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A B S T R A C T

This paper presents an integrated modelling methodology which includes reduced-order models of a
lithium ion battery and a power electronic converter, connected to a 35-bus distribution network model.
The literature contains many examples of isolated modelling of individual energy storage mediums,
power electronic interfaces and control algorithms for energy storage. However, when assessing the
performance of a complete energy storage system, the interaction between components gives rise to a
range of phenomena that are difficult to quantify if studied in isolation. This paper proposes an integrated
electro–thermo–chemical modelling methodology that seeks to address this problem directly by
integrating reduced-order models of battery cell chemistry, power electronic circuits and grid operation
into a computationally efficient framework. The framework is capable of simulation speeds over
100 times faster than real-time and captures phenomena typically not observed in simpler battery and
power converter models or non-integrated frameworks. All simulations are performed using real system
load profiles recorded in the United Kingdom. To illustrate the advantages inherent in such a modelling
approach, two specific interconnected effects are investigated: the effect of the choice of battery float
state-of-charge on overall system efficiency and the rate of battery degradation (capacity/power fade).
Higher state-of-charge operation offers improved efficiency due to lower polarisation losses of the
battery and lower losses in the converter, however, an increase in the rate of battery degradation is
observed due to the accelerated growth of the solid-electrolyte interphase layer. We demonstrate that
grid control objectives can be met in several different ways, but that the choices made can result in a
substantial improvement in system roundtrip efficiency, with up to a 43% reduction in losses, or
reduction in battery degradation by a factor of two, depending on battery system use case.
ã 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

The challenge of integrating large amounts of intermittent
renewable generation on electrical grids calls for smarter
management of electrical networks and brings with it new
business opportunities. The United Kingdom (UK) has signed up
to the European Union renewables energy directive which includes
aims of having 15% renewable energy on the grid by 2020, a 7-fold
increase on the 2008 level [1–4], and is further committed to
reduce its greenhouse gas emissions so that by 2050 they are at
least 80% below 1990 levels [4]. Electrical energy storage (EES) has
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E-mail address: haris.patsios@newcastle.ac.uk (C. Patsios).

http://dx.doi.org/10.1016/j.est.2015.11.011
2352-152X/ã 2015 The Authors. Published by Elsevier Ltd. This is an open access artic
been identified as one of the ways of supporting this low carbon
transition [5]. Facilitating EES has been considered an essential
component of future UK smart grids [6]. Although a number of
trials are already active in the UK [5–8], ranging from domestic
community-scale devices to industrial utility-scale systems with
power and energy capacities from some kW and kWh, respectively
up to a few MW and MWh, there remain many technical and
economic questions regarding the feasibility of large scale EES
systems.

A grid-scale energy storage system is composed of three main
components: the energy storage medium itself (e.g. lithium-ion
batteries), a power electronic interface that connects the storage
medium to the grid, and a high-level control algorithm that chooses
how to operate the system based on measurements internal (e.g.
state-of-charge) and external to the system (e.g. busbar voltage). At
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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present, controllers that are designed to achieve a grid control
objective do not account for the detailed operation of the power
electronic grid interface or the electrochemical performance of the
batteries [9–11]. This level of detail is often omitted to improve
simulation time as grid studies usually span several hours to months.
However, this simplification can result in inaccurate predictions due
to the non-linear nature of electrochemical devices, highlighting the
need for models which retain the physical phenomena of relevance
in this area. In this paper, we propose an integrated modelling
approach. We implement a physics-based battery and a power
converter model with sufficient level of detail to accurately account
for energy losses, and to track one form of battery degradation (solid-
electrolyte interphase (SEI) layer growth). This battery energy
storage system (BESS) model is coupled with a grid model based on a
typical network case in the UK.

The academic literature concerning the modelling of each sub-
system is vast and covers a multitude of applications. Typically,
power converter operation is modelled for times ranging from
microseconds to a few tens of seconds [12,13], battery system
operation from milliseconds to tens of minutes [14–17] and
electrical networks from seconds to days [18–21]. Research
involving the modelling of each system rarely takes an integrated
approach, as the scope and field of application varies widely. When
ESSs are employed in grid-connected applications, simplifications
are usually made in the modelling of batteries, for example when
the simulation time window is extended (e.g. in analysis of cost-
effectiveness [18–21]), or the examined timescale is short due to a
focus on the design of a proposed control algorithm [22,23]. There
are examples of a more holistic approach involving different
timescales, but this is often made in a non-integrated manner such
that different models are used to simulate each timescale [24].

Fig. 1 summarises the various effects of the different grid-
connected devices and the timescales over which they occur. The
area highlighted in green covers the timescales addressed within
the developed integrated modelling framework. The proposed
benefits stemming from this approach are:

� To allow for a precise and on-line mapping of asset character-
istics and associated operating costs focusing on the edges of
nominal limits.

� To assist in efforts towards a more cost-effective sizing of grid-
connected energy storage system applications and thus reduc-
tion of initial costs.

� To lead to a more efficient and cost-effective operation
maximizing benefits of BESS operation.

� To allow for the development and testing of novel control
architectures in a more realistic and detailed environment.
Fig. 1. Relative time scales and effects for different areas of interest. The area
highlighted in green covers the timescales addressed by the integrated modelling
framework presented in this paper.
� To facilitate the incorporation of the model in real-time
simulation platforms.

2. Methodology

Fig. 2 shows a block diagram of the integrated model and details
of individual blocks. Extended descriptions of the individual
systems are given in the following sections. Overall, the lithium-
ion battery model receives battery current, Ib, from the power
converter model and outputs battery voltage, Vb, state of charge,
SoC, and battery temperature, Tbat, to the network model which
can be used for control purposes. A degradation mechanism (SEI
layer growth) is also implemented in the battery model; capacity
loss data, Closs, in Ah can thus be used for realising cost functions
that take into account battery life decline, however a full
degradation model is beyond the scope of this paper. The converter
model receives active and reactive power set-points, P and Q,
respectively from the network control algorithm as well as the
voltage at the point of common coupling (PCC), VPCC,RMS and
calculates the respective current, IPCC,RMS, and phase angle, used for
calculations in the grid model. Power converter efficiency and the
junction temperature of the Insulated gate bipolar transistors
(IGBT) s, Tj, are calculated. Whole system energy losses, Eloss, are
also calculated by integrating power converter losses, Ploss,avg, and
battery power, Pbat. Battery round trip energy efficiency is
calculated over a cycle that begins and ends at the same SoC.
MATLAB/Simulink1 is used for implementing this model. The
network model is designed using the SimpowersystemsTM library
while the battery and converter models are implemented as
embedded MATLAB1 functions.

2.1. Lithium-ion battery model

The equations which govern the operation of a lithium-ion
battery can be solved in varying degrees of complexity; 3D [25,26],
2D [27,28], 1D [29,30] and 0D [31]. In the case of the 0D model, this
is known as the single particle model (SPM), which is diagram-
matically shown in Fig. 2b and has been adopted in this work. This
has advantages in terms of low computational cost, however it is
typically only valid up to approximately 2C (1C being the current
required to discharge the cell in 1 h and thus 2C being twice this
value) operation, though often load balancing services on grids are
below this rate thus enabling its use. Here the concentration
gradients induced in the electrolyte phase are assumed to be
constant.

There are many degradation mechanisms relevant to lithium-
ion batteries. These can include: the growth of the SEI layer,
mechanical fracture of the electrodes due to volume changes,
electrolyte decomposition, cathode dissolution, dendrite forma-
tion, lithium plating and many others [32]. This modelling work
includes the effect of SEI layer growth, a degradation effect often
cited as a critical factor [33] causing both power fade through
increase in cell resistance and capacity fade through loss of active
material. Whilst others exist, it is beyond the scope of this paper to
present a battery model covering all degradation modes.

The battery chemistry used in this study is based on Kokam
4.8 Ah lithium–polymer cells with an operating voltage window of
4.2–2.7 V. This uses a graphite anode and metal oxide cathode,
common to many lithium-ion battery chemistries. This single cell
is then scaled to grid scale by increasing the number of cells in
series and parallel. Depending on the battery chemistry used, the
resistance over the whole SoC range and at different temperatures
will not be constant due to variations in the charge transfer
resistance of the electrodes and diffusion processes [34]. This is
demonstrated in Fig. 3 which shows measured resistance values



Fig. 2. Block diagram of the proposed integrated model and details of individual blocks (a) whole system (b) Single particle model of a lithium-ion battery showing schematic
of the domains of interest (c) power converter model and loss calculation procedure (d) network model showing MV network topology and measurement points at the LV
secondary substations.
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Fig. 4. Measured cell voltage as a function of SoC for a 4.8 Ah Kokam lithium-ion
battery.
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fitted from the equivalent circuit inset shown in Fig. 3, obtained
from electrochemical impedance spectroscopy (EIS) measure-
ments. Here it can be seen that at SoCs below 40%, both the charge
transfer resistance and the diffusion resistance increase signifi-
cantly. Operating the energy storage system within this range
therefore reduces the round trip efficiency of the system and also
increases the heat generation from the battery, which if not
thermally managed can cause accelerated battery degradation.

An important interaction of the battery chemistry with the
power electronics is that the battery voltage varies significantly
with SoC. Fig. 4 shows how the cell voltage of a battery varies with
SoC when under galvanostatic operating mode with a current of
2.4 A (0.5C). Thus, selecting a suitable SoC range and designing the
electronics around that voltage range becomes an important
optimisation step when designing for grid storage applications.

Here it can be seen that, when the SoC falls below 20% it
becomes more difficult to operate the device due to the large
voltage swing and the accompanying increase in impedance,
which impacts both round trip efficiency and heat generation.

2.1.1. Battery model
The battery SPM accounts for non-linear electrochemical

performance by treating each electrode as equivalent to a single
sphere, modelling solid-state lithium diffusion in each electrode to
define the individual electrode potentials which are then coupled
to a stoichiometry-potential function and the Butler–Volmer
equation to give overall cell performance. Here electrolyte
concentration gradients are neglected due to the assumption of
low (<2C) discharge/charge rates. Heat generation in the battery is
also reduced to only account for the reaction heats and electronic
Ohmic heating for simplification. In the majority of cases, the
entropic heat is much smaller in magnitude than the other heat
generation terms and can be neglected [29]. Also, since there are no
lithium-ion electrolyte concentration gradients, the ionic heat
term does not need to be considered. Furthermore, the heat
generated from the solid state lithium diffusion was found to be
significantly smaller than that of the electronic Ohmic and reaction
heats, and thus was neglected [29]. The temperature, modelled as a
lumped capacitance model, is then coupled to the performance of
the cell via an Arrhenius rate law equation. The rate of degradation
was fitted to the model based on the physical parameters provided
by Ramadass et al. [33] and fitting of the exchange current density
of the side reaction to the capacity loss presented by Wu et al. [36]
who used the same cells. The modelling approach for the SPM is
based on the work by Chaturvedi and Klein [35] and Ramadass
Fig. 3. Fitted EIS spectra from measurements of a 4.8 Ah Kokam lithium–polymer
battery at different SoCs, with equivalent circuit inset.
et al. [33] and readers are directed to these papers for the details of
the governing equations which were adopted in this work unless
otherwise stated. The parameters used in the model are shown in
Appendix A and the fitted electrode potential curves are shown in
Fig. 15.

The battery model was implemented as a MATLAB1 s-function,
employing Finite Difference Methods (FDM) to solve the differen-
tial equations. This function was incorporated into Simulink1,
where the block adopts the battery states from the previous time
step and calculates the next time step based on the governing
equations.

2.1.2. Model validation
Model validation was done by testing the cells under different

discharge rates using a Maccor 4300 battery tester in a 4-electrode
configuration and k-type thermocouples attached to the centre of
the cell with Kapton tape. The comparison between the model and
experimental results are shown in Fig. 5 for both the voltage and
temperature response.

2.2. Converter model

The most popular topologies used to interface a BESS with the
AC network are single stage and two stage converter topologies. In
a single stage topology, the battery pack is connected directly to the
DC link of a voltage source converter. Due to the varying battery
voltage it is not possible to optimise the inverter design for a
specific DC-link voltage, resulting in an ‘oversized’ DC to AC stage.
In the two stage topology, a DC to DC conversion stage is used in
order to boost the battery voltage and regulate the DC-link voltage
so that the DC to AC stage can be optimised [37]. In this study, the
two stage topology presented in Fig. 6 is used as it allows greater
variation in battery voltage, and hence more complete charge
extraction, without compromising the efficiency of the system
[38]. Table 1 summarizes the parameter values of the two stage
topology shown in Fig. 6.

The efficiency of the power converter is strongly dependent on
the conduction and switching losses of the internal semiconductor
devices and to a lesser degree on the losses in the passive filter
components (filter inductors and capacitors and the DC link
capacitor) [39]. One method of calculating switching and conduc-
tion losses is to use a transient simulation using a very short time
step simulation to capture every switching edge (this is referred to
as the ‘detailed model’). This typically requires a time step in the
order of 1 ms in order to maintain accuracy [40]. The obvious



Fig. 5. Measured and simulated (a) voltage and (b) temperature responses of a 4.8 Ah Kokam lithium–polymer cell.
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drawback of this method is that it is inherently very computation-
ally expensive. This work targets simulation speeds faster than real
time and so an alternative method of converter loss simulation has
been developed. This method emphasises close agreement with
the detailed simulation approach in steady state operation.

The proposed method, referred to here as the ‘average model’, is
based on semiconductor datasheet information [41] coupled to a
piecewise linear approximation of a single 50 Hz fundamental
period of the voltages and currents occurring in one leg of a three-
phase bridge. As balanced three-phase waveforms are assumed
during simulation, power losses need to be calculated only for a
pair of semiconductors. The voltage (V n½ �) and current (I n½ �)
samples are used to calculate the conduction and switching losses
according as

Pcond n½ � ¼ I n½ �VCE n½ �D n½ � ð1Þ

PSW n½ � ¼ f SW Eon n½ � þ Eoff n½ �ð Þ ð2Þ

where VCE n½ � is the voltage across the semiconductor device, D n½ � ¼
1 þ 2V n½ �

VDC

� �
the modulation ratio for a specific sample n,f SW the

switching frequency and Eon n½ �; Eoff n½ � the switch-on and switch-off
energy losses, respectively.

The sum of these losses represents the total power losses of the
converter for each sample and is then used to calculate the average
power losses for a fundamental period of 50 Hz. The junction
temperature of the semiconductors devices is estimated using a
Cauer thermal model as in [42]. The power loss calculation for the
IGBT (T1) using the average model is presented in Fig. 2c the same
procedure applies for the diode (D1) except that only reverse
recovery switching losses are considered, i.e. Eon n½ � � 0 [43].

The average model also takes into account power losses
occurring in the LC filter of the DC/DC converter, the LCL filter
at the grid side of the AC/DC converter and the DC link capacitor.
Fig. 6. Two stage topology comprised of battery 
These losses are described in Eqs. (3)–(5) with regard to Fig. 6.

PCDC ¼ RCDC 2pf SWCDCDVDCð Þ2 ð3Þ

PLG ¼ 3I2GðRLG2 þ RLG2Þ ð4Þ

PLB ¼ I2BRLB ð5Þ
where RCDC is the equivalent series resistance of the DC link
capacitor, DVDC the voltage ripple at the DC link, RLG1, RLG2, RLB the
DC resistance of the inductors LG1; LG2; LB, respectively. The model
also incorporates transformer no load losses based on datasheet
information [44]. The accuracy of the average model is calculated
based on the mean absolute percentage error (M) as given in Eq. (6)
and depends on the number of samples N used in the calculations.

M ¼ 100
K

XK

t¼1

jPdet t½ � � Pavg t½ �
Pdet t½ � j% ð6Þ

where K is the total number of average losses samples, Pdet t½ � the
average power losses based on the detailed model and Pavg t½ � the
average power losses based on the average model. Fig. 7
demonstrates the relation between the absolute error and number
of samples used in the calculations. A number of 20 samples per
cycle (one period of the fundamental grid frequency) was observed
to give good agreement with the detailed model with low
computational effort and so was chosen for use in the rest of
the work. Transient responses of the detailed and average models
are shown in Fig. 8.

The detailed model requires approximately 300,000 steps for
one second of simulation time whereas the average model requires
only 52 steps. During each step power losses are calculated using a
predefined number of samples, in this case 20, resulting in a mean
absolute percentage error of 3.6%. (Fig. 7).
bank, DC–DC and DC –AC conversion stages.
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2.3. Network model and control algorithm

The section of network used to test the integrated model is based
on a real low voltage (LV) network in the UK [45]. The network is
connected to the medium voltage (MV) network through two 11 kV
feeders and ultimately to the 33 kV network through a primary
substation. Fig. 2d shows the network configuration. The network
has a combination of commercial/small industrial customers and
residential LV networks. The latter comprises both loads and PV
systems.

A conceptual future scenario is examined to serve as a trial for the
proposed integrated modelling approach: A 100 kW 50 kWh BESS is
assumed to be connected directly to the secondary substation, as
shown in Fig. 2d, rated at 315 kVA. The substation transformer is
currently serving 5 feeders with a total of 208 load customers and
6 PVinstallations.At present loadingconditions, thethermal limits of
the transformerare not exceeded, however, the possibilityexists that
loading will be increased in the future such that network
reinforcement would be required. In such a case, the BESS could
serve as a means to flatten the high evening load peaks and reduce
the transformer loading below the thermal thresholds while also
providing a set of ancillary services.

For the purposes of this study, four measured power profiles—one
for spring, summer, autumn and winter—comprising of aggregated
load demand and PV generation were scaled from 4 to 8 times
dependingon the load case examined,sothat the transformer’s rated
power is exceeded during the evening periods. One or more BESSs of
the size considered could be connected directly at the secondary
transformer, or positioned deeper inside the feeder, and be operated
such that the transformer is kept within its thermal limits at all times
through appropriate control (storing energy during the day and
releasing it during the evening). The 24 h power profiles considered
are shown in Fig. 9. The power profiles shown have originated from
daily measurements taken throughout the year at the 6 secondary
substations marked with a red rhombus in Fig. 2d. Measured data
with 1 min resolution was made available by the distribution
network operator (DNO). The data was recorded between November
2011 and March 2013 using KelVAtekdatamonitors/smart fuses[45].
Data includes phase currents, voltages, active and reactive power
flows. Although Section 2.4 presents results referring only to the
Autumn load, results for the rest of the load cases of Fig. 9 have been
recorded but are not shown in this paper since the general findings
are applicable in each case.

The grid model is implemented using the SimPowerSystemsTM

library in Simulink1. The model incorporates the battery and
power converter models packaged as s-functions. The solver is the
ode23t (an implementation of the trapezoidal rule using a free
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Fig. 7. Mean absolute percentage error between power losses calculation using the
detailed converter model and power losses calculation using the proposed average
model. The error is presented as a function of the number of voltage and current
samples used in the average model calculations.
interpolant). Using a desktop computer system running on an
Intel1 CoreTM i5-4670CPU at 3.4 GHz with 8 GB RAM the model
runs approximately 100 times faster than real time. The BESS
connection to the grid is implemented using current sources
responding to active and reactive power set points. Power set
points along with the voltage at the PCC are passed on to the
converter model that calculates battery current and outputs the
latter to the battery model which calculates battery parameters e.g.
SoC, temperature, voltage and capacity losses.

Simulation of the electrical part is performed in phasor mode
which provides fast simulation but limits the solution to one
particular frequency. A full transient simulation is not required in
this model because the BESS system control algorithm operates at
timescales greater than 1 s. A grid modelling framework based on a
sequential load-flow solution method was also considered but
rejected. The minimum time step required by the battery model is
100 ms which implies a minimum of 864,000 load flows for
simulating a single day using a closed-loop coupled model. This
would also result in impractical simulation speed. Furthermore
sequential load flows would eliminate any effects related to
electrical transients and thus restrict system studies to steady-
state analysis.

2.4. BESS control algorithm

The control algorithm’s primary function is to follow the
transformer load and respond by flattening it when this exceeds
300 kW by discharging the battery. The algorithm issues power
commands that equal the difference between the load and the
300 kW threshold. The algorithm also accounts for the SoC and
current limitations imposed by battery technology constraints
when operating close to the SoC extremes; these are calculated
online in the battery model and aim to maintain individual cell
voltage between the 2.7–4.2 V limits.

The BESS will normally float at a pre-selected SoC. It will be
allowed to charge, either prior to the evening peak or during the
evening, by drawing power but ensuring the transformer 300 kW
threshold is not exceeded. Achieving the target of flattening the
transformer evening load will depend primarily on the available
battery energy i.e. battery SoC. Depending on the load profile there
are several hours during the day when the battery will be “idle” i.e.
it will not charge or discharge and its SoC will float at a given set
point. Available energy will also depend on the SoC upper and
lower limits. In the various cases examined in this paper we will be
simulating battery operation at different floating SoC and different
SoC limits as these relate to battery degradation and overall system
efficiency.

Fig. 10 displays the typical operation of the BESS. The BESS is set
to float at 30% SoC. Shortly after noon the BESS will charge in order
to be in a position to accommodate the evening peak. This
operation is controlled so that the 300 kW transformer limit is not
exceeded. The same applies for the BESS’s nominal power and
battery current constraints that depend on the operating battery
SoC. The BESS will respond during the evening to flatten the
transformer load and will be allowed to recharge if the SoC falls
below 30%. The battery may recharge to higher SoCs during the
evening if the algorithm is set to allow for this operation.

3. Results and discussion

Using the proposed integrated modelling approach, the system
is simulated for an equivalent time window of 24 h. The Autumn
load profile was chosen in this study as it is relatively higher and
has a greater variability than the other seasons. It is thus
anticipated that the BESS will reach its nominal power in
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Table 1
Parameter values of the two stage topology.

Parameter Symbol Value

Nominal DC link voltage VDC 700 V

Battery voltage range VB 405–630 V

Boost converter inductance LB 0.3 mH

Boost converter capacitance CB 10 mF

DC link capacitance CDC 3 mF

Grid filter inductance 1 LG1 0.6 mH

Grid filter inductance 2 LG2 15 mH

Grid filter capacitance CG 0.1 mF
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numerous instances and also operate near the SoC limits. The BESS
is controlled using the control method described in the Section 2.3
in order to flatten the evening peak. Fig. 11 shows BESS operation
for two different combinations of floating SoC, and SoC limits:

a Floating SoC 100%, maximum SoC 100%, minimum SoC 20%.
b Floating SoC 30%, maximum SoC 80%, minimum SoC 0%.

For these two combinations Fig. 11 shows the power flowing
through the transformer, the BESS power, SoC, battery capacity loss
and energy absorbed and released during the operation of the
BESS. As can be seen in Fig. 11d, capacity loss varies significantly
depending on the floating SoC, with lower SoCs resulting in lower
degradation due to the higher anode potential and thus lower rate
of SEI layer growth. Fig. 11e shows the energy absorbed and
released by the battery system during charge and discharge
respectively, starting at a value of 0 kWh. Charging increases this
value and discharging reduces it. In both cases the cycle ends at the
same SoC as the initial one i.e. 100% and 30%, respectively. The
difference between the starting (0 kWh) and ending energy values,
DEESS, shown in the figure is measured in kWh and is calculated by
integrating the power absorbed and released during the operation
of the BESS. It will thus equal the roundtrip energy losses for the
24 h cycle. Fig. 11e shows a difference in these losses. The resulting
DEESS of 14.58 kWh and 14.17 kWh for the two cases of Fig. 11e
signify a 93.27% and 93.56% roundtrip efficiency respectively. The
above remarks suggest that although the energy delivered for
these two cases is the same under the same power i.e. the effect on
the service to the grid will be the same, the effect on the battery life
and the overall energy efficiency of the system can be different.

A closer examination of the energy losses is undertaken for
combination (a). The energy absorbed and released during the
operation of the BESS is depicted in Fig. 12a for the whole system
and the battery pack separately. These are split in the figure to total
energy losses of the BESS and losses of the battery, i.e.DEESS and
DEBAT, respectively. The energy dissipated in the batteries through
internal irreversible losses is equal to 33.4% of the total losses. This
indicates that the main contributor of losses in the BESS is the
battery interface that consists of the power converter and
transformer. Fig. 12b shows the dependency of the battery round
trip efficiency (subsequently referred to as battery efficiency) on
the change in SoC (DSoC). Battery efficiency is measured for a cycle
during which the battery is discharged from a predefined SoC set
point and charged back to this point.

According to Fig. 12b (cycle a, b and d), battery efficiency
decreases as the DSoC is increased for cycles with equal SoC set
points highlighting the influence of the SoC-impedance relation-
ship and the decreasing cell voltage (resulting in increased losses
for equal power requirements). In the case of cycles with similar
DSoC (cycle b and d), efficiency is higher in the cycles with the
highest SoC set points, again highlighting the importance of
capturing the SoC-impedance relationships. The decrease in
efficiency when the battery is operated for higher DSoC is thus
underlined by the simulation shown in Fig. 12b where a maximum
difference in battery losses of approximately 43% was recorded
between the points examined. It should be highlighted that Fig 12b
shows the magnitude of the efficiency changes based on a real
world load cycle and thus absolute magnitude changes will vary
based on system configuration and load cycle but the intention of
the example is to highlight the importance of capturing relative
effects and their effect on efficiency.

A series of simulations was then undertaken to study the effects
of different floating SoC and SoC limits on battery degradation and
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efficiency during operation of the BESS. In these scenarios the SoC
could float at 30%, 60%, 90% or 100%, and SoC maximum limits were
80%, 90% or 100%. In the cases examined the maximum SoC limit
will also limit the floating SoC. Thus cases where the floating SoC
would exceed the maximum SoC were excluded from the analysis.
The minimum SoC varied from 0% to 20% depending on the
scenario simulated. These combinations of floating SoC and SoC
limits are chosen in a way that both the BESS power and energy
delivered to the grid during discharge stays the same. Table 2
summarizes the above combinations.
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Fig. 10. Typical operation of the BESS, showi
Fig. 13 gathers the results of battery degradation for all the
combinations examined. A most obvious remark is that floating at a
higher SoC results in a higher rate of capacity loss. A factor of two
increase in capacity loss can be noted for the two extreme cases i.e.
floating at 100% and 30% SoC. This reflects the fact that we are here
capturing only a single degradation mechanism i.e. accelerated SEI
layer growth. Also, a non-linearity is observed in the rate by which
battery degradation increases for higher values of floating SoC as
shown in Fig. 13a for the first 10 h of operation. This is due to the
non-linear potential of the graphite anode, which largely defines
the rate of SEI layer growth. After the BESS begins to discharge the
12 15 18 21 24
e (h)

ng transformer loading and BESS power.
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capacity loss will be different for each case depending on the SoC
upper limit. Higher SoC limits will generally result in more time
spent in higher SoC and consequently to greater capacity losses.
Fig. 13b summarizes the results for degradation at the end of the
examined 24 h period. Fig. 13b reaffirms that higher maximum SoC
limits can result in greater capacity loss even if the chosen floating
SoC was lower. It should be noted that the simulation of
degradation was performed assuming an initially fresh cell and
therefore capacity fade is expected to be faster in this initial period
Fig. 11. BESS operation for two combinations of floating SoC and SoC limits, showing (a)
capacity loss and (e) energy absorbed and released during the operation of the BESS a
until the SEI layer thickness builds up and limits the rate of film
growth. Thus simulation extrapolation of the absolute degradation
rate forward in time will not be linear, however the relative
findings will still be valid.

Fig. 14 shows energy losses for the same combinations. It is
evident that converter losses are not highly affected by the floating
SoC but rather depend on the utilisation of the system. Fig. 14
reaffirms that for the cases examined the main contributor of
losses in the BESS is the battery interface, and that higher DSoC will
 Power flowing through the transformer (b) BESS power (c) battery SoC (d) Battery
nd the calculated roundtrip energy losses, DE ESS, over time for a 24 h cycle.
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result in reduced battery efficiency, as shown for cases with lower
floating SoC and SoC limits.

Based on the above observations it can be established that the
choice of both the floating SoC and the SoC limits is critical in terms
of round trip efficiency and degradation through battery capacity
loss. Even though the same energy was delivered to the grid under
the same power by several combinations, capacity loss was
significantly different, depending on the load profile and the SoC
restrictions imposed. Operating the battery at lower SoC will result
in lower capacity loss, however, this would also imply that lower
amounts of energy can be discharged to the grid and the related
services might not be provided between specific times while
Fig. 12. Round trip energy losses and battery efficiency (a) Energy absorbed and released
DE ESS, and battery round trip losses, DE bat, respectively, over time for a 24 h cycle (b) 

different DSoC and SoC values.
battery efficiency would also be reduced. In this analysis the
authors have considered a single, albeit important, degradation
mechanism, i.e. accelerated SEI layer growth, and are aware that
operating at very low SoC will also introduce other degradation
mechanisms.

The above conclusions suggest that an accurate load prediction
could lead to optimised BESS operation where load demand can be
met and capacity loss minimized. From this analysis it has been
shown that any methodology used to meet simultaneously these
two goals i.e. addressing a specific load demand and minimizing
capacity loss, should account, at least, for both the chosen floating
SoC and SoC limits.
 during the operation of the BESS, and the calculated total round trip energy losses,
SoC over time for a 24 h cycle marking battery round-trip efficiency calculated for



Table 2
Combinations of different floating SoC and SoC limits. V: valid combination X: non-
valid combination.

Max.–Min. SoC (%)

Float SoC (%) Max. 100–Min. 20 Max. 90–Min. 10 Max. 80–Min. 0

100 V X X
90 V V X
60 V V V
30 V V V

Fig. 13. Battery degradation for 24 h of operation for different combinations of floating S
end of the 24 h operation for a 4.8 Ah cell.
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For the cases examined it was shown that roundtrip efficiency
will strongly depend on the DSoC. Operating at lower SoC and thus
higher DSoC will result in lower efficiencies due to higher battery
polarisation losses. However, operating the battery at lower SoC
reduces capacity losses due to higher anode potentials which
largely define the rate of SEI layer growth. These two conclusions
suggest that the targets of increasing roundtrip efficiency and
minimizing battery degradation are contradictory in terms of
oC and maximum SoC limits (a) Capacity loss over time (b) total capacity loss at the



Fig. 14. Energy losses of the ESS as the sum of battery losses and converter losses. The efficiency of the converter and the battery is calculated based on the total energy
processed during the day. Energy losses are presented for different combinations of floating SoC and maximum SoC limits.
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establishing SoC set points, however these vary non-linearly and
thus require models of sufficient fidelity to capture this.

4. Conclusions

Here we present an integrated modelling framework for a grid
energy storage system, from battery to grid, and highlight the
critical aspects in the development of a robust and fast model.
Recorded simulation speed on an average desktop computer
system was approximately 100 times faster than real time, which
makes this model appropriate for simulating grid operation for
timescales ranging from seconds up to a few days. The model
incorporates accurate calculations of the key battery and power
Fig. 15. (a) Cell voltage and OCP of a 4.8 Ah Kokam lithium–polymer battery
converter properties that impose important constraints on the
services provided to the grid. The latter can be taken into
consideration in control algorithms targeting objectives that can
range from voltage control to arbitrage and renewable energy time
shift. This methodology could be applied to any other energy
storage technology and thus acts as a platform for future work in
this area.

The integrated model developed in this paper was used to
simulate a typical load case in the UK on a network including
distributed generation. An energy storage system was used to
flatten transformer loading during evening periods of high
demand. It was demonstrated that the same service can be
delivered to the grid through a number of battery SoC set points,
 under pulse discharge and (b) extracted OCP of the cathode and anode.
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which are shown to result in significantly different values of
battery degradation and round trip efficiency. Higher SoC floating
points were shown to increase the rate of battery degradation,
through accelerated SEI layer growth, whilst lower SoC floating
points were shown to decrease system efficiency due to higher
polarisation losses in the battery. This variation is non-linear due to
the anode potential which largely governs the rate of SEI layer
growth, this being the single degradation mechanism considered
in this paper. Energy flow analysis also shows that, for the cases
examined, the majority—59–67% of the system losses are
originating from the power converter. This result combined with
the decreased efficiency of the battery, as observed for the cases
examined at lower SoC, raises the question whether a simpler
converter topology such as the single stage converter [38] should
be preferred given that the increase in converter efficiency could
outweigh the limited SoC operational range and thus available
capacity. Although such an investigation would exceed the scope of
this paper, the proposed modelling approach can be used in order
to quantify the monetary value of each converter interface based
on the desired operation of the BESS.

These findings further support the importance of the integrated
modelling approach as the results could be evaluated, either online
or post processed, and used in conjunction with forecasting
methodologies and actual costs of contracted services to optimise
BESS operation i.e. to successfully meet grid control requirements
in a cost-effective manner while increasing overall efficiency and
battery lifetime.
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Appendix A. Battery equations and parameters

Battery equations and parameters

Rþ
s Radius of positive particle (m) 8.5e-6

R�
s Radius of negative particle (m) 12.5e-6

Lþ Cathode thickness (m) 70e-6

L� Anode thickness (m) 73.5e-6

c0e Lithium-ion concentration in electrolyte (mol m�3) 1e3

eþ Cathode volume fraction 0.5

e� Anode volume fraction 0.58

Dþ Cathode solid phase diffusion coefficient (m2 s�1) 1.7e-14

D�
Anode solid phase diffusion coefficient (m2 s�1) 13e-14

xn;0=xn;100 Anode stoichiometry at 0% and 100% SoC 0.1/0.7

xp;0=xp;100 Cathode stoichiometry at 0% and 100% SoC 0.67/
0.315

Mp Molecular weight of the side reaction product
(mol kg�1)

7.3e4

rp Density of side reaction product (kg m�3) 2.1e3

i0;s Exchange current density of side reaction (A m�2) 8e-8

kp Conductivity of the side reaction product (S/m) 1

EDþ
s Activation energy of cathode diffusion coefficient

(J mol�1)
3.5e4

EDþ
s Activation energy of anode diffusion coefficient

(J mol�1)
2.9e4

Ei0 ;s Activation energy of the side reaction (J mol�1) 3e4
Battery parameter estimation

The battery model was parameterised against test data for a
4.8 Ah lithium–polymer from Dow Kokam with an upper and lower
voltage limit of 4.2 and 2.7 V. In order to extract the half-cell
potential profiles for the anode and cathode, a fully charge cell was
pulse discharged at 3.6 A for 100 s with a 900 s rest period. The cell
voltage at the end of the rest period was taken as the OCP. This
process was repeated until the voltage cut-offs were reached. The
cathode half-cell potential profile was then acquired by compari-
son of the whole cell OCP and assuming the anode OCP to be the
same as that presented by Ramadass et al. [33]. This is shown in
Fig. 15.
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