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Asymptotic Theory for the Principal Component Analysis 
of a Vector Random Function: Some Applications to 

Statistical Inference 
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Universitk Paul Sabatier, Toulouse, France 

Communicated by R. Cuppens 

From the results of convergence by sampling in linear principal component 
analysis (of a random function in a separable Hilbert space), the limiting 
distribution is given for the principal values and the principal factors. These results 
can be explicitly written in the normal case. Some applications to statistical 
inference are investigated. 

INTRODUCTION 

The principal component analysis (PCA) of a finite set of real random 
variables (defined on a probability space (a’, CPI’, P’)) or of statistical 
variables (in the particular case of 0’ with finite cardinality) is well known 
[ 1,6] and its definition can be clarified in associating to it a “schema of 
duality” (see [6, 71 for instance). Such an analysis is often used to study and 
describe phenomena that can be summed up by random processes. Actually, 
the analysis is based on a sample and so it must be considered only as data 
description; in order to consider it as an approximation of the phenomenon 
description, the PCA of a process must be defined and then it must be shown 
that, when the sample size increases, the sequence of the obtained PCA 
converges (in a sense that will be stated more precisely) to the theoretical 
PCA of the process. 
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Several studies have been performed to define factor analysis of processes; 
so the PCA definition has been extended to quantitative processes and is 
called the linear PCA [7, 10, 141. However, for qualitative processes, such 
analysis cannot be done without suitable transformation (“scaling”) and a 
non-linear PCA (that may be applied as well to the quantitative or the 
qualitiative case) has been defined [5,7]. This question will not be entered 
upon here. 

The sampling problem in PCA has been treated by Anderson 121, 
Hsu [ 131, and Krishnaiah and Lee [ 151 in the case of a finite set of real 
random variables of normal type and has been recently extended by 
Davis [9] and Fang and Krishnaiah [18] to the normal case; Dauxois and 
Pousse [7] and, in a different context, Deville [lo] have extended it to the 
case of vector processes. 

The PCA of a process is defined on infinite dimensional linear spaces; 
therefore the use of matrix theory as in [2,9] is impossible. Hence, two 
difficulties appear: the first is due to the dimension and the second to the fact 
that the process may not be only a scalar one. We propose here an 
asymptotic study of the PCA of a vector random function; in Section 1 the 
definition of the PCA and the sampling problem are presented, in Section 2 
the asymptotic theory for the PCA is developed and finally some 
applications in statistical inference are given in Section 3. 

For more developments or details of some parts of this paper, the reader is 
referred to [7, 171. 

1. PRINCIPAL COMPONENT ANALYSIS 
OF A VECTOR RANDOM FUNCTION 

1.1. Definition 

Let (a’, a’) (respectively (Z”, r) be a mesurable space with the probability 
measure P’ (resp. the bounded measure ,u) and X= (Xt)IET, also denoted by 
(x(*9 f)hET, a vector random function (r.f.) mapping from (a’, GZ’, P’) into 
(H, 9& where H is a separable Hilbert space and 5$, its Bore1 field. 

Let Lk(P’ @ p) denote the separable Hilbert space of the (equivalence 
classes of) measurable functions defined from (0’ X T, 67’ @ 5) to (H, Z??R) 
and such that the squared norm is P’ @ p-integrable. We assume that X 
belongs to Li(P’ @ p) and, for all t E T, the mean value 
E(X,) = Jo X(0’, t) dP’(0’) is zero. 

We consider then the linear continuous operator @ defined from 
Lk(Q’, 0”, P’) (denoted by L*(P’)) to Li(T, <, p) (denoted by E) defined by 

(Vf E L*(P’)) (@f)(t) =I, X(w’, t)f(w’) dP’(w’) = E[X(-, t)f], p-a.e. 
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Its adjoint @* is such that 

(Vu E E) (@*u>(w) =I, (X(w 0, u(t)), 44) = (X(w .>9 u), P’-a-e. 

((, ) and (1 1) denote th e inner product and the norm of E.) 
The schema of duality, which is so associated to these operators (and to 

the r.f.), is 

F, 
@ 

< L*(P) 

V 

I 

where any Hilbert space and its dual are identified, Z denotes the identity 
operator, V is @ o Qi* and W is @ * o Qi; V and W are non-negative nuclear 
self-adjoint operators, so V belongs to F =‘a#) the separable Hilbert space 
of Hilbert-Schmidt operators on E with the inner product defined by 
V (T, U) E F2, (T, U), = tr(ZV*). Since f mapping x E E to (x, x) E E X E 
and g mapping (x, y) E E x E to x @ y E F (where x @ y is defined by 
O’f E E) 6 0 YW-) = (xvf)~) are continuous, g 0 f(X) =X @ X is a 
random variable which maps w’ E 0’ into X(w’, .) @ X(w’, a) E F; 
X @ X is P/-integrable and V appears like E(X @ X), which is an element 
of F. 

The linear PCA of X is obtained by the spectral analysis of V, which gives 
the Schmidt’s decomposition of V in F, V = CIEI liei @ e,, and the decom- 
position of X in L$(P’ @ p), X(0’, t) = Ciao s,ei(t) J;:(o’), where Z is either 
a beginning section of N or IN itself; (Li)iEI is the decreasing complete 
sequence of non-null eigenvalues of V (or W’), which are called the principal 
values (in such sequence Li is repeated in regard to its multiplicity order), 
and Si is the squared root of ;1,; (e,),,, (resp. df;:)i~,) is a corresponding 
orthonormal sequence of V eigenvectors in E, called the principal factors 
(resp. of W eigenvectors in L2(P’) called the principal components, such that 
fi = $*eJll @*e,(l). Furthermore, L will denote a subset of Z such that (11,),,, 
is the strictly decreasing non-null V eigenvalue sequence. 

In the case of H = R and T is the finite set ( 1,2,..., p], it is easily verified 
that the definition above is a generalization of the PCA of a finite set of real 
r.v. 
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When 0’ is {oi ,..., o,} and P’ the uniform probability measure on O’, we 
may note that L *(P’) is isomorphic to R” with metric (l/n) I, (I, is the 
identity matrix of n order), and the schema of duality, where (IF?“)* denotes 
the dual space of IR”, becomes 

@ 

E < 
n 

a”)* 

with 

and then 

(Vu E E) (@,*uWf) = (X(4, *), u>, 

= ( + 2 X(of, *) @ x@J;, .)) (8). 
i-l 

1.2. The Sampling Problem 

In a concrete situation, when we are interested by a phenomenon described 
by a r.f., the data are based only on a sample of size n (n E N*): then, the 
PCA is obtained by means of the n trajectories X(0,, -) (i = 1,2,..., n). We 
recall here a model formalizing this sampling problem [S]. 

X may be considered as a measurable mapping from (a’, GT’, P’) into 
6% %I, and let rr, denote the ith canonical projection from 
(0, a, P) = (L!‘, @‘, P’)@N’ into (Q’, a’, P’) (i.e., VW = (coJnEN* E Ll, 
K&J) = a,); then (qL 1 2 3 ,...,” is a sequence of identically distributed 
independent r.v. (the common distribution is P’) and it follows that the 
random variables Xi =X o xi (i = 1,2,..., n) are independent, identically 
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distributed as X (hence with common distribution Pi), and VW E R 
X,(w) = X(w,). 

The knowledge of the n trajectories X(0,, .) implies consideration of the 
subset L2A” of D’w (the range of the finite sequence (w,)~=,,~,...,,) and if X” 
denotes the restriction of X on LIAw, then X,(o) = Xn(wi). Since neither P’ 
nor Pi are known, we consider on QAw (p rovided with the o-field of all sets 
in aA@) the probability measure a; = n-r X1=1 aUi. Then, from the strong 
law of large numbers, the image of a; by X” converges for almost all w to 
PII. 

This model corresponds (often unconsciously) to the current practice and 
leads to the consideration of, for all n, the schema of duality of the last part, 
where (u+ ,..., co,] has been substituted for ~2;~ provided with a:. The PCA 
is then obtained by the spectral analysis of the operator: 

V,(o) = n-1 5 xyq, *) @ xyq, .) = n--l + X,(o) @ X,(w). 
i=l cl 

The problem of convergence by sampling of the PCA is then translated in 
term of convergence of the sequence (VJnsN*, where each V, is defined from 
(a,@, P) into (F, LgF). 

When the sampling problem is solved, another problem is raised in the 
case of the PCA of a r.f.; (X,),,, is often known only on a discrete set of 
values of T. This question is not entered upon here but the interested reader 
is referred to [3,7, lo]. 

1.3. Convergence of the Sample Random Variables 

1.3.1. Convergence of the Sequence (V,JnENq 

PROPOSITION 1. (VJnEN* is a sequence of integrable r.v. from (Q, @, P) 
into (F, ~5~) which converges almost surely (a.s.) to V in F, the operators 
sequence ( VJneN. converges uniformly a.s. to V. 

For each i E { 1, 2,..., n 1, Xi @ X, = (g 0 f)(XJ is a measurable mapping 
into (F, ~8~), integrable and with the same expectation V as X @ X. It 
results, from the strong law of large numbers in the separable Hilbert space 
F, that V,, = n-l CyzI X, @ X, converges as. to V in F; let S, be the 
convergence set. Furthermore, as the (uniform) norm in Y(E) is inferior to 
the F norm, the second part of the proposition is proved. 

Then, we may use the results of [ 11, p. 1091; 16, p. 3671; they grant in 
particular the uniform convergence of the corresponding eigenmanifolds. In 
the case of an eigenvector e corresponding to a simple V eigenvalue A, we 
can deduce, for all o E 0, , the existence of a sequence (en(a)),E,+ 
converging to e in E (e,(w) is, for each n E IN, a V,(o) eigenvector 
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corresponding to n,(o), where (&(o))~~~. converges to Iz in I?). It is 
important to notice that, for a V eigenvalue J with multiplicity greater than 
1, the orthonormal basis of the eigenmanifold corresponding to 1 may be 
obtained by rotation and so we do not have such a convergence property for 
each corresponding eigenvector sequence. 

1.3.2. Principal Values 

As V in Section 1.1, V, may be written C,,,&‘e; 0 e; (with lzy = 0 for 
i>n+ 1) and let 

zi = {j E I; Aj = A,}, lZi( =ki, I’= {iEI;Z,= {i}}. 

PROPOSITION 2. For each n of N*, for all i ofl, Al is a real r.v. defined 
on (l2, cll). When Izi is of order ki, there are, for all o of a,, ki sequences 
{ ($Y4”&’ ; j E Zi} converging to 1, in IR. 

For each i of Z, the function q, that maps TE F into 1,(T) E IR is 
continuous since 1 &(T’) - J,(T)\ < )I T - T’ JIyP(E) 4 )I T - T’ lip. NOW, as 
i; = pi(V,,), Proposition 1 implies that Jr is a real r.v. The second part of 
Proposition 2 comes directly from [ 11, p. 1091 J. 

For all (s,p) E (I??)* such that E < p < $ min{(& - A,[; I E Z- Zi} and for 
all (0, j) E R, x Ii, there exists n, E N* such that 

n > n, =- PJYo) - Al< II V,(o) - VILW < II v,(o) - UIF < 6 

and furthermore, if D,,, is the disk bounded by the circle /l,,i of center li 
and radius p, one has 

1.3.3. Projection Operators 

Let Ej (resp. E;“) denote the eigenmanifold of V (resp. V,,) corresponding 
to the eigenvalue lj (resp. 1;) and Pi = EkeI, ek @ ek (resp, Pi” = 
c kE,,ej: @ ez) the orthogonal projection operator from E on E, (resp. 
@kerj EL3 

PROPOSITION 3. For each j of Z and each n of N*, Pj” is a r. v. from 
(0, a, P) into (F, AYp); for each w of a,, (P~(o)),~~, converges to P/ in F. 

Let G’ih~ E FNJ’ be a sequence converging to T in F and Qy (resp. Qj) 
the analogous sequence for T,, (resp. 7’) of P;(o) (resp. P,) for V,(o) 
(resp. V); the A,, analogous term is denoted by A;, and the resolvent of T,, 
(resp. 7’) is denoted by RA (resp. R ‘). One has 

VE > 0 3n, E N (n > n,) - II T, - TllF < 6. 
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Then (see [12, p. 151) for n > n2, 

and E < 1/(2MA,j) implies I] Qy - Qj ]JF < 2pMLfjs> with ML,j = 
sup{J(R’(z)ll~: z EllL,j}. SO, for all j of I, the mapping wj defined by 
T E F --$ yl,(T) = Qj E F is continuous and, as V,, is a T.v., Pi” = wj(V,) is 
also a r.v. 

A similar proof based on {P~(o)},,,~* substituting (QJ’)neN. gives the 
second part of the proposition. 

1.3.4. Principal Factors 

We must only consider (normalized) eigenvector e, (resp. el) of V 
(resp. V,) coresponding to an eigenvalue lj (resp. I,;) of multiplicity one (as 
Ii is simple, ,I: is also simple for n large enough). 

PROPOSITION 4. For all i of I’, el is a T.V. from (a, G!, P) into (E, BE) 
and, for each o of a,, (e;(o)),,,, converges to e, in E. 

With the same notations as in Section 1.3.3, let qj (resp. q$ be a 
normalized eigenvector of T (resp. T,) corresponding to the eigenvalue ,Ij 
(resp. A;). Let q; be chosen as QJq,/llQ~q,II; thus, one has 

II QJ’ - QjIIi = 2(1- (Q;,Qj>F) = 2(1 - (47 0 @y Sj 0 qj)F) 
= 2( l - (479 qj)*) 
= 2(1 - (4;9 qj))(l + (4j”Y qj)) = II 4j” - 4jl12t1 + (4;9 4j)h 

Since (qy, qj) is positive, then, for E > 0 and n > n2, we have 

IIqy -qjl12 < llQJ’- Qjll:G E- 
So, for all j of I’, the mapping x defined by Q; = q; @ q; E F I--, 
(Qyqj/II Q;qjII> = $’ * IS continuous and eJ’ = x(P/) is a r.v. The second part of 
the proposition results from the end of the last chapter. 

2. THE ASYMPTOTIC STUDY 

Let U, denote the r.v. n”*(V, - V) defined from (a, a, P) into (F, ~8~). 
We assume in this section that the X 4th order moment is finite. So 
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E[]]X @ Xl]:] =E[]]X]]“] < +co and, with the central limit theorem in the 
separable Hilbert space F, one has 

PROPOSITION 5. { UnJnaNe converges in distribution to the gaussian 
random element of F with mean zero and covariance operator K the X @ X 
one. 

When, for df; g) E F’, f @ g is the operator which maps x E F into 
(x,&g, then by definition K=E[(X @ X-v) a (X @ X-v)]; K is 
positive, nuclear, and one has 

K=E[(X@X)@ (X&Y)]-E[V@ (X0X)] 

-E[(X @ X) 6 V] + v 6 v. 

Since E[V@ (X0X)] = VgE(X@X)= V& V=E[(X@X)B V], then 
K = E[(X@ X) 6 (X0X)] - V@ V. As X(o’, t) = Ciel sie,(t)f;:(w’) in 
L$(P’&) and V= J&&e, @ e, in F and since (the X 4th moment being 
finite and F being separable) the term by term integration is possible, K may 
be written 

K = c sisjSkS,E[fi~f~frI(ei 0 ej) G (e, 0 4 
(l,J,k,OEI4 
- C AiA,(ei @ ei) @ (ej @ ej). 

(iAd 

Let U denote a gaussian random element of F with mean zero and 
covariance operator K; the law of U is denoted by J(O, K). If {E~}~~~ is an 
orthonormal family in F of K eigenvectors and {p=laEA the complete 
decreasing corresponding eigenvalues sequence, then U may be written in F, 
U= ZaGA cU,>‘~*~,L a.s., where {QL, is a sequence of independent real 
standard normal variables (each & is x(0, 1)). 

When X is a gaussian r.f., the principal components (fi)iE, belong to the 
range of @* in L*(P), the closure of which is the gaussian space generated 
by the family ((u, X)),,,. Therefore, in this particular case, they are jointly 
normal independent and each one of them is x(0, 1). It follows that 
V(i,j,kI)E14, 

W,) = 0; 

NAfi) = 1 if i = j, 

=o if i# j; 

683/12/l-IO 
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Nf&kf,l = 3 if i=j=k=l 

= 1 if i=j,k=l,ifk 

or i=k, j=l,i+ j 

or i=l,j=k, i#j 

=o otherwise 

and SO K=Cif, sfsj[(ei @ ej) 6 (ei 0 ej) + (ei 0 ej) 63 (ej 0 e,)] + 
2 CI s:(e, @ ei) @ (ei @ eJ, that may be written K = 2 Ci<j sfsfe,, 8 cii + 
2 xi S& C$ .sii with eij = 2-“*(ei @ ej + ej @ ei) for i < j and 
sir = ei @ ei. The family (eij}(r,j),*,i</ is orthonormal in F and thus, U may 
be written 

‘= 2”2 C SiSj&ijrij + 2”’ ~ Sf&iiri, as,, 
i i i i 

the family (hj)(t,j)eIz,i<j being constituted with independent J’(O, 1) 
distributed variables. 

2.1. Asymptotic Distribution of the Projection Operators 

Before the asymptotic joint distribution of (n”*(PT - Pj))jst is considered, 
the marginal limiting distribution will be characterized. 

2.1.1. Asymptotic Distribution of n “‘(Py - Pj) 

One knows that, for n > n, , 
R(z)] dz. Further, from (1 V,, - 

n”‘(PT - P,) = -n”2(2in)-* Ihpj [R,(z) - 
VI], Q E < p, it can be deduced that, for each z 

of &p I( V,, - V((, ]lR(z)]lF < 1 and then R,(z) = (V, - zl)-’ =R(z)[Z + 
c;p=* [Y- wwlkl. so, R,w--R(z)=w)~~, [V- wqz)]k= 
R(z)(V- V,JR(z)C& [(V- V,)R(z)lk and consequently 

n”*(PT -Pi) = +(2i7r)-’ J R(z) U,R(z) H,(z) d.2 = cp;(U,), 
hi 

with H,(z) = CrzO [-n-“2UNR(~)]k. Now, we consider F’ the F closed 
subspace of the self-adjoint operators. As H, is an analytic function of U,,, 
(p; is a 9,,-measurable mapping from F’ into F’. We will verify then that (p; 
satisfies the Rubin-Bellingsley theorem conditions [4, p. 341. If {T,},, ,.,. is a 
sequence which converges to T in F’ and VL = V + n-“‘T,, let P;” (resp. 
RA, HA, n LJ) denote the analogous term for V; of Pi” (resp. R, , H,, AO, j) 
for V,. Then, 

n”*[R;(z) -R(z)] = -[R(z)(T,, - T) R(z)H:(z) + R(z) TR(z)(H;(z) -I) 

+ R(z) TW)l 
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and so 

M”(z)=nl’*[R:(z)-R(z)] +R(z) TR(z)=-[R(z)(T,- T)R(z)H;(z) 

+ R(z) TR(z)(Iqz) -I)]. 

One has 

IIPJVJ-PW-~ I,,. [R(Z)WZ)~ZIII,= ll-(2in)-1 JAiJ~.(z)dzi/F PJ 
s (2~)-1 1 llwI(zll, dz. %.i 

Further, 

with M,, = ~~Plll~(~IlF~ z E AL,,}. Since, for each z of A~,j, IIHA(z)~I~ < 
CEO [II K - J%~,lk = 11 - II vi - %M, I -’ S 2, when II V: - Y/IF S 
PM,)-‘, and V-C(z)-%=/I(~- WR(Z)~~~~ [(v- K>W)lkllF< 
2M, II G - um we obtain finally that lim,,, /~M,,(z)[[, = 0, which involves 
the convergence of 9J’(T,) to 9,(T) = +(2in)-‘(,,dJ R(z) TR(z) dz. (pi is also 
.+-measurable and the Rubin-Billingsley theorem [4] can be applied: it 
follows that 9j’(U,,) converges in distribution to 9j(V). From the residue 
theorem, let us now derive 9,(T) explicitly: (oj(Z9 = +C,, the sum of residues 
of R(Z) TR(z) at the point S. AS R(Z) = (V - ~1)~’ = 
Clcl (4 - Wet 0 eb then R(z) Wz) = Cfi,mlE,2 [(& - zY,A, - z)]-’ 
(er 0 e,) T(e, 0 e,,,) and so, 

pj(T>= +Cj= C (lj-A,)-'[(e, 0 e,) TP, +PjT(e, 0 q)]. 
ISI-Ij 

Denoting by S, the operator CIEI+ (2, - A,)-‘e, 0 e,, we obtain 

9,(T)=S~TPj+PjTS~. 

PROPOSITION 6. For each j of I, n1/2(P~ - Pj) converges in distribution 
in F to q,(U) = S, UPr + Pi VSj, which is a gaussian random element with 
mean zero. 

The operator which maps T E F into S,TP, + PjTSj E F is linear and 
continuous and, since U is a gaussian element with mean zero, thus, 
Sj UPj + Pi US, is also a gaussian element with mean zero. 

The case of a gaussian random function. We know that 
U = ChE12 (&,)“‘e,,& a.s. and furthermore 9,(v) = CherZ @,,)“29,(sh) r,, a.s. 
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Thus, replacing eh by its value, it is plain that, for h = (k 1) or h = (i, k) with 
k < f, qj(ch) = 2-‘/*(,Ij -Al)-* [e, @ e, + e, @ e,] if k E Ij and 1 E I- Ij, 
(D~(E,J is null otherwise, and, for k E I, and 1 E I - Ij> fi,, = 2Ajk/. So, 91(U) is 
expressed by 

fpj(u)= 2”* 
kcl; 

IEl’-lj 
k<l 

+ 2112 s (~j~,)“2(~j-_,)-‘Eklrkl, 
kEIj 

ICI-Ij 
k>l 

where the ck,, (k, I) E { [Ij x (I - lj)] U [(I - Ij) X Ij] }, k < I, are independent 
dV”(O, 1) r.v. 

2.1.2. Joint Asymptotic Distribution of (nl’*(P; - Pj))j,, 

Let J be a p-tuple of L and 9” the mapping from F’ into the Hilbert sum 
(F’>” defined by VS E F’, 9”(S) = (9~(S))joJ. Thus, 9”(U,) = 
(n”2(Pjn - Pj))jS, maps from (a, CPI, P) into (F’)*. For each sequence 
(T,JnsN* converging to T in F’, the convergence of each component in F’ 
involves the convergence of 9”(T,) to 9(T) = (9j(T))jsJ in (F’)“, AS 9 is 
continuous, the Rubin-Billingsley theorem leads to 

PROPOSITION 7. For any p-tuple J, (n”*(Pj” -J))jEJ converges in 
distribution in (F’)*to 9(U) = (9j(U))jfJ, which is a gaussian random 
element with mean zero. 

The case of a gaussian random function. The gaussian joint limiting 
distribution is characterized by its covariance operator Kj (which maps from 
F* into P). The generating term of KJ is Kjj, = E(9j(U) 6 9j’(U)] (which 
maps from F to F). When j = j’, Kjj is the covariance operator of 9,(U) and 
it can be deduced, from Section 2.1.1, 

Then, when j#p, from the expressions of cpj(v) and Cpi,(U) obtained in 
Section 2.1.1, it is easily verified that 

It should be noted that, for j# jl, the elements n”*(P; -Pi) and 
n’/‘(P;, - Pj,) are not asymptotically independent (KjY # 0). 
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2.2. Asymptotic Distribution of the Principal Values 

2.2.1. Asymptotic Distribution of (n”‘(J; - &))kel, 
Let Lj be a V eigenvalue and kj its multiplicity (k, = card Zj). We consider 

the IRkI-valued r.v. (n”‘(A: - lj))ks,J, where ()Li)neNI are k, sequences of V,, 
eigenvalues converging a.s. to lj and we denote Zjn(U,)= 
n”2(P~V,P~ - &Pi”). For each k of Z,, ei being the ky corresponding eigen- 
vector of V,, , one has Zjn(U,) ei = n”‘($! - ij) ei . So n1’2(J~ - 5) is an 
eigenvalue of Z,“(U,); further, for n large enough, Zy(U,) is of range order 
k,. Finally, if d denotes the IRkj-valued function which maps kj finite range- 
ordered operator of F into the lRkJ vector of its decreasing ordered eigen- 
values, we obtain 

A[z,“(un)l = (n”2(A; - &/))kel,,k/ 

Let (Tn)m* be a sequence of self-adjoint operators which converges to Tin 
F. With T,, = n”‘(W, - v) and denoting again P;” the analogous term for 
W, of Py for V,, , we have 

Z;(T,) = n’r2(P~“W,,P,‘” - LjP;“) = P;“T,P;” 

+ n ‘I2 (P;” - P,)(Z - P,)( V - AJ,) Pj ‘. 

P;“T,P;” converges to P,TPj in F and, from Section 3.1.1, 
n1’2(P;n - Pl)(Z - PI) converges to p,(Z’)(Z - Pi). As (V - I,Z) Pi” converges 
to (V - AjZ) P, = 0, so Zy(T,) converges to Z,(T) = Pj TPJ in F and, from 
Rubin-Billingsley theorem, Z/n(U,,) converges in distribution to 
Z,(U) = PiUP,, which is a gaussian random element with mean, zero in F. 
Further, as A is continuous, one has 

PROPOSITION 8. For each j of Z, the asymptotic distribution of 
@“‘@[t - n,))kE, in lRkj is the joint distribution of the decreasing ordered 
eigenvalues of PjUPi, which is a gaussian random element with mean zero in 
F. 

The case of a gaussian rJ In such case, 

P UP = 2l’*1 i / / [ ,k& Eklrkl + 2 &kktkk] a.s*; 

i<l j 
I 

PjUPj is an operator of finite rank k, and let B denote its random matrix in 
the basis (e,&rJ; B = (Bkl) is symmetric, B,, = (PjUPjek, ek) = Jjrkk and, 
for k ( I, B,, = (P,UP]e,, ek) = 2’/‘1Jkr. The Bk,, (k, Z) E Zf , are gaussian 
independent elements and B is a gaussian element with mean zero. Its 
density with respect to the Lebesgue measure of [Rkbkl+i)” is proportional to 



148 DAUXOIS, POUSSE, AND ROMAIN 

exp[-tr B*/(4$)]. Thus, the joint distribution density of the decreasing 
ordered eigenvalues of Pi UPj (and of B) is given by [ 131. 

fk,k 9***3 tki) = C exp -$ @f/4$) 
[ 1 JJ Or- TV> /<I’ 

with 

c-1 = 2kl(kj+3)/4 

For j E I’, the limiting distribution of n “‘(Aj” - Aj) is Jy-(0, Uj). 

2.2.2. The Joint Asymptotic Distribution of ([?I’/‘@~ - &)]k,I,)j,, 

Let J denote again a p-tuple of L and consider now the mappings Z, and 
A, defined by 

Z, : T E F t+ Z,(T) = (Z/n(T))jE, E Fp 

and 

A, : T’ = (T;)jEJ E Fp I-+ (ATj)j,, E R z,Qk,. 

It is easily verified that (Z,JnsNe satisfies the Rubin-Billingsley theorem 
conditions and so Z,(U,) converges in distribution to Z(U). Since A, is 
continuous, Ap[Zn(Un)] = ([n’l’(A[E - 3Cf)lka,/)ieJ converges in distribution to 
A#Wl in R x’kj and we get 

PROPOSITION 9. For each J, ( [n1’2(A: - Aj)]ke,,)jsJ converges in 
distribution to (A[Z,(U)]),,J = (A[P, UPj])j,J in Rzjkl. 

The case of a gaussian t$ The PjUPi decomposition (in L:(s), Gsl, P)) 
given in Section 2.2.1 shows that PjUPj belongs to the gaussian space F, 
0 E 4 generated by bikl)(k,l)d,k<I’ For each J of L, the sets Zj (j E J) are 
disjoint and thus the Fj (jEb are independent; i.e., the random elements 
V2tG - 3L/Nker, and tn1’2(41 - kj/‘))kclj,, j # j’,(j, j’) E J2 are asymp- 
totically independent. So, the joint limiting distribution here is the product of 
the asymptotic distributions given in Section 2.2.1. 

2.3. Asymptotic Distribution of the Principal Factors 

We have seen that we must consider only a principal factor ej 
corresponding to a principal value A, of multiplicity one (if not, we must 



ASYMPTOTIC THEORY FOR PCA 149 

only consider the whole eigenmanifold and then the projection operator Pj)* 
Therefore, only indexes of I’ will be considered in Section 2.3. 

2.3.1. Asymptotic Distribution of n”‘(ejn - ej) 

One may write n’/‘(eT -e,) = Pj(n112(e,” - ej)) + (I - Pj)[tZ"*(ey - ej)]. 
From the definition, Pj(n112(e,” - ei)) = (n”‘(ej” - e/), ej) ej = 
(n “‘(e;, e,) - 1) ei and it is easily shown that n”‘((eJ”, e,) - 1) = 
(n “‘(p; - P,), Pjh X (( ey, e,} + 1)-l. Then, owing to the continuity of the 
inner product and Proposition 6, (n”‘(PJ! - Pi), Pj& converges in 
distribution to 

(fPjV-3 Pjb = tr(q,(V) Pj> = Wjsj W = 0. 
Thus, since (ey, e,) converges to 1, it can be deduced that, for each j of I’, 
P,(n”‘(ey - e,)) converges in distribution to zero. Further, for n large 
enough, A; is a V, eigenvalue with multiplicity one and 
(I - P,)[n”‘(ey - e,)] = n”‘(I- P,) e,” = n”‘(1 -Pi) Pyey X ((ey, e,))-’ = 
((e!, e,))-’ x (I - P,)[n”‘(P; - Pj)](e,). For each e of E, h,, which maps 
T E F’ into Te E E, is continuous and, as q$(U,,) = n”‘(Py - Pj) converges 
in distribution to (~i( U) = Sj UP, + Pi USj, the random element 
hej[V~(“n>l = n1’2(py - pj)( e j> converges in distribution to qj(U)(ej) in E. So 
(I-!,)[n1’2P~ -Pj>l(ej) converges in distribution to (I - Pi) pj(U)(ej) = 
S, U(e,). Finally, from the a.s. convergence of ey to e,, the convergence in 
distribution of (I - P,)[n”‘(ej” - ej)] and furthermore of n”‘(ej” - ej) to 
S,U(ej) is deduced and, as the mapping defined by T E F + Sj T(ej) E E is 
linear and continuous and as U is gaussian with mean zero in F, we get 

PROPOSIXION 10. For each j of I’, n’/‘(eT - e,) converges in distribution 
to the gaussian (with mean zero) vector SiU(e,) of E. 

The case of a gaussian r$ From the expressions of U and S, in this 
case, we obtain 

sjWej) = C (~,~,Y”(~,- ~,Pktjk 
kel 

k>/ 

+ c (~jnk)"'(~j-Ik)-'ekr~, 

ksl 
k<i 

So, S,U(e,) is gaussian random element of E with mean zero and its 
covariance operator H, is 

Hj = c Ajkk(Aj-jlk)-‘ek @ ek. 
kel-l/l 
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2.3.2. The Joint Asymptotic Distribution of (n”*(ey - ej))j,,S 
Let J be a p-tuple of elements of I’; the, random element (n”‘(eJ - ej))j,, 

is considered in (EP, AYEJ and may be written 

(nl’*(ey - ej))j,, = (Pj[n”*(ej” - ej)])j,, + ((Z - Pj)[n”*(ey - ej)])j,,e 

Since each Pj[n”2(ejn - ej)] converges to zero, we infer that 
(Pj[n”‘(ej” -ej)l)j~ converges in distribution to zero [4, p. 271. Let us 
consider e = (ej)j,, E E*, q”(T) = ((~;(7’))~,, E (F’)‘, Z - P = (Z - Pi)jgJ E 
(F’)p, a,, which maps (gj)jGJ E Ep into ((e$‘, ej)-lgj)jsJ E EP, and generally 
each element (Tj)j,, E (F’)p as the mapping defined by (J~)~,, E EP t+ 
(Tj,~~uj)~~~ E EP. Hence, we can write 

((I- Pj)[n”‘@; - ej)l)j,,= a,V-P>b”W,NW. 
It is easily checked that the mapping (T,)j,, E (F’}p N (Tjej)j,, E E* is 
linear and continuous. Then, from Proposition 7, (cp”( V,,)),, N* converges in 
distribution to p(U) = ((Di( ~)j~,) which is gaussian with mean zero in (F’)p, 
and since I- P is continuous and a,, converges a.s. to the identity in EP, one 
has 

PROPOSITION 11. For any p-tuple J of elements of I’, (n112(eT - ej))jEJ 
converges in distribution to (S,U(ej))j,, which is gaussian with mean zero in 
EP. 

The case of a gaussian r$ In this case the covariance operator HJ of 
(S, U(ej))jsJ has the diagonal terms Hj (j E J) explicated in Section 2.3.1. 
The non-diagonal terms Hjj, associated to j+ j’ is 

Hjj, = E[S,U(e,) @ Sj, U(ej,)] 

where a = min(k, j}, b = max(k, j}, c = min(k’, j’), d = max(k’, j’). 
Since Kd~u.u~E~~,u<u are 
-kjnj,(Aj - Aj#)-’ 

independent X(0, l), we obtain Hjj, = 
ej, @ ej. There is no asymptotic independence property. 



ASYMPTOTICTHEORY FORPCA 151 

3. APPLICATIONS IN STATISTICAL INFERENCE 

3.1. Statistical Structures 

In this section, three statistical structures are considered and denoted by 
6% SE9 $lW”’ (j = 1,2,3). -PI (resp 9* ; resp. Ys) is the family of centered 
probability measures on E with finite second moment (resp. fourth moment; 
resp. gaussian). The statistics X, (i E IN*) are the coordinate mappings on 
these structures, Each family 3 may be written formally {P,},,, (with 
P, = 0); for each B of 0, the covariance operator V of P, and each function 
of V are functions of 0; Y3 may be written {Py}yEB, where 0 is the space of 
the nuclear positive self-adjoint operators on F and V is the covariance 
operator of P,. For each p of [I, +a~[, let u,(E) denote the separable 
Banach space of operators U on E such that 1) U/I& = tr(UU*)p’2 is finite (for 
p = 2, a,(E) = F as in the other sections). 

3.2. Point Estimation 

Some properties which result from the last sections are indicated here 
without proof. 

PROPOSITION 12. On the structure (1) (resp. (2)), for each p E [ 1, +co (, 
V,, is an estimator of V which is unbiased and converges a.s. (resp. a.s. and 
in quadratic mean) in a,(E). 

PROPOSITION 13. On the structure (l), for each j of I, PT is an estimator 
of Pj which converges a.s. in F, and for each i of I’, ey is an estimator of ei 
which converges a.s. in E. 

Let 5 be a eigenvalue with multiplicity k, and 1; = (IQ)-’ C,,,,, A;. 

PROPOSITION 14. On the structure (1) (resp. (2)), for each j of Z, 1; is an 
estimator of 1, which converges a.s. (resp. a.s. and in quadratic mean) in FL 

PROPOSITION 15. On the structure ( 1) (resp. (2)), for each p E [ 1, +oo [, 
(1 V,llo, is an estimator of (1 Vl(,p which converges a.s. (resp. a.s. and in 
quadratic mean) in R. 

Thus, for p = 1, 11 V,,II,, = Clsl A, = tr V, is a consistent estimator of the 
total variance of X. 

3.3. Confidence Sets 

3.3.1. For a Principal Value 
For briefness we are restricted here to the case of a principal value Aj with 

683/12/1-l I 
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multiplicity one (j E 2’) and we consider the third structure. We have seen 
that [n”2(;Iy - 1j)]/2”2Aj is asymptotically X(0, 1) distributed. Thus, for 
a E 10, l[ and 0, defined by St%, e- @‘* dt = (2n)“‘( 1 - a), the interval 
],1/2n~/(n’/2 + 2”‘13,), n’/2A;/(n’/2 - 2’/‘13,)[ is a confidence interval of Aj 
with asymptotic confidence level 1 - a. An immediate application of this 
result is to give a test (of asymptotic level a) of the null hypothesis 
{ V C 0; Aj = A} (where J is given) against the alternative {I/E 0; lj # A}. 

3.2.2. For the Total Variance 

The “trace” operator which maps from the a,(E) subspace of the self- 
adj oint operators into R is linear and continuous. Thus, 
tr V = tr E(X @ x) = E(tr X @ x). On the structure (2), the application of 
the central limit theorem to the sequence (tr Xi @ Xi)icN* shows that 
n1’2(]) V,,lj,, - (( V/l,,) = u”~[K Cf=i tr(X, @ Xi) - E[tr X @ X]] con- 
verges in distribution to a gaussian random element with mean zero. If we 
are restricted to the structure (3), the variance of the limiting distribution is 
2 ]] Vlji. Then, with the same notations as in Section 3.3.1, 

is a confidence interval of the total variance of X (i.e., ]] VII,,> with 
asymptotic confidence level 1 - a. It should be noted that similar results can 
be obtained for ]) VJjop (p E [ 1, +a~[). 

3.4. Tests 

From the results of Section 3.3 several tests for the estimated parameters 
can be built. In this section, we are concerned with other types of tests and 
we give only two examples. 

3.4.1. Test for the Ratio of the Explained Variance 

Let p E N * and /3 E 10, 1 [. We consider the sub-structure of structure (3) 
obtained by restricting 0 to the subset 0’ of the elements with rank greater 
than p and with only simple eigenvalues. Let Ht.” = { VE O’, 
A = Cf=, Izi -p Clc, I,) 0} and HfvP = 8’ - Hi*P. It can be shown that 
4=X&-PCt& is a consistent estimator of A and, using 
Section 2.2.1, that nl’*(A, -A) converges in distribution to a gaussian 
element with mean zero and variance y = 2( I- Z/3) X:=1 nf + 2/12 CIEr nf. 
Since yn = 2(1 - 2/3) Cp=i (nr)2 + 2/I’ Cle, (Al)’ is an as. converging 
estimator of y, then n”*y; “‘(An -A) is X(0, 1) asymptotically distributed. 
Let a E 10, l[ and t, defined by j:” e-X*‘2 dx = c~(27r)“~; the deterministic 
test with critical region [A,, ( -t,n-“*y!,‘*] (which is included in 
[n”‘(A, -A) < -t] under Ht”) is a test of the null hypothesis H{*P against 
Hf.” with asymptotic level inferior or equal to a. 
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3.42. Test for a Principal Factor 
In this section E = I?@ and V is regular; let j E I’, and e; a given vector of 

E. On the structure (3) we want to test the, null hypothesis 
Hi= {VE @;e,= se;} (where E = f 1) against g{ = 0 - Hi. For each 
k = 1, 2 ,..., q, let 

Q& = @kJj) - “*(A/( - A,); a; = @;A;)-“*(Af -A;); yy = nl’*(e,” - e;), 

T,, = 2 aie; @ ez and Z; = II T,~;ll;. 
k+/ 

The inverse operator Vi’ of V, exists for n large enough and converges a.s. 
to V-l; thus, ~‘,,=$‘VV,‘+ (A;)-?$, - 21 converges as. to the continuous 
operator T= Ai V-’ + A;‘V- 21= Ckf, akek @ ek. Under Hjo, yy 
converges in distribution as y,, which is X(0, &+, ai2ek 0 ek), and so 
(see [4, p. 341) T,,yjn converges in distribution to Tyj, which is 
X(0, I - e, @ e,), and then Zy converges in distribution to ]I TYjll’. Since 
((TY,, ek))k,j is a family of X(0, 1) independent variables and (Tyj, ej) is 
null a.s., then I( Tyjj12 = Cz=i (Ty,, ek)* has a x2 distribution with p - 1 
degrees of freedom. Let (I&, be the strictly decreasing sequence of the V 
eigenvalues. ZJ’ may be decomposed 

Z/“=n(A,+B,+C) with 

B, = C,+, af[&c,, (e/o, ei)’ - I(P,e~ll’] and C = Cf+j a, ((P,e~l(*. Since 
VIE L. lim,,, Py = P, a.s., Vk E I, limn-roo a; = ak, and since C is null only 
under Hj,, it can be deduced that, under @,, lim,,, ZJ’ = +co as. 

So the deterministic test with critical region [Z” > xi,,- 1] is a consistent 
test of H’, against 2; with asymptotic level a(a E IO, l[). 

Remark. The asymptotic results obtained upon the projection operators 
(in the case of a non-simple eigenvalue Aj corresponding to the eigenmanifold 
Ei) allow one to build in a similar way a test (with asymptotic level a) of the 
null hypothesis K’, = {Ej = EJ}, where Ej is a given subspace of E, against 
the alternative 0 -K/,. 
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