used to work toward the reduction of device-associated infections (DAI). The first is a passive strategy in which surveillance protocols lead to reduction in infections through prompt and timely feedback [17]. The classic study demonstrating the importance of this was the SENIC study [18], funded by the United States Centers for Disease Control and Prevention (CDC) and included 338 hospitals randomly selected and stratified by geography, inpatient bed capacity, and teaching status [18]. The study showed that infection control programs with dedicated hospital epidemiologists and surveillance programs reduced nosocomial infections by 32% compared to settings without infection control programs [18]. In their recommendations, the Society for Healthcare Epidemiology in America (SHEA) Consensus Panel on essential activities of Infection Prevention and Control (IPC) programs in hospitals considered surveillance activities of HAI to be a Category I recommendation [19]. These recommendations suggest that surveillance should include: standardized definitions of numerators and denominators, identification and description of data sources and data collection personnel and selection of appropriate methods of measurement [19]. While surveillance provides important baseline data, in recent years, more active intervention protocols have been introduced to further reduce the incidence of HAI. Recently the use of the bundle concept has focused attention on the reduction of DAI in particular. After successful trials in a wide variety of settings [20], a multimodal approach for the prevention of HAI has emerged globally. In this multimodal approach for example, for the reduction of CLABSI, different strategies are included such as education and training, standardized processes, use of maximal sterile barrier precautions, use of chlorhexidine in alcohol for skin preparation, hand hygiene and catheter care [21]. The benefit of the use of combined measures (multimodal approach) has been documented on the rate of vascular-access infections more than 15 years ago [22]. This study employed catheter-care techniques that included maximal aseptic precautions, use of sterile gloves, gown and drapes and a continuing education program and regular feed-back of the rates of CLABSI to the involved staff [22]. A landmark study, the Pronovost study, showed that a similar evidence-based intervention resulted in up to 66% reduction in rates of catheter-related bloodstream infection and was maintained over an 18-month period [23]. This was further sustained with reductions in catheter related bloodstream infections for up to 36 months [24].

In 2008, the Society for Healthcare Epidemiology of America (SHEA) and the Infectious Diseases Society of America (IDSA) and partner organizations published a compendium of strategies to prevent HAIs in acute care hospitals [25]. The compendium is an evidence-based practical guide for the prevention of common HAIs including CAUTI, SSI and CLABSI.

While there is an increasing body of evidence for various evidence-based interventions to reduce HAIs, they continue to be a problem and multi-drug resistant organisms (MDRO) rates continue to rise. The problem has been in getting healthcare organizations to adopt or adapt the best interventions in reduction of HAI in their routine practice. Changing the behavior of the individual healthcare worker is challenging as well as changing the culture of any given healthcare organization. It was estimated that despite widespread incontrovertible evidence, adapting healthy life styles to quit smoking took 50 years to decrease smoking rates from 80% to 36% in men 35–59 years of age and to 21% in men more than 60 years of age [26]. We hope that culture change in HAI prevention will not take that long!

How can we reduce HAI?

Several initiatives have been started to try to implement evidence based interventions to reduce HAIs. For example, the QUEST performance improvement program is a collaborative sponsored by Premier with technical assistance provided by the Institute for Healthcare Improvement (IHI) [27]. This
Despite dated guidelines, it is unclear whether measures to reduce preventable infections have been truly successful. The authors have proposed some potential drivers for HAI prevention, such as media coverage of HAIs, which can lead to increased awareness and pressure on hospital administrators to prevent further cases. One of the key challenges is the administrative burden and the lack of evidence-based guidelines, which can lead to a lack of compliance and inconsistent reporting. In addition, there is a lack of consensus on the definition of HAIs, which can make it challenging to compare the effectiveness of different prevention strategies. The authors have called for a more coordinated approach to HAI prevention, with a focus on evidence-based practices and shared guidelines. However, the implementation of these measures is often hindered by institutional and regulatory barriers, which can make it difficult to achieve the desired outcomes. Therefore, there is a need for a more comprehensive approach to HAI prevention, including better communication, resources, and support for healthcare professionals.
surely augurs well for infection control and prevention programs although we would hope that we have more success than he did in his lifetime!

Funding

No funding sources.

Competing interests

None declared.

Ethical approval

Not required.

References

[27] QUEST members improve performance, avoid deaths and reduce costs. Available at: https://www.premierinc.com/wps/portal/premierinc/public/transforminghealthcare/collaboratingforresults/quest/lut/p/b1/04_Sj9CPyksy6xPLMnMz0vMAfGjzOJNzQzWNjWnHQ3cvQwsDdxDzP1MnX18DzDIEKhEnMrPA1JU6_AQ7ggweBh3d-VGZ5SrI5Sc6e9gZ65kbG5oZGBgZm5pYGBkbGlfrh-FD4DLEJMCSjwMcavAOxDoA1BkhD2yjW9N15_JDY2oDPbMNfUVADbOZGLQ!!/dl4/d5/L2dBISEvZ0FBIS9nQSEh/

