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1. Introduction

The theory of frames in Hilbert spaces presents a central tool in many areas and has developed rather rapidly in the
past decade. The motivation has come from applications to engineering, i.e. signal analysis, as well as from applications
to different areas of Mathematics, such as, sampling theory [1], operator theory [11], harmonic analysis [9], nonlinear
sparse approximation [7], pseudo-differential operators [10], and quantum computing [8]. Recently, the theory of frames
also showed connections to theoretical problems such as the Kadison-Singer problem [4].

A standard frame for a Hilbert space H is a family of vectors x; € H, i € N, such that there are constants A, B > 0 for
which

2
AllxlI? < Z |(x,x)|” < Blx|>, wheneverx e H.

In this paper we consider Schauder frames in Banach spaces, which, on the one hand, generalize Hilbert frames, and extend
the notion of Schauder basis, on the other.

In [2], D. Carando and S. Lassalle consider the duality theory for atomic decompositions. In our independent work,
we will mostly concentrate on properties of Schauder frames, which do not depend on the choice of associated spaces,
define the concepts of minimal and maximal (associated) spaces and the corresponding minimal and maximal (associ-
ated) bases with respect to Schauder frames, and closely connect them to the duality theory. Moreover, we extend James’
well-known results on characterizing the reflexivity of spaces with an unconditional bases, to spaces with unconditional
frames.
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In Section 2 we recall the basic definitions and properties of Schauder frames. Then we introduce the concept of shrinking
and boundedly complete frames and prove some elementary facts.

Section 3 deals with the concept of associated spaces, and introduces the definitions of minimal and maximal (associated)
spaces and the corresponding minimal and maximal (associated) bases with respect to Schauder frames.

In Section 4 we extend James’ results on shrinking and boundedly bases to frames [12] and prove the following theorems.
All necessary definitions can be found in the following Sections 2 and 3.

Theorem A. Let (x;, f;) C X x X* be a Schauder frame of a Banach space X and assume that for allm € N

nlggo ||fm|span(x,-: izmll =0.
Then the following are equivalent:

(1) (xj, fi) is shrinking.

(2) Every normalized block of (x;) is weakly null.
(3) X* =span(fj: i e N).

(4) The minimal associated basis is shrinking.

Theorem B. Let (x;, fi) C X x X* be a Schauder frame of a Banach space X and assume that for allm € N

nlggo ||fm|span(x,—: i>mll=0 and nlgr;o ||xm|span(fi: i>n) | =0.
Then the following are equivalent:

(1) (x4, fi) is boundedly complete.
(2) X isisomorphic to span(fi: i € N)* under the natural canonical map.
(3) The maximal associated basis is boundedly complete.

In Section 5, we discuss unconditional Schauder frames. We obtain a generalization of James’s theorem and prove that a
Banach space with a locally shrinking and unconditional Schauder frame is either reflexive or contains isomorphic copies of
£1 or co.

Theorem C. Let (x;, f;) C X x X* be an unconditional Schauder frame of a Banach space X and assume that for allm € N

nanolo ||fm|span(xi: i>n) | =0.

Then X is reflexive if an only if X does not contain isomorphic copies of co and £1.

All Banach spaces in this paper are considered to be spaces over the real number field R. The unit sphere and the unit
ball of a Banach space X are denoted by Sx and By, respectively. The vector space of scalar sequences (a;), which vanish
eventually, is denoted by cgo. The usual unit vector basis of cgp, as well as the unit vector basis of ¢ and £, (1< p < o0)
and the corresponding coordinate functionals will be denoted by (e;) and (e}), respectively.

Given two sequences (x;) and (y;) in some Banach space, and given a constant C > 0, we say that (y;) C-dominates (x;),
or that (x;) is C-dominated by (y;), if

H Z aixi| <C H ZaiJ’i

We say that (y;) dominates (x;), or that (x;) is dominated by (y;), (y;) C-dominates (x;) for some constant C > 0.

’ for all (a;) € coo.

2. Frames in Banach spaces

In this section, we give a short review of the concept of frames in Banach spaces, and make some preparatory observa-
tions.

Definition 2.1. Let X be a (finite or infinite dimensional) separable Banach space. A sequence (X;, fi)ier, With (x;)icr C X and
(X)iet C X* withI=NorI={1,2,...,N} for some N €N, is called a (Schauder) frame of X if for every x € X,

x=Y_ fitoxi. (1)
iel

In case that I =N, we mean that the series in (1) converges in norm, that is,
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=11 = lim " fiGxx. (2)
i=1

An unconditional frame of X is a frame (x;, fi)icn for X for which the convergence in (1) is unconditional.
We call a frame (x;, f;) bounded if

sup [Ixi <oo and sup]fill < oo,
1 1

and semi-normalized if (x;) and (f;) both are semi-normalized, that is, if

0<1r1fIIXzII SUP||X1||<OO and O<lIlf||fz|| Su13||f:||<oo

Remark 2.2. Throughout this paper, it will be our convention that we only consider non-zero frames (x;, f;) indexed by N,
that is, the index set I will always be N and we assume that x; £ 0 and f; # 0 for all i € N.

In the following proposition we recall some easy observations from [5,3].
Proposition 2.3. (See [5,3].) Let (x;, f;) be a frame of X.

(a) (i) Using the Uniform Boundedness Principle we deduce that

Z fi(®)x;

i=m

K = sup sup

xeBx m<n

< 0.

We call K the projection constant of (x;, fi).
(ii) If (x;, fi) is an unconditional frame, then it also follows from the Uniform Boundedness Principle that

Ky = sup sup H o; fi(X)x;
! XxeByx oje{£1} Z o :

| <co.

We call K, the unconditional constant of (x;, f;).
(b) The sequence ( f;, x;) is a w*-Schauder frame of X*, that is to say, for every f € X*,

n
f=w nlglgo;f(xl)fl-
1=
(c) Forany f € X* and m < nin N, we have

D e fi| = sup [ D fea) fix| < I fIl sup Zfz(x)xz <KIfI, (3)

X€Bx i—m X€Bx

and

D fefif = sup | Y f(xi) fix| = sup

AP sup f(izszi(x)xi)

< sup ‘f(z)‘ = K|l flspany;: i=my I, (4)
zespan(x;: i>m),||z||<K

where K is the projection constant of (x;, fi).
Next, we present some basic properties of frames in Banach spaces.
Proposition 2.4. Let (x;, fi) be a frame of a Banach space X. Then span( f;: i € N) is a norming subspace of X*.

Proof. By Proposition 2.3(b) and (c) (3), for all f € Bx« and n € N we have

<K,

f=wr— lim 3 f@x)fi.
i=1

where K is the projection constant of (x;, f;). Thus, we obtain that
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Bx: C K- Bx-( )span(fi: ie N)"" CK - Bxs.

Then it is easy to deduce that span(fj: i € N) is norming for X. O

Definition 2.5. Let (x;, f;) be a frame of a Banach space X.

(xi, fi) is called locally shrinking if for all m € N || fm|spany: izmll — 0 as n — oo. (x;, f;) is called locally boundedly
complete if for all m € N ||xmlspan(f;: izmll — 0 as n — oo. (x;, fi) is called weakly localized if it is locally shrinking and
locally boundedly complete.

The frame (x;, f;) is called pre-shrinking if (f;, x;) is a frame of X*. It is called pre-boundedly complete if for all x** € X**,
o2, X (fi)x; converges.

We call (x;, fj) shrinking if it is locally shrinking and pre-shrinking, and we call (x;, f;) boundedly complete if it weakly
localized and pre-boundedly complete.

It is clear that every basis for a Banach space is weakly localized. However, it is false for frames. The following example
is an unconditional and semi-normalized frame for ¢; which is not locally shrinking or locally boundedly complete. We
leave the proof to the reader.

Example 2.6. Let (e;) denote the usual unit vector basis of £1 and let (ef) be the corresponding coordinate functionals, and
set 1=(1,1,1,...) € £o. Then define a sequence (x;, fi) C £1 X £oo by putting x»;_1 = xy; = e; for all i € N and

1, ifi=1;
el —1, ifi=2;

fi=

! ef —er/2%, ifi=2k—1forkeN\{1};
ex/2k, ifi = 2k for k e N\ {1}.

Proposition 2.7. Let (x;, f;) be a frame of a Banach space X. Then the space
Xo = {x € X: ||Xlspan(f;: izm | = 0 asn — oo}

is a norm closed subspace of X. Moreover, if (x;, fi) is locally boundedly complete, then Xg = X.

Proof. If (x;) C Xo with X, — x in X, then given any ¢ > 0, there are ko with [[x — x|l <&, and ng € N such that for all
n =np,

[1Xlspan(fi: izm I < 11X — Xig | + 11Xk Ispan( iz izny | < 28,

which implies that x € Xp.
If (x;, fi) is locally boundedly complete, then x; € Xy for all i € N. It follows that X = span(x;: i € N) C Xo. Thus, we
complete the proof. O

Proposition 2.8. Let (x;, fi) be a frame of a Banach space X. Then the space
n
— Xoof 1 — i Y2
Y—:feX-f—Hllng&E;ﬂmﬁ}
i=

is a norm closed subspace of X*. Moreover, if (x;, f;) is locally shrinking, then

Y =span(fi: i e N),

and, thus, (fi, x;) is a frame for Y.

Proof. First, define a new norm || - || on X* as follows

A= su

m<n

Zf(xi)fi” forall f € X*.

i=m

By Proposition 2.3(c) this is an equivalent norm on (X*, || - ||). Thus, if (gx) C Y with gy — g in X*, it follows that

Y g fi— ) &) fi

lim [|g — gll = lim sup 'zo
k— o0 k—o00om<n

i=m
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Thus, given any ¢ > 0, there are ko with [|g — gk, Il < &, and mp € N such that for all n >m > my, || S 8k (Xi) fill < €, and
thus,

n

> g fi

i=m

n

ngg (xi) fi

i=m

<g — 8o lll + < 2e,

which implies that ) 72, g(x;) f; converges. By Proposition 2.3(b), we get g=3 ", g(x)) fi € Y.
If (x;, fi) is locally shrinking, it follows from Proposition 2.3(c) that for all i € N, f; € Y. Hence span(f;: i€ N) C Y. On
the other hand, it is clear from the definition of Y that Y C span(f;: i € N). Therefore, Y =span(f;: ie N). O

3. Associated spaces

Definition 3.1. Let (x;, f;) be a frame of a Banach space X and let Z be a Banach space with a basis (z;). We call Z an
associated space to (x;, fi) and (z;) an associated basis, if

S:Z— X, Zaiz,- = Zaixi and T:X—>Z, x= Zfi(x)x,- = Zf,-(x)zi,
are bounded operators. We call S the associated reconstruction operator and T the associated decomposition operator or analysis

operator.

Remark 3.2. If (x;, fij) is a frame of a Banach space X and Z a corresponding associated space with an associated basis (z;),
then (see [5, Definition 2.1] or [6]) (x;, fi) is an atomic decomposition of X with respect to Z. In our paper, we will mostly
concentrate on frames and properties which are independent of the associated spaces.

Proposition 3.3. Let (x;, fi) be a frame of a Banach space X and let Z be an associated space with an associated basis (z;). Let S and
T be the associated reconstruction operator and the associated decomposition operator, respectively.

Then S is a surjection onto T(X), and T is an isomorphic embedding from X into Z. Moreover, for all i € N, S(z;) = x; and
T*(zf) = fi.

Proof. Note that for any x € X, it follows that

SoT@=SoT( Y fitox)=S( Y fitvz) =" fitoxi=x.

Therefore, T must be an isomorphic embedding and S a surjection onto the space T(X) ={}_ fi(x)z;: x € X}. And the map
P:Z— Z, z+— T o 5(z) is a projection onto T(X). By Definition 3.1, it is clear that S(z;) = x; for all i € N. Secondly, it
follows that for any x€ X and i € N,

T*(Z)x) =2 o T( ij(x)xj) =z§‘< ij(x)zj) = fi(x),

and thus, T*(z}) = f;, which completes our claim. O
We now introduce the notion of minimal bases.

Definition 3.4. Let (x;) be a non-zero sequence in a Banach space X.
Define a norm on cqg as follows

n
| ae >
i=m

Denote by Zy;, the completion of copp endowed with the norm || - ||pn. It is easy to prove that (e;), denoted by (e?’”"), is
a bi-monotone basis of Zy;,. By the following Theorem 3.5(b), we call Zy;, and (e?’"”) the minimal space and the minimal
basis with respect to (x;), respectively.

Note that the operator:

. Min
Swin: Zuin = X, Y _aie}™ > "aix;,

is linear and bounded with || Sy || = 1.
If (x;, fi) is a frame the minimal space (or the minimal basis) with respect to (x;, fi) is the minimal space (or the minimal
basis) with respect to (x;).

= max
Min m<n

for all Za,-e,- € Coo. (5)

X

As the following result from [5, Theorem 2.6] shows, associated spaces always exist.
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Theorem 3.5. (See [5, Theorem 2.6].) Let (x;, fi) be a frame of a Banach space X and let Zy;in be the minimal space with the minimal
basis (eM™).

(a) Zuin is an associated space to (x;, fi) with the associated basis (eﬁ"”").
(b) For any associated space Z with an associated basis (z;), (e?/’i”) is dominated by (z;).

Thus, we will call Z ;i and (e{.‘/””) the minimal associated space and the minimal associated basis to (x;, f;), respectively.
We give a sketch of the proof.

Proof. (a) Let K be the projection constant of (x;, f;). It follows that the map Ty, : X — Zyin defined by

Thin: X = Zuin. %= fi(0xi > Y fi(x)elm,

is well defined, linear and bounded and ||T|| < K. As already noted in Definition 3.4, the operator Sy, : Z — X is linear and
bounded.

(b) If Z is an associated space with an associated basis (z;) and S: Z — X is the corresponding associated reconstruction
operator, then it follows that for any (a;) € coo,

n n
SMin|| __ v || — . .
H Za,ei = {11112?1( Za,x, = 21112%( Za,S(z,)
i=m 1=m
n
<lsimax | S ai| < KzIS| [ az, (6)
1=m
where K  is the projection constant of (z;). O
Next we introduce the notion of the maximal space and the maximal basis.
Definition 3.6. Let (x;, f;) be a frame of a Banach space X.
Define a norm on cgg as follows
aie; = sup ‘ a;b;| forall aie;j € cop. (7)
| Y], S > >
maXpn | Yoiey, bi fil <1
Denote by Zpqx the completion of cgg under || - ||mqax- Clearly, (e;) is a bi-monotone basis of Zpjgy, which will be denoted
by (ei.v"”‘). We call Zyqx and (efv""‘) the maximal space and the maximal basis with respect to (x;, f;), respectively.
Theorem 3.7. Let (x;, fi) be a frame of a Banach space X and let Zyqx be the maximal space with the maximal basis (ef.v'“").
(a) If Z is an associated space with an associated basis (z;), then (e?/’a") dominates (z;).
(b) The mapping
SMax : Zmax —> X, z= Zaie?/lax g Zaixiv (8)

is well defined, linear and bounded.
(c) If (xi, fi) is locally boundedly complete, then Z a4y is an associated space to (x;, fi) with the associated basis (e{."’“").
In this case, we call Zyjqx and (eﬂ"'a") the maximal associated space and the maximal associated basis to (x;, f;).

Proof. (a) Let Z be an associated space with an associated basis (z;), (z]) is the corresponding coordinate functionals, and
let T : X — Z be the associated decomposition operator. By Proposition 3.3 T*(zj‘) = fj, for all i € N. Thus, for any (a;) € cqo,

we have
H Z aizi| <Kz  sup KZ a;zi, Z b,-zf>‘
(bi)ecoo

I bzt <1
< K2 sup ’Za,-b,-

(bi)&;Coo
maxy<n | 2o bizf <1
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< K% sup ‘ Zaib,"
(bi)ecoo
maxy <n | T* (i biz) I T
<KZ||T*| sup | Y aibi| < k2] | S aelie|. 9)
(bi)ecoo

maxmn | Yfmy bi fil <1

where K7z is the projection constant of (z;, z}°).

(b) Let (Zmin, (e?’”")) be the minimal space to (x;, fj) and by Theorem 3.5(a) let Ty, : X — Zyin be the corresponding
associated decomposition operator. Then by (9), for any (a;) € cgo, we have

n
> | = | S| < c| Laet
i=m

where C = K2, [ITj, |l and Kyin is the projection constant of (eM™). Thus, the map Smax : Zmax — X with Syax(eM™) = x;,

for i e N, is well defined, linear and bounded with [|Spqx|l < K,%/,m||T;\j”n||.

max
m<n

, (10)

(c) If (x;, fi) is locally boundedly complete, then for any x € X and | <r, we have
r r
Z fi(x)e?lax = sup Zbifi(x) < Xlspancfiz izl
i=l (bi)ecoo i=l

maXpn | Yooy, bi fil <1

which by Proposition 2.7, tends to zero as [ — oo. Thus, the map

Thax: X = Zmax,  X= Y fioxim> Y fi(xel"™, (11)

is well defined, linear and bounded with || Tpqx| < 1, which completes our proof. O

The following result emphases that for every frame, that associated bases dominate (e?’“") and are dominated by (e{.‘/"”‘).

Corollary 3.8. Let (x;, f;) be a frame of a Banach space X. Assume that (e{.‘/"”) and (e?”‘”‘) are the minimal basis and the maximal basis
with respect to (x;, fi), respectively. Then for any associated space Z with an associated basis (z;), there are C1, C3 > 0 such that

Cq H Zaieﬁwi” < H Za,-zi <G H Zaieﬁwa"

4. Applications of frames to duality theory

for all (a;) € cop. (12)

The following results extend James’ work on shrinking and boundedly complete bases [12] to frames. Theorem 4.1 obvi-
ously yields Theorem A and Theorem 4.2 implies Theorem B.

Theorem 4.1. Let (x;, f;) be a Schauder frame of a Banach space X. Assume that Zy, and (ei.""“) are the minimal space and minimal
basis with respect to (i, fi), respectively.
Then the following conditions are equivalent:

(a) Every normalized block sequence of (x;) is weakly null.
(b) (i) (x4, fi) is locally shrinking.
(ii) If (up) C Bx with limy_, 0 fim(un) =0 for allm € N, then (uy) is weakly null.
(c) (xi, fi) is locally shrinking and pre-shrinking.
(d) () (xi, fi) is locally shrinking.
(ii) X* =span(fi: i € N).
(e) (i) (xi, fi) is locally shrinking.
(ii) (eMm) is a shrinking basis of Zpin.

Theorem 4.2. Let (x;, f;) be a frame of a Banach space X. Then the following conditions are equivalent:

(@) (xi, fi) locally shrinking and for all x** € X**, ||x**|span(f;: i=m) || = 0, if n — o0,
(b) (x4, fi) is locally shrinking, locally boundedly complete and pre-boundedly complete.
(c) (i) (xi, fi) is locally shrinking and locally boundedly complete.
(ii) For every x™* € X**, Y x**(fi)x; converges under the topology o (X, span(f;: i € N)).
(d) (i) (xj, fi) is locally shrinking and locally boundedly complete.
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(ii) X isisomorphic to span( fi: i € N)* under the natural canonical map.
(e) (i) (xi, fi) is locally shrinking and locally boundedly complete.
(ii) (ef."’a") is a boundedly complete basis of Zpjax.

For the above main theorems, we need the following results.

Proposition 4.3.

(a) Every frame satisfying (a) of Theorem 4.1 is pre-shrinking.
(b) Every frame satisfying (a) of Theorem 4.2 is pre-boundedly complete.

Proof. Assume that (x;, f;) is a frame of a Banach space X.

(a) Notice that every normalized block sequence of (x;) is weakly null if and only if for all f € X*, || flspancy: i=mll = O,
as n — oo. This easily implies our claim by Proposition 2.3(b) and (c).

(b) For m<n in N we have

ZX**(f,)xz = sup ZX**(f,)f(xz (13)
i=m feBxx | izm
= sup x** xi) fi
s (,-:me( )f)
< sup X**(g)=K||X**|span(f,-: i> |,

gespan(fi:izm),|Igl<K

where K is the projection constant of (x;, f;). O

Proposition 4.4. Let (x;, f;) is a Schauder frame of a Banach space X. Assume that Z is an associated space with an associated basis

(zi) to (xi, fi).

(a) If (z;) is shrinking, then (x;, f;) is pre-shrinking.
(b) If (zj) is boundedly complete, then (x;, f;) is pre-boundedly complete.

Proof. Assume that S and T are the corresponding associated reconstruction and decomposition operators, respectively. By
Proposition 3.3, S(z;) = x; and T*(z}) = f; for all i € N.
(a) If (z;) is shrinking, we have

f=Ts" D =T (" (. 2i)2) = Y(F. S@IT*(2) = Y Fx fi (14)

which proves our claim.
( Z T** ** * ) ‘

(b) For any x** € X** and m,n € N with m <n,
Since (z;j) is boundedly complete, Zf’i] T**(x**)(z})z; converges, by (15), so does Z ~1 X (fi)xi, which completes the

n
DX (fixi| = (T*(2F))S @)
i=m

proof. O

n

ST () ()|

i=m

< ISl (15)

Proposition 4.5. Let (x;, f;) be a Schauder frame of a Banach space X.

(a) Assume that Zy, and (ei.""”) are the minimal space and minimal basis with respect to (x;, f;), respectively. If (x;, fi) satisfies (a)
of Theorem 4.1, then (ef"’”") is shrinking.

(b) Assume that Zyyx are the maximal space with the maximal basis (e:.‘/’“") with respect to (x;, fi). If (xi, fi) satisfies (a) of Theo-
rem 4.2, then (e?”“") is boundedly complete.

For the proof of Proposition 4.5, we will need the following result, which is a slight variation of Lemma 2.10 of [13].
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Lemma 4.6. Let X be a Banach space and a sequence (x;) C X \ {0}, and let Zp;, and (eﬁv’"”) be the associated minimal space and
basis, respectively.

(a) Let (yi) C Bgz,;, be a block basis of (efv””) on Zyiin. Assume that the sequence (w;) = (Syin(yi)) is a semi-normalized basic
sequence in X. Then for (a;) € cqo,

Hzaiwi <HZ‘11'J’1' S(%—H()HZCHWI'

where K is the projection constant of (w;) and a := inficy |will. )
(b) If every normalized block sequence of (x;) is weakly null, then (e?’"”) is shrinking.

Proof. Let Sy, : Zpin — X be defined as in Definition 3.4.
(a) For i € N, write
yi= Z ﬂj(.')elj‘-/“”, with0=kg <ki <ky <---and /3;') eR, fori,jeN,
j=ki—1+1
and set
ki )
wi=Suin(yi)= ) ﬁj(')xj-
j=ki—1+1

Let (a;) € cogo. We use the definition of Zpj, to find 1 <i1 <ip+1 and €1 € [kj,—1 +1,k;;] and £, € [ki, + 1, ki, 1] in N
so that, when i1 <ip; —1,

H > aiw; H < H > aiyi H (since [|Syinll < 1)

kig i %
(i1) (i2)
=lan 208K+ Do aws a3 B
Jj=t s=ij+1 j=’<,‘2+1
k,’l iy 1)
(i) (i2)
<la, YBR[+ DD aws| + a1 Y Bk
j=0 s=iq+1 Jj=ki,+1

<1ai, 1y 11+ Iy 1ip 41+ K| 3 aiws

< (% +K>H Za,w,-”.

The other two cases i; =i, and i1 =i, + 1 can be obtained in similar way.
(b) Assume that (y;) is a normalized block sequence of (e?/””). For i € N, we write

<la | + a1l + K| Y aw

ki
yi = Z ajeI]‘-m”, withO0=ko <ki <k <---andaj eR.
j=ki—1+1
Then, by definition of the space Spin, (Smin(¥i)) is a bounded block sequence of (x;). It is enough to show that (y;) has a
weakly null subsequence.

If liminf;_ o [|Spin(¥i)|l > O, then our claim follows from (a). In the case that lim;_, « ||Symin(¥i)]l = 0, we use the def-
inition of Zy;, to find ko <my <ny <ky <my<ny<---sothatforallieN, 1=|yll=]| Zl}i:m,- a;xi||. Thus, by (a), the

sequences (Wia)) and (wfz)) with

ki

i nj n;
(1) ) .
w; = E ajxj and w;”" = Spin(yi) — E ajxj = E ajxj — E ajxj forieN,
j=mj j=mj j=ki—1+1 j=mj

both can, after passing to a further subsequence, be assumed to be semi-normalized and, by hypothesis, are weakly null,
which implies that we can, after passing to a subsequence again, also assume that they are basic. Claim (a) implies that the

sequences (ylo)) and (yi(z)) with
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ki

n;
(1) Za eMn  and y(z) Z aj eM’” Zaje’j‘-/"” fori e N,

j=m; j=ki—1 j=m;

are weakly null in Zy,, which implies that (y;) is weakly null. O

Proof of Proposition 4.5. (a) It can be directly obtained by Lemma 4.6(b).

(b) Denote by (ef) the coordinate functionals of (e?”a"). Since (x;, fi) is boundedly complete Proposition 3.7(c) yields
that Zpax is an associated space. Let Tyax : X — Zpyax be the associated decomposition operator, and recall that by Proposi-
tion 3.3, Ty (e) = fi, for i € N. Then for any (a;) € coo,

n n n
max Zaifi = max Za,-T,’(Aax(ef) < || Tiira || max Zaie;‘ < K| Thexl )Zaie;‘ , (16)
m<n || “ m<n || 4 m<n || 4
1=m 1=m 1=m
where K is the projection constant of (e}). Moreover,
H Zaie;" sup ‘ Zaibi
(bi)ecgo
I bie ™ I<1
< sup sup ‘Zcibi
(bi)ecgo (ci)€coo .
1Y bieM|| <1 maxy <o | Yo ¢ fill <maxy<n | iy ai fill
n
= max Za,-fi sup sup ’Zcibi
m<n |\ S (bi)ecoo (ci)€coo

I3 bieMa) <1 maxmn | Yo i fill <1

n
= max Za,-f,- sup H Zb eM”" max Za, fil.
msn || 2 (bi)ecoo i
Il bieM <1

Thus, (ef) is equivalent to the minimal basis with respect to (f;) C X*. By Proposition 2.8 (fj,x;) is a frame for
span(fi: i € N). (e?’”") with respect to (f;) in X* constructed in Lemma 4.6. Since by assumption ||x**|span(f;: izm)ll — O,
if n — oo, every normalized block sequence of (f;) is weakly null. Therefore Lemma 4.6(b) yields that (ef) is shrinking.
Thus, (e?”“") is boundedly complete, which proves our claim. O

We are now ready to present a proof of our main theorems:

Proof of Theorem 4.1. (a) = (b) It is clear that (a) implies (b)(i), while (b)(ii) follows from (a) and the fact that the frame
representation (1) implies that every sequence (u,) C Bx for which lim,_, « fi(uy) =0, whenever i € N, has a subsequence
which is an arbitrary small perturbation of a block sequence of (x;) in By.

(b) = (c) By Proposition 2.3(c), every f € X* can be written as

f=w"— nli{gto(Xi)fv
i—1

If for some f, this sum did not converge in norm, we could find a sequence (uy) C Bx and my <ny <my <ny <---in N
and & > 0 so that for all ke N,

e T 1 €
f( Z fi(uk)xi> = Z f i) fiCup) = 5‘ ‘ fi| =5 (17)
i=my i=my I=my

By Proposition 2.3(b), (iiy) C K - Bx, where i, = Z?ﬁmk
which contradicts (b)(ii).
(c) = (d) trivial.
(d) = (a) by Proposition 2.7. Thus we verified (a) < (b) < (c) < (d).
(a) & (e) by Proposition 4.5(a).
(e) < (c) by Proposition 4.4(a). O

x; fi(uy), for k € N. Thus, i, is a bounded block sequence of (x;),

Proof. Proof of Theorem 4.2 (a) = (b) by Proposition 4.3.
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(b) = (c) trivial.
(c)= (d) Let Y =span(f;: i € N). Define J: X — Y* by J(X): f — f(x), which is the natural canonical map. Then we
have

[J@|| = sup |Jx) f| = sup |[f@o)| <IIxIl,
feBy feBy

which implies that ] is a bounded linear operator. Next we will show that | is bijective. Since, by Proposition 2.4, Y is a
norming set of X, J is injective. On the other hand, any y* € Y*, can, by the Hahn-Banach theorem, be extended it to an
element x** € X**. Then by hypothesis, there is an x € X such that x = limy_.0c Y _;—; X**(fi)x; under the topology o (X, Y).
Thus, for any f €Y,

n n
JOOf) = f( = lim f( Zx**(mxi) = lim x**( Zf(xi)ﬂ) =x"*(f), (18)
n—-oo i n—-oo i
which implies that J is surjective. Then by the Banach Open Mapping Principle, J is an isomorphism from X onto Y*.

(d) = (a) Let x** € X** and put f*=x**|y € Y* (i.e. f*(f) =x**(f) for f € Y). By assumption (d) there is an x € X so
that f(x) = f*(f) =x**(f) for all f €Y. Thus (a) follows from Proposition 2.7.

Note we have now verified the equivalences (a) < (b) < (c) < (d).

(a) = (e) by Proposition 4.5.

(e)= (b) by Proposition 4.4(b) and Theorem 3.7(c). O

Example 4.7. The following example shows that there is a semi-normalized tight Hilbert frame for ¢, satisfying (b)(ii) and
(d)(ii) in Proposition 4.1 but not condition (b)(i).
Choose ¢ > 0 and (c;) C (0, 1) so that

62+Zci2:l and Zci:oo. (19)

In ¢, put x; =ceq and fori e N

1 Ci 1 Ci
Xoj = —ejr1+ ——eq and Xpji1 = ——ej11 — —=e1.
1 «/5 i+ «/5 i+ \/j i+ \/i
It follows for any x =) _a;e; € £, that
o ] o0
2 22 2 2
1'21:()(1',26) =cC al—i—ij_zz(aj—i-cj_m]) + (@j —cj1a1)

[e¢] o
2 2 2, 2 2 2
=ca; + E a;j +ay E cj=||x|| .
j=2 j=1

Thus, (x;) is a tight frame, which implies (b)(ii), (c)(ii) and (d)(ii).
Using the second part of (19) we can choose 0 =ng <ny <ny <--- so that

n
lim y; =eq, wherey;= E (x2j —xpjy41) fori e N,
i—o00 3

j=nij_1+1

which implies that (b)(i) is not satisfied.

Proposition 4.8. Let (x;, f;) be a Schauder frame of a Banach space X. Then the following conditions are equivalent:

(a) (x4, fi) is a pre-shrinking Schauder frame of X.
(b) (fi, x;) is a pre-boundedly complete Schauder frame of X*.
(c) (fi,x;) is a pre-boundedly complete Schauder frame of span(fi: i € N).

Proof. (a) = (b) Assume that (fj, x;) is a Schauder frame of X*. For any x*** € X*** x***|x is a continuous linear functional
on X. Then > 72, ¥™**(x;) fi = Y oy x***|x(x;) fi converges in X*, which completes the claim.

(b) = (c) is trivial.

(c)= (b) Let Y =span(f;: i € N) and let f € X*. By Proposition 2.4 X can be isomorphically embedded into Y* under
the natural canonical map. By the Hahn-Banach theorem, extend f to an element in Y** and, thus, assumption (c) yields
that "2, f(x;) fi converges in Y. Since this series converges in w* to f by Proposition 2.3 this completes the proof. 0O
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Proposition 4.9. Let (x;, fi) be a Schauder frame of a Banach space X.
If (xi, fi) is pre-shrinking and pre-boundedly complete, then X is reflexive.

Proof. Since (x;, f;) is pre-shrinking we can write every f € X* as f =" f(x;) fi. Since (x;, f;) is pre-boundedly complete
we can choose for each x** € X** an x € X so that x=Y_x**(f;)x;. Thus for any f € X*

X*(f)y =) fFox™(f) = f 0,
which proves our claim. O
5. Unconditional Schauder frames

The following result extends James’ [12] well-known result on unconditional bases to unconditional frames.

Theorem 5.1. Let (x;, fi) be an unconditional and locally shrinking Schauder frame of a Banach space X.

(a) If (x;, fi) is not pre-boundedly complete, then X contains an isomorphic copy of co.
(b) If (x4, fi) is not shrinking, then X contains an isomorphic copy of ¢1.

Then by Proposition 4.9 and Theorem 5.1, we obtain Theorem C.
For the proof, we need the following lemma.

Lemma 5.2. Let X be a separable Banach space and (x;, fi) C X x X* be a locally shrinking Schauder frame of X with the projection
operator K. Let Y be a finite-dimensional subspace of X. Then for every ¢ > 0, there exists N € N such that ||y|| < (K + &)|ly + X||
whenever x € span(x;: i > N)and y €Y.

Proof. W.lo.g. £ < 1/2. Let (y;)]_; be an 8%—net of Sy, and (x/)7_; C Sx+ with x{(y;) =1 for 1 <i <n. For large enough

k it follows that (¥")]_,, with X} = le‘-:] X (xj)fj, i=1,2,...,n, satisfies that

£
X|<K (1<ig<n) and max [xF >1—— forally €Sy.
|| 1”\ ( X P ) 1<i<n} 1(.y)|/ 4K y Y
It follows that ||X;|| < K, for j=1,2,...,n. Using our assumption that (x;, f;) is locally shrinking we can choose N € N, so

that ||5€?<‘span(xj~: =Nl < &
If yeY and x € span(x;: i > N), then either ||x]| > 2| y|, in which case [y + x| > Ix — lyll > [lyll. Or [Ix|| < 2|lyll, and
then

Klly +x1 > max |8 v +0] = (1= 2 iy = S = (1= 2 iy > 2
i<n ! 4K 8K 2K 1+¢/K

Corollary 5.3. Let X be a separable Banach space and (x;, fi) C X x X* be a locally shrinking Schauder frame of X with the projection
operator K. Then for every normalized block sequence (u;) of (x;) and every € > 0, there is a basic subsequence of (u;) whose basis
constant Ky is not larger than K + €.

Proof. Using at each step Lemma 5.2 we can choose a subsequence basis (v;) of (u;), so that for all Ne N

ly +x| = % forall y € span(v;: i < N) and x € span(v;: i > N+ 1).

It follows then, that (v;) is basic and its basis constant does not exceed K +¢&. O

Lemma 5.4. Assume that (x;, fi) is an unconditional and locally shrinking frame for a Banach space X. Let K, be the constant of
unconditionality of (x;, fi) and let (u;) be a block basis of (x;). For any &€ > 0 there is a subsequence (v;) of (u;) which is Ky + €
unconditional.

Proof. Without loss of generality, we assume that ||x,|| = 1, for n € N, otherwise replace x, by x,/||x;|| and f; by fallxxll-
By Corollary 5.3 we can assume that (u;) is 2K, -basic (note that the projection constant of (x;, f;) is at most Ky).

Let (8;) C (0,1) with Zj>i §j<éi,ieN,and ) 8 < 8/81(5. Then we choose recursively increasing sequences (n;) and
(ki) in N so that

di
ki_1

whenever s < k;_1, (20)

}fs(uni)‘ <
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and

<3diy1 whenever N >k and (h))i_, C[-1,1]. (21)

N i
Z fs( Z)\junj)xs
S=k,‘

j=1

Indeed, assume k;j_1 was chosen (kg = 1). Since (x;, fi) is locally shrinking, we can choose n; so that (20) is satisfied.
Secondly, using the compactness of the set {lezl Ajln;: (A‘j);:l C [—1, 1]}, we can choose k; so that (21) is satisfied.
We are given now (1;) C coo with max|A;|=1 and (&;) C {—1,1}. For u =) Ajun, and i =) &;A;un, We compute:

o0
= | Y fs(@xs
s=1
o i*
> 2 S
i=1s k, 1
o0 k,'*]
<Ky ZEi Z fs()xs
i=1 S=k,‘_1
oo ki—1 00 ki—1 oo ki—1
SKu D0 D70 Mifstun)xs| +Ku | 7 fs<28mun})><s YYD )
i=1 s=kij_q i=1 Il s=kj_q i=1 s=kj_q1 j=i+1
oo ki—1 o0 by
. 2
<Ky Z Z Ai fs(Uun)xs || + ST + Ky Zkl Z k;
i=1 s=kj_1 i=1 j=i+1
o0 k,‘*] e
< Ky Z ; M s s | +
i=1 i—1
By switching the role of u and &, we compute also
oo ki—l o0 k,’—l
D D Milfstunyxs| <30 Y0 fswxs +R:” ||+R
i=1 s=kj_q i=1 s=kj_q
Since the basis constant of (u;) does not exceed 2K, it follows that |u||, ||ul > and thus

2K
flull < flu |I+— (Ky +&)lull,

which proves our clalm. m]

Proof of Theorem 5.1. (a) By assumption, there is some xj* € Sx« such that > x5*(fi)x; does not converge. By the
Cauchy criterion, there are § > 0 and natural numbers p; < q1 < p2 <(qz < --- such that for u; = qu x§*(fi)x; we

i=pj
have |luj| > é for every j. By Corollary 5.3, we can find a basic subsequence (un;) of (uj) w1th the basis constant C > 1.
Then for every sequence (k,) 1, of scalars and every i € {1,...,m}, we have || Z]:1 Ajun;ll > 2c lAiun || = 2c|)‘ |. That is,

” Z]:] )‘Junj ” = 2C H()‘ )”oo
Recall that the unconditional constant of (x;, f;) is defined by

Ky = sup sup Zs fiX)x;|| = sup  sup ZA fix)x;|| < oo
xeByx (&) C{£1} xeBx (A\)C[—1,1]
(the second “=" follows from a simple convexity argument). Secondly we compute
gi
sup Zkiui = sup Z Z AixgE(f) ‘
(r)ecooN[—1,11N (i)ecooN[=1,1N || 5 s=p;
< sup sup D o ax(fi)xi
X*EBywr (As)ecooN[—1, 1IN Il 75
= sup sup H stfs(x)xl =K.

X€Bx (A5)ecoon[—1,1]N
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(b) Since (x;, fi) is not shrinking, there exists f € Sx+ and a normalized block basis (u;) of (x;) and a § > 0, so that
f(up) =46, for n € N. Since by Lemma 5.4 we can assume that (uy) is 2K,-unconditional, it follows (1;) € cgo that

1 8
sziui 2% > Inilug >f(2|li|ui)>K—uZI?»il. m
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