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This paper deals with standard optimal control problems, namely, the fixed time 
integral convex cost problem and the time optimal control problem for linear retar- 
ded systems in Banach spaces. For the basis of optimal control theory the fun- 
damental solution is constructed and a variation of constant formula of (mild) 
solutions is established. After the controlled system description and the formulation 
of optimal control problems are given, the retarded adjoint system is introduced. 
For the integral convex cost problem two existence theorems of optimal controls 
and necessary conditions of optimality are given. These conditions are precisely 
characterized by the solution of retarded adjoint system. The “pointwise” maximum 
principle for time varying control domain is derived from the optimality conditions. 
The bang-bang principle is also established for the terminal value cost problem 
under some regularity condition of the adjoint system. For the time optimal control 
problem to a target set an existence theorem is shown. In the case where the target 
set has interior, the maximum principle and the bang-bang principle are established 
for the time optimal control. Finally, a convergence theorem of time optimal con- 
trols to a point target set is given. This paper also contains illustrative examples 
which give technologically important control problems. a: 1986 Academic Press, Inc. 

1. INTRODUCTION 

There exists a considerable literature which studies optimal control 
problems of control systems in infinite-dimensional spaces (see the books 
[ 1, 14, 261 for results and extensive references cited therein). Most studies 
have been devoted to the systems without time delay, and the papers 
treating the systems with delay are not many [2, 27, 28, 34, 351. Further- 
more in the above literature the continuous retardation effect is not in con- 
sideration and the concept of fundamental solution (or Green function) is 
not used, so that the calculations to obtain the existence and optimality 
conditions of optimal controls are complicated. On the other hand, optimal 
control theory of retarded systems in finite-dimensional space is widely 
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developed in many references [ 5-8, l&l 3, 15, 16, 19, 22, 3 1, 361 and at a 
satisfactory level. This paper is intended to fill the gap existing between 
finite- and infinite-dimensional retarded systems. 

In this paper we study some standard optimal control problems, namely, 
the fixed time integral convex cost problem and the time optimal control 
problem for general linear retarded systems in reflexive Banach spaces. We 
shall present results on the existence of optimal controls, necessary con- 
ditions of optimality, maximum principle, and bang-bang principle for the 
optimal control problems. For the basis of our study we construct the fun- 
damental solution and establish a variation of constant formula of (mild) 
solutions for the free system. We introduce the retarded adjoint system and 
give the representation formula of adjoint states in terms of the fundamen- 
tal solution. Our treatise to solve the control problems is based on the for- 
mula and the adjoint system plays a central role in the description of 
optimality conditions as developed in [26]. However, unlike in [26] the 
method of integration by parts is not used; instead the simpler Fubini 
theorem is used in this paper. 

This paper is devided into eight sections plus appendices. Section 2 gives 
the background of our optimal control theory. The notations and ter- 
minology to be used in the paper are given in Subsection 2.1; for the free 
system the existence, uniqueness, and a variation of constant formula for 
mild solutions are given in Subsection 2.2; some further results on the 
existence of strong and weak solutions are also given in Subsection 2.2. In 
Section 3, we give the controlled system description and the formulation of 
the optimal control problems to be investigated and introduce the retarded 
adjoint system. The purpose of Section 3 is to establish the representation 
formula for the adjoint state. Two existence theorems of optimal controls 
are given in Section 4; one is for bounded control set and the other is for 
unbounded control set. In Section 5, we present the necessary conditions of 
optimality which are described by the adjoint state and integral inequality. 
Two applications of the main theorem (Theorem 5.1) are given; one gives a 
feedback control law for the regulator problem and the other gives a uni- 
queness of the optimal control of the averaging observation control 
problem. Section 6 is devoted to studying the “pointwise” maximum prin- 
ciple. The maximum principle for time varying control domain is derived 
from the optimality conditions in Section 5 by the variational technique. 
Some examples of the maximum principle for technologically important 
costs are also given in Section 6. In Section 7, the bang-bang principle for 
terminal value problem and its applications to uniqueness and expression 
of the optimal control are given under some regularity condition of the 
adjoint system. Section 8 deals with the time optimal control problem to a 
target set. Under very general conditions on the target set and the con- 
trolled system an existence theorem of the time optimal control is given. In 
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the case where the target set has nonempty interior, the maximum principle 
and the bang-band principle are established with some examples. A con- 
vergence theorem of time optimal controls to a point target set is also given 
in Section 8. Appendices collect proofs of some results which are needed in 
our optimal control theory. 

2. FUNDAMENTAL THEOREMS ON LINEAR FUNCTIONAL 

DIFFERENTIAL EQUATIONS 

2.1. Notation and Terminology 

First we give the notations and terminology used throughout this paper. 
Let R be the set of real numbers and let R+ be the set of non-negative 
numbers. Let X and Y be real (separable) Banach spaces with norms 1.1 
and 1. I y, respectively. The adjoint spaces of X, Y are denoted by X*, Y* 
and their norms are denoted by /.I* and 1. I ,,*. For a densely defined closed 
linear operator A on X, its adjoint operator on X* is denoted by A*. We 
write the duality pairing between X and X* by <, > and the pairing 
between Y and Y* by <, > y,y*. Let 9(X, Y) be the Banach space of 
bounded linear operators from X into Y. When X= Y, 9(X, Y) is denoted 
by 3(X). Their operator norms are denoted by Il./l. 

Given an interval Zc R, we denote by L,(Z; X) and C(I: X) the usual 
Banach space of X-valued measurable functions which are p-Bochner 
integrable (1 dp < co) or essentially bounded (p = co) on I and the Banach 
space of strongly continuous functions on Z, respectively. The norm of 
L,(I; X) is denoted by 11. lip,,. For each integer k 3 1, I+‘:)(& X) denotes the 
Sobolev space of X-valued measurable functions x on I such that x and its 
distributional derivatives up to order k belong to L,(I; X). Lp(R +; X) 
(resp. C(R + ; X)) will denote the Frechet space of functions which belongs 
to L,([O, T]; X) (resp. C([O, T]; X)) for any T> 0. Let M,,(I; X) denote 
the product Banach space Xx L,(Z; X) with norm 

Ilgll 
1 

(IgOIP+ Ild Ilp if l<p<co, 
MJ’ix)= 1go1 + /Ig’lls,, if p=co, g=kO,g’wfpvm. 

The function x, means the characteristic function of the interval I. For a 
measurable function x: R+ +X, its Laplace transform i is defined by 
i(A) = SR+ e-“’ x(t) dt, whenever the integral exists. If x is measurable and 
satisfies Ix(t)1 d Me”‘, t E R+ for some M > 0 and p E R, then J?(A) can be 
defined in Re 2 > p and is analytic there. 
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2.2. Existence, Uniqueness, and a Variation of Constant Formula for Mild 
Solutions 

In this subsection we present some basic results on existence, uniqueness, 
and a representation formula of (mild) solutions for linear functional dif- 
ferential equations in Banach spaces. Let h > 0 be fixed and Z, = [ -h, 01. 
For notational brevity we write the space M,(Z,; X) by M,. Consider the 
following free (or non-controlled) system which is described by a linear 
functional differential equation on X: 

dy(s)x(s+t)+f(t) a.e. t>o (2.1) 

a.e. SE [-A, 0), (2.2) 

where g=(gO,g’)EMp,fEL:OC(R+;X), p, qE [l, cc], A, generates a 
strongly continuous semigroup { r(t); t 3 0 1 on X, and r is the Stieltjes 
measure given by 

v(s)= - f xc- co, -h,,b) A, - j” W4) &, SE I,. (2.3) 
r=, 5 

Here in (2.3) it is assumed that 0 d h, < . . . < h, < h are non-negative con- 
stants, A, E P(X) (r = l,..., m), and D(.)E Ll(lh; Y(X)). Then the delayed 
term I,, dq(s) x(s + t) is written by 

The integral kernel D(s) in q is assumed to satisfy 

H$: @‘)d,&; c!.?(x)), l/p + l/p’ = 1. 

Instead of (E) we consider the following functional integral equation: 

(IE) x(t) 

T(t)go+j’T(t-s)f(s)ds+jfT(t-s)jO dv(Ox(s+<)ds, t30 
0 0 -h 

= 

g’(t) a.e. t E C-h, 0). (2.4) 

THEOREM 2.1. Let g=(gO,g’)EMp,fELy(Rf;X), ldp,qg~~, and 
the assumption H{ be satisfied. Then there exists a unique solution 
x(t)=x(t;f,g), TV C-h, co) of (IE) which satisfies 
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(i) x(.)EC(R’; X); (2.5) 
(ii) Ix(f;f,g)l <(MO /IgllM,+Ml Ilf(.)lly,CO,rl)~y~‘, t30, (2.6) 

where M,, M,, y0 are constants depending only on p, q, q, and A,. 

Proof: We shall show the existence and uniqueness of a solution of (IE) 
by the contraction mapping theorem. Let b> 0 be fixed and define the 
mapping X:L,([-h,b];X)+L,([-h,b];X) by (Xx)(t)=the right- 
hand side of (2.4) a.e. t E C-h, b] for each x E LP( [ -h, b]; X). First we 
shall show that X is into. Relating to the term JOh dq(t) x(s + 5) in (2.4) 
we define the operator E,: Lp( [ - h, b]; X) -+ L,,( [0, b]; X) by 

(-W)(S) = j”, 4(t) 4s + i”) a.e. s E [0, b]. (2.7) 

Using Holder inequality and HP,, we obtain 

IlAr II” Ix(t - hr)l” dt 

h 0 
(j (j--h 

llP 

+ IlWtIll . lx(t + 01 4 
0 

< f, IIA, II + ll~(~)ll,~,,, . “‘-) Ilx(~)ll,,[-h,h,> (2.8) 

for 1 <p < co, where l/p + l/p’ = 1. It is easy to see that the inequality (2.8) 
is also true for p = co. Hence E, is bounded and 

II&II d 
( 

rT, IlArII +b”“. llW~)llp~,~, 
) 

. (2.9) 

Thus jOh du(c) x(. + 5) E LP( [0, b]; A’), and hence it is verified by 
assumption that Xx E C( [0, b]; X) n Lp( [ -h, b]; X). That is, X is into. 
We next show that X is a contraction mapping for b small. Let x, 
y E LP( [ - h, b]; X). Since T(t) is a C,-semigroup, there exist M> 0 and 
o > 0 such that 

II T(t)11 < Mecor, t 2 0. (2.10) 

Then from (2.9) and (2.10) it follows by using Holder inequality that 

l/P 

(2.11) 
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In (2.11) if pf co, b’lP -+ 0 as b + 0 and if p = co, eoih - 1 -+ 0 as b + 0. 
Hence X is a contraction for sufficiently small b > 0. This proves the local 
existence and uniqueness of the solution of (IE). To prove the global 
existence, we derive an a priori estimate of this solution. Let x(t) be a 
solution of (IE) on the interval C-h, a], a>, h. Then E,x = 
j0 A dq(l) x(. + 5) E LP( [0, a]; X) can be written by 

s -~-“dm?(s+5)+jo dv(r)4~+5) a.e. s E [0, h] 
-h -s 

(E,x)(s) = 

s 
O h(5) x(s+ <), s E [h, a]. 
-h 

(2.12) 

We put 

r 
=,c, m A,X(~h,,O,(-S)gl(S--h,)+ j W)g’b+W5 

h 

a.e. s E [0, h]. (2.13) 

Applying similar calculations as in (2.7) to (2.13 ), we have 

IIE:Xll,,~o,h, G II& II . IId. )ll,,,,r. (2.14) 

Since x(t) is continuous for t > 0, we see easily that 

1(&x- xco,hl EA x)b)l d (Var q) sup 1x(5)1, s E [O, a], (2.15) 
OS<<S 

where Vary =x7=, llA,Il +soh lID(s)ll ds. Then, making use of Holder 
inequality several times, we can obtain from (2.4), (2.14), and (2.15) that 

Ix(r)l d IIT(t)ll. lg0l + II~(~)Ily’.~O,,,~ IIf(~)ll,,~0,,, 

+ j; IIT(t-s)ll . IL+)l ds 

+ M(Var 9) j: ew(‘~-.‘) ( sup lx(r)1 
> 

ds, ZE co, aI, (2.16) 
0<5<S 
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where l/q + l/q’= 1 and M,, M, are some positive constants. We now 
apply Gronwall’s inequality to (2.16) and obtain 

where yO=u + M(Var v]) and M,, M, > 0. Since a>,/~ can be chosen 
arbitrarily large, the global existence of the solution with the estimate (ii) is 
proved. 

Remark 2.1. Let the mapping Y: MP x Lt”(R+; X) + C(R+; X) be 
defined by Y’(g,f)(t) = x(t;J g), t > 0. Then Theorem 2.1 says that Y is 
linear and continuous. The estimate (2.6) permits us to define the Laplace 
transform i(A;f, g) of x(t;f, g) iffE L,(R+; X). 

The solution x(t;f, g) is called a mild solution of (E). We now define the 
fundamental solution G(t) of (E) by 

t>O 

t<o 

for g”tzX. (2.18) 

It is easily checked that under the condition job /I D(s)11 ds < 00 the fun- 
damental solution G(t) can be constructed. The definition (2.18) implies 

that G(t) is a unique solution of 

T(t)+j‘tW4[o dv(i”)G(t+s)ds, t>O 
G(t) = 0 -h (2.19) 

0, t<o 

in Y(X), where 0 is the null operator on X. By virtue of Theorem 2.1, G(t) 
is strongly continuous on R+ and satisfies 

ilG(t)ll <Me(W+M.Var”)‘, t 3 0. (2.20) 

The main theorem in this section is the following variation of constant for- 
mula for mild solutions of (E). 

THEOREM 2.2. Let g = (go, g’) E M,,~E Ly(R+; X), 1 <p, q d 00, and 
H{ be satisfied. Then the mild solution x(t) = x(t;A g) of (E) is represented 

b 

x(t)=G(t)g’+j’ U,(s)g’(s)ds+{‘G(t-s)/(s)ds, t 3 0, (2.21) 
-h 0 
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where 

u,(s)= 2 G(t-s-h,)A,Xc~h,,o,(s) 
r= I 

+ s ‘I G(t-s+5)W5)&, SEI,. (2.22) 
h 

Proof We shall prove (2.21) by assuming f~ Ly( R + ; X) n L, (R + ; X). 
Put y(t)= the right-hand side of (2.21) for t 20 and y(t)=g’(t) for a.e. 
tE [-h, 0). Since Hp is satisfied, U,(s) in (2.22) belongs to L,,,(I,; Z(X)), 
l/p + l/p’ = 1. Hence by (2.20), y(.) E C(R+; X) n L,(I,,; X). It is possible 
to prove, by using Holder inequality and (2.20), that y(t) satisfies the 
similar inequality as in (2.6) the Laplace transform j(n) of y(t) can be 
defined for Re A > yO. We transform y(t) by Fubini’s theorem as 

v(t) = G(t) go + j’ G(r -s) ( f x[O,h,,(‘d Ard(s - 4)) ‘iy 
0 r=l 

+ ; G(t -s) X[O,h]b) 
I 

s 

ph 

+ 
s 

’ G(t - s)f(s) ds. 
0 

(2.23) 

SincefE L,(R+; X) and G(t) satisfies (2.20), we have by applying the con- 
volution theorem on Laplace transforms to (2.23) that 

j(l) = G(l) go+ e(l) 
( 

f A, epZhr [” 
r= I hr 

ep”“g’(s) ,i,! 

+ &A) 
( 

Jo 
h 

eng D(5) Jo ep”“g](s) ds d<) + C?(l)f(i) 
5 

(Fubini’s theorem) 

= C?(A)(g’+ F(l;g’) +.&A)), (2.24) 

where C?(A) and f(;l) denote the Laplace transforms of G(t) and f(t), 
respectively. On the other hand, since x(t) satisfies (2.4), the Laplace trans- 
form ,?(A) of x(t) is given by 

i(A) = R(A; A,)(g’+f(A) + &(A)), (2.25) 

where R(1; A,) is the resolvent of A, and G(l) is given by 



LINEAR RETARDED SYSTEMS IN BANACH SPACES 177 

Noticing that x(t) = g’( f) a.e. t E [ -A, 0), we use Fubini’s theorem again to 
obtain 

&(I)= f A,epLh.JO e"%(() O ec""g'(s) ds d( r=l - h, e-"sgys)ds+Jo 
-h s 5 

+ 2 Arehhr+ O 

( 
s 

e”“D(s) ds i(A) 
r=l -h ) 

= F(A; g’) + 
( 

jp,, ens C(s)) i(l). (2.26) 

Then by (2.25) and (2.26), 

i(A) = R(A; Ao)(go + F(i; g’) +f(L)). (2.27) 

Now we see for Re A > yo, 

and hence by (2.27) 

IR(i;n,)~~~e’~d,(~)l~’ R(A; A,)(g’+ F(A; g’) +f(lv)). (2.28) 

The Laplace transform of (2.19) yields 

e(A) = R(A; A,) + R(l; A,) [oh e”’ dr](s). C?(A), 

so that 

e(l) = I- R(1; A,) /nh ei~sdq(s)]p’ R(A; A,). (2.29) 

Therefore, from (2.24), (2.28), and (2.29) it follows that 

i(A) = &I,( go + qn; A,) +f(A)) = j(i) for Re 13. > yo. 

By the uniqueness of Laplace transforms [ 16, p. 6261 and the strong con- 
tinuity of x(t) and y(t) on R+, we obtain 

x(t) = Y(f) foralltER+, 
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which proves (2.21). Lastly we shall prove (2.21) without assuming 
feL,(R+; X)nL,(R+; X). For this it sufficies to prove (2.21) for 
t E [0, L] with any fixed L > 0. For a given f~ LF(R + ; X) and L > 0 we 
define the truncated function fL(t) by fL(t)=XCO.Ll(t)f(t). Then 
fL E L,(R+; X) n L,(R+; X) and the corresponding solution XL(t) of (2.4) 
satisfies (2.21) for all t > 0. Since XL(t) = x(t) for t E [0, L], (2.21) is true 
for all t E [0, L]. This finishes the proof. 

Remark 2.2. Assume D( .) E C(Z,; 9(X)). Then the operator U,(s) in 
(2.22) is piecewise strongly continuous on Zh. The discontinuity of U,(s) 
yields from the first term of the right-hand side of (2.22) and the discon- 
tinuous points are s = --A,, r = l,..., m-l and s=t-h,~[-!z,O), 
Y= l,..., m. If t > h, the discontinuity of U,(s) occurs only at s= -h,, 
r = l,..., m - 1. The second integral term of the right-hand side of (2.22) is 
strongly continuous on Ih. The fact can be proved by using Lebesgue’s 
dominated convergence theorem. We denote the jump U,(s + 0) - U,(s - 0) 
at s E Ih by 6U,(s). Then 

XJ,( -h,) = G(t) A, (r = l,..., m - 1 ), 

~ut(t-h,)= -Arxc--h.o,(f-h,) (r = l,..., m). 

These jumps are closely related to the degeneracy phenomena of retarded 
systems in infinite-dimensional space [ 303. 

When X is reflexive, the mild solution x(t) of (E) is a weak solution in 
the sense given below. A function x(t), t E [ -h, co), is said to be a weak 
solution of (E) if 

(i) XE C(R+; X); 

(ii) for each x* E D(A,*), the function (x(t), x* ) is absolutely con- 
tinuous and satisfies 

; (x(t), x* > = (x(t), A,*x* > + ( j;, 4s) 4s + t), x*:, + (f(t)> x* > 
a.e. c 3 0; 

(iii) x(O) = go, x(s) =g’(s) a.e. SE C-h, 0). 

COROLLARY 2.1. Let the assumption in Theorem 2.1 he satisfied and let 
X be reflexive. Then the mild dsolution x(t) given in (2.21) is a weak solution 
of(E). 

Proof: See Appendix 2. 
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Finally, we give a condition which implies that the mild solution of (E) 
becomes a strong solution of (E), which is a function x: [ - h, co ) + X such 
that 

(i) xeC(R+;X)n WF)([O, T];X) for all T>O; 

(ii) x(t)~Zl(A~) for a.e. t > 0, x(t) is strongly differentiable and 
satisfies (2.1) a.e. t > 0; 

(iii) x(0) = go, x(s) =g’(s) a.e. s E C-h, 0). 

COROLLARY 2.2. Let the assumption in Corollary 2.1 be satisfied. If 
g = (go, g’ ) and f satisfy 

g’ E WJ,“)(Z,; X), g’(O) = go E WA,), 

f E I%‘:)( [0, T]; X) for each T> 0, 

then the function x(t) given in (2.21) is a strong solution of (E). 

Proof: See Appendix 3. 

3. OPTIMAL CONTROL PROBLEMS AND ADJOINT SYSTEM 

Let T> 0 be fixed and let I= [0, T]. We consider the following 
hereditary controlled system on X: 

dx(t) 
--=A,x(~)+~~ dq(s)x(s+t)+f(t)+B(t)u(t) 

dt 
a.e. t~l, (3.1) 

h 

(CS) I 

i 

40) = go, -4s) = g’(s) a.e. SE C-h, 0), (3.2) 

ME Uad, 
(3.3) 

where A,, ye, g= (go, g’) are given in Section 2 and fE L,(Z; A’), 
UadcLp(Z; Y), PE [l, co], and BEL,(I;~(Y,X)). 

The quantities x(t), u(t), B(t), and U,, in (CS) denote a system state (or 
a trajectory), a control, a controller, and a class of admissible controls, 
respectively. 

Let G(t) be the fundamental solution of (E) and the assumption H{ be 
satisfied. Then the function 

x(t) = x(t;f, g) + jr G(t - s) B(s) u(s) ds (3.4) 
0 

is the mild solution of (3.1), (3.2), and a member of C(Z; X), where x( t;f, g) 
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is given in (2.21). Since we use the class of mild solutions (3.4) to 
investigate the control problems for (CS), the assumption HP, is always 
assumed. 

In what follows the admissible set U,, is assumed to be closed and con- 
vex in &(I; Y). We sometimes denote x(t) in (3.4) by x,(t) to express the 
dependence on u E Uad. The function x, is called the trajectory corre- 
sponding to a control u. 

We shall shortly explain the results obtained in this paper. 
Let .Z= .Z(U, x) be the integral convex cost given by 

J= &MT)) + j- (fo(x(f), t) + k,(u(t), f)) & (3.5) 
I 

where qJ,: X-r R, fo: J/xl+ R, k,. . Y x Z + R. We study the following con- 
trol problems P, and P, on the finite interval Z= [0, r], T> 0. 

PI. Find a control UE U,, which minimizes the cost J subject to the 
constraint (CS). 

P,. Find optimality conditions for (U, x,) E Uad x C(Z; X) such that 

inf J(u, x) = J(fi, x,). 
UE Gi 

(3.6) 

In P, such a UE U,, is called an optimal control for the cost J. In P, the 
pair (U, x,) is called the optimal solution for J. We will solve P, partly by 
showing the existence of optimal controls in Section 4 and solve P, by 
deriving necessary optimality conditions of integral type in Section 5. 
Further properties such as maximum principle and bang-bang principle are 
studied in Sections 6 and 7. At the same time the problem P, is solved 
completely in some specific problems. 

Let W be a weakly compact set in X. Define 

U,= {uEUad:xu(f)~ Wfor some tEZf (3.7) 

and suppose that U. # I$. For each u E U. we can define the transition time 
that is the first time i(u) such that x,(i) E W. The set W is called a target 
set. The time optimal control problem P, with a target set W is formulated 
as 

P 3. Find a control U E U, such that 

i(U) d T(u) for all u E U. (3.8) 

subject to the constraint (CS). 
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In P, such a 17 E Uad is called a time optimal control and i(U) is called an 
optimal time. In Section 8 we study the problem P,. First we give an 
existence theorem of time optimal controls. Next we establish the 
maximum principle and the bang-bang principle in the case where W has 
non-empty interior. A convergence theorem of time optimal controls for 
target sets converging to a point target set is also given in Section 8. 

To give a concrete form of those optimality conditions some knowledge 
on the adjoint system is required. In the sequel we introduce and 
investigate the retarded system mainly in the case where X is reflexive. First 
consider the case X is reflexive. Let q$ E X* and q: E L,(I; X*). The retar- 
ded adjoint system (AS) on X* is defined by 

dp(t) 

(ASI 

T+A8P(t)+[~hd~*(s)p(l-s)-q~(t)=0 a.e. ?EZ (3.9) 

p(T)= -qo*, P(S) = 0 a.e.sE(T, T+h], (3.10) 

where v]*(s) denotes the adjoint of g(s). Since X is reflexive, it is shown in 
[32] that the adjoint operator AX of A0 generates a C,-semigroup T*(t) on 
X* which is the adjoint of T(t), t 30. Hence we can construct the fun- 
damental solution G,(t) as in Section 2 (remark that jlh IlO(s ds= 
sd; IlD*(s)ll ds< co). That is, G,(t) is characterized as the (unique) solution 

I T*(t)+J’ 2-*(1-s) j” dr/*(<) G,(t+s) ds, t>O 

G,(t) = 
0 -h (3.11) 

0, t < 0. 

We denote by G*(t) the adjoint of G(t), t E R. Then it is verified that 
G*(t) = G,(t) (see Appendix 1). Hence G*(t) is strongly continuous on R+. 
By changing time direction in (AS), we have the following system on X*: 

dq*(s)w(t+s)+qT(T-t) a.e. tel 
SEC-l&O). 

The mild solution w(t) of (CS)* is represented by 

w(t)=G*(r)(-q~)+~iG*(~-s)q:(T-~)ds. 
0 

(3.12) 
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It is easily seen that the system (CS)* is transformed to the system (AS) by 
a change of variable t -+ T- t. Hence by (3.12) the function 

p(t)=w(T-t)=G*(T-t)(-q,*)+ ~‘G*(s-t)(-gt(s))ds, tez (3.13) 
I 

may be called the mild solution of (AS). The function p(t) in (3.13) is called 
the adjoint state. In the sense of Corollary 2.1 we often say that p(t) solves 
(AS) in the weak sense. 

When X is not reflexive, the adjoint system can be defined in the follow- 
ing manner (cf. [25,32]). Define X.t c X* by 

X;={x*~X*:,ty+ IT*(t)x*-x*1,=0}. 

Then the linear subspace XL: is invariant under T*(t), i.e., T*(t) Xg c X,* 
holds for all t > 0. Note that Xg is closed in X* with respect to the norm 
topology of X*. We define the semigroup T,*(t) on Xg by the restriction 
T*(t)1 X;. Then T,*(t) is a CO-semigroup on the Banach space XJ$, so that 
the infinitesimal generator A$, of T.;(t) can be determined uniquely. Con- 
cerning other operators in q*(s), we suppose that AT(Xz) c X.;, r = l,..., m, 
and D*(s)(X,*) cX~ a.e. SEZ,. We denote the restrictions A,* lx; and 
~*(dlx; by 4% and D,*(s). Then it can be verified that Azs E 9(X&;), 
r = l,..., m,andD,*(.)ELl(Zh;~(Xs*)).Letqo*EXs*,q1*EL,(Z;X,*),andq,* 
be the Stieltjes measure corresponding to Ats and O:(s). Now we define 
the adjoint system (AS), on X; by 

dp(t) 
t+G,sp(f)+~O dvS(s)p(t-$)-q:(t)=0 a.e. t E z, 

(AS), 
h 

P(T)= -qo*, P(S) = 0, SE(T, T+h], 

when X is not reflexive. Since the structure of Xg is not clear for general 
non-reflexive Banach spaces, we do not use the adjoint system (AS), in this 
paper. However, quite analogous results in terms of the above adjoint 
system hold true for non-reflexive Banach spaces. 

4. EXISTENCE OF OPTIMAL CONTROL 

This section is concerned with the existence of optimal controls for the 
cost problem P,. It is assumed in this section that Y is reflexive and 
1 <p < co. We consider two cases to study P,, one is the case where Uad is 
bounded and the other is where U,, is unbounded in &(I; Y). The follow- 
ing assumption H, on &,, fO, and k, is for a bounded Uad. 
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H, . ( 1) q$, : X -+ R is continuous and convex; (4.1) 
(2) fO : Xx Z + R is measurable in t E Z for each x E X and continuous 

and convex in x E X for a.e. t E Z and further for each bounded set KC X there 
exists a measurable function mK E L,(Z; R) such that 

sup I fob, t)l G m,(t) a.e. t E I; (4.2) XEK 

(3) k,: Y x Z + R satisfies that for any u E Uad, k,(u( t), t) is integrable 
on Z and the functional Z,,: U,, + R given by 

To(u) = 5 ko(u(t), t) dt 
I (4.3) 

is continuous and convex. 

THEOREM 4.1. Let U,, be bounded and H, be satisfied. Then there exists 
a control Q,E U,, that minimizes the cost J in (3.5). 

Proof Let {u, } be a minimizing sequence of J such that 

inf J= lim J(u,, x,) =m,, 
UEUa,j n-x 

where x, is the trajectory corresponding to u,. Since U,, is bounded and 
weakly closed, there exist a subsequence (which we denote again by {u, } ) 
of {u, } and a u0 E U,, such that 

u,--+ uo weakly in &(I; Y). (4.4) 

We denote by x0 the trajectory corresponding to uo. Let x* E X* and t E Z 
be fixed. Since G(t) = 0 if t < 0, then 

(x,(t), x* > = (x(t;f, g), x* > + j (u,(s), B*(s) G*(t -s) x*) y, y* ds. (4.5) 
I 

Since BE L,(I; 6p( Y, X)) and G(t) is strongly continuous on Z, it is easy to 
see that the function B*( . ) G*( t - .) x* belongs to L,(I; Y*), l/p + l/p’ = 1. 
Hence by (4.4), (4.5), 

(x,(t), x* > + (x(t;f, g), x* > + I (uo(s), B*(s) G*(t -s) x* > y, ,- ds 
I 

= (x(t;f,g),x*)+ J’G(t-s)B(s)u,(s)ds,x* 
0 > 

= (x,(t), x* > as n+co, 
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i.e., 

x,(t) -+x0(f) weakly in X. (4.6) 

It is well known that continuity plus convexity imply weak lower semi-con- 
tinuity. Then (4.1) and (4.6) with t = T imply 

lim hdxn(T)) 2 40(x,(T)). (4.7) 
n-m 

By the same reason we have 

lim f&n(~), t) 3foh(~), f) a.e. t E I. (4.8) 
“+oO 

Since U,, is bounded, then by Holder inequality the set K= u {xn(t): t E Z, 
n = 1, 2 ,... } is shown to be bounded in A’. So from (4.2), there exists an 
mKe L,(Z; R) such that 

I f&,(~)~ f)l 6 m,(t) a.e. t E Z, n = 1, 2 ,.... (4.9) 

Hence from (4.8) and (4.9) it follows via the LebesgueeFatou lemma that 

lim s f,(x,,(t), t) dt 3 ( lim fo(x,(t), t)) dt 
n-a I s I n-cc 

Concerning the term J,k,(u,(r), f) dt, it is lear from H,(3) that 

lim fdu,) 3 fo(w,) = j Mu,(t), t) dt. 
n-cc I 

(4.10) 

(4.11) 

Therefore by (4.7), (4.10), and (4.11) we have 

mo= inf J3 lim &(x,(T))+ !im fo(x,(t),t)dt+ lim To(u,) 
UCUad n-z I n-m I n+cc 

Z hdxo(T)) + j (fo(xo(f), t) + k,(dt), t)) dl I 

= J(u,, x0)> -00, 

so that mo= J(u,, x,,). This proves that (u,, x,) is the optimal solution 
for J. 
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The condition H,(3) seems artificial, but the condition is automatically 
satisfied in many applications given in later sections. 

We next consider the case where Uad is unbounded. In this case we sup- 
pose H, and the next additional assumption H,. 

HZ. (1) There exists a constant c0 > 0 such that do(x) 3 -cO on X; 

(2) there exists a constant c, > 0 such that fO(x, t) b -c, on Xx I; 

(3) there exists a monotone increasing function 60~ C(R+; R) such 
that lim,, a 00(r) = co and 

To(u) = 5 kdu(t), t) dt 2 ‘%I141p,,) for uc Uad. 
I 

THEOREM 4.2. Let H, and H, be satisfied. Then there exists a control 
u0 E Uad which minimizes the cost J in (3.5). 

Proof By virtue of H,, 

J~~o~II~II,,,~-~~-~,~ for 24E Uad. 

Hence a standard argument with lim,, co 0,(r) = cc implies that the 
minimizing sequence {u, } is bounded in L,(I; Y). Then as in the proof of 
Theorem 4.1, the conclusion of this theorem follows. 

Remark 4.1. In Theorem 4.2, the condition (4.2) in H,(2) can be 
removed if we use the Fatou lemma instead of the Lebesgue-Fatou lemma. 

Remark 4.2. The above existence theorems can be extended to include 
more general cost functions, for instance, 

J= cMx(t, I,..., x(fk)) 

+ s (fo(x(t), x(t + $1) ,..., 4t + sk), t) + Mu(t), t)) dt, 
I 

where ti E I and s, E Z,, (i = l,..., k). We will use such an extension in later 
sections. 

5. OPTIMALITY CONDITION 

In this section we are going to solve the problem P,. That is, we seek 
necessary optimality conditions of the optimal solution (u, x) for J in (3.5). 
The existence of optimal solutions is assumed but the closedness of U,, is 
not assumed in this section and Sections 6 and 7. In order to give two types 
of optimality conditions, we require the following assumptions H, and Hy. 
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H3. (1) &,: X + R is continuous and Gateau differentiable, and the 
Gateau derivative d&(x) E X* for each x E X; 

(2) f0 : Xx I + R is measurable in t E I for each x E X and continuous 
and convex on X for a.e. t E I and further there exist functions a,f,: 
Xx I+ X*, 8, E L,(I; R), e2 E C(R+; R) such that 

(a) a, fO is measurable in t E I,for each x E X and continuous in x E X 
for a.e. t E I and the value a, fO(x, t) is the Gateau derivative of fO(x, t) in the 
first argument for (x, t) E Xx I, and 

(b) la,fdx, t)l,6~,(t)+b(lxl)for (x, t)EXxl; 

(3) k, : Y x I + R is measurable in t E I for each u E Y and continuous 
and convex on Y for a.e. t E I and further there exist functions 
alk,: Y x I+ Y*, 8, E L,(I; R), and M, >O such that 

(a) 8, k, is measurable in t E I for each u E Y and continuous in u E Y 
for a.e. t E I and the value 8, k,(u, t) is the Gateau derivative of k,(u, t) in the 
first argument for (u, t) E Y x I, and 

(b) lalkO(u, t)ly*-<0e3(t)+M4 iulT”‘for (u, t)E YxI. 

Next we give the condition (3)“’ which is different from H,(3). 

H,. (3)“’ k, : Y x I + R is measurable in t E I,for each u E Y and continuous 
and convex on Y,for a.e. t E I andfurther there exist Bs E L,(I; R) and M, > 0 
such that 

Ikdu, t)l6 d,(t) + ~6 lul; for (u, t)e YxZ. 

The assumption H;’ is the set of conditions H3( l), (2), and (3)W. The 
assumption H, is for differentiable costs and H; is for non-differentiable 
costs. The following is the main theorem in this section. 

THEOREM 5.1. Let H,(resp. H;‘) be satisfied and let (u, x) E Uad x C(I; X) 
be an optimal solution for J in (3.5). Then the integral inequality 

J <v(t)---(t), a,k,(u(t), t)-B*(t)p(t)),,..dt 30 for all v E U,, (5.1) 
I 

Crew. j, (v(t) - 4th -B*(t)p(t)) Y,Y* dt 

+ I Mv(t), t) - Mu(t), t)) dt 2 0 for all v E U,,) (5.2) 
I 

holds, where 

p(t) = -G*(T- t) d&,(x(T)) - j’G*(s- t) a, fO(x(s), S) ds. (5.3) I 
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If X is reflexive, p E C(Z; X*) satisfies 

Mt) 

(AS) 

T+AXp(t)+ Jo dq*(s)p(t-s)-8,fo(x(t), t)=o a.e. t E I, 
-h 

PC T) = -4oMU), p(s) = 0 SE(T, T+h] 

in the weak sense. 

Proof Let H, be satisfied. Then the cost J in (3.5) is Gateau differen- 
tiable. We know [26, p. lo] that the necessary optimality condition is 
given by the variational inequality 

J’(u)(v - u) 3 0 for all v E U,, (5.5) 

when J is differentiable. By virtue of H3, we have by Lebesgue’s dominated 
convergence theorem that 

WNv - 4 = (J, GU- 4 4Ms) - W) dss, ddo(r(7.))) 

” G(s - z) B(z)(v(r) - U(T)) dz, 8,fo(x(s), s) ds 

+j (~(~)--11(~),~,ko(u(s),s)),,*ds. 
I 

(5.6) 

We remark that all integrals in (5.6) are well defined by making use of Hj. 
The first term of (5.6) can be rewritten as 

s (v(s) - 4~1, B*(s) G*(T-3) &,(x(T))) y. y* ds. (5.7) 
I 

Using Fubini’s theorem the second term of (5.6) is transformed as 

JJ 
” (G(s- ~1 B(z)(v(r)- u(‘c)), a,fo(x(s), $1) d7 ds 

I 0 

=J( v(s) - u(s), B*(S) i“ G*(T -s) a,fo(x(z), t) dT> ds. (5.8) 
I 5 Y, Y’ 

If we define p(t) by (5.3), then from (5.5))(5.8) the inequality (5.1) follows. 
Next let H1;’ be satisfied. Then we can use the variational inequality 

(J- z-o)‘(u)(v -u) + (To(u) - r,(u)) 3 0 for all v E U,, 

in [26, p. 123 to obtain the condition (5.2), where r, is given in (4.3). The 
last statement is clear from the argument in Section 3. 
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Remark 5.1. If U,, = L,(Z; Y) in Theorem 5.1, then the condition (5.1) 
is reduced so that 

iY,k,(u(t), t)-B*(t)p(t)=O a.e. tel. (5.9) 

Remark 5.2. From (5.2) the following “integral” maximum principle 
holds: 

(2;; J, ((e), B*(s)&)) y, y* -k,(+), 8)) ds 

= J , (<u(s)> B*(s) P(S) > y, y* - kdubh s)) ds. (5.10) 

Remark 5.3. Consider the special case where Y is a Hilbert space, p = 2, 
Uad = b E LU; Y): II41 2., < CX}, and H, is satisfied. In this case the optimal 
control u is characterized by the relation 

n-‘K(u) 
u = --c( /I n -‘K(u)ll,,,’ 

where A is the canonical isomorphism of I,,(& Y) into &(I; Y*) and 
K(u)(t) = ~,k,(u(f), t) - B*(t)dr) a.e. t E I. 

We now give applications of Theorem 5.1 to the regulator problem and 
the uniqueness of averaging observation control. 

EXAMPLE 5.1 (Regulator problem). Let X and Y be Hilbert spaces with 
inner products ( , ) and ( , > y, respectively. We suppose Uad = &(l; Y). 
The spaces X and X* are identified. The cost J, is given by 

J, = (X(T), Nx(T)) + j (x(t), WC) x(t)) dt + rQ(u), (5.11) 
I 

where 

rQ(u) =; j (4th Q(f) 4t) > y df. (5.12) 
I 

In (5.11) and (5.12) we assume that NEY(X), W(.)EL,(Z; y(X)), 
Q(.)EL,(I; T(Y)); N, W(t), Q(f) are positive and symmetric for each 
t E I; there exists a constant c > 0 such that 

(~9 Q(t) u> Y 2 c Id’, for a.e. f E I. 

Under the above conditions it is verified that To(u) is strongly continuous 
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and strictly convex in &(I; Y) [26, Chap. III]. Hence the assumptions H, 
and H, are satisfied for the cost J,. In addition J, is strictly convex. Then 
by Theorem 4.2 there exists a unique optimal control for J,. Thus, from 
Theorem 5.1 and Remark 5.1 we obtain 

COROLLARY 5.1. Let the cost J, be given by (5.11) (5.12). Then there 
exists a unique optimal solution (u, X)E L2(Z; Y) x C(Z; X) for J,. The 
optimal control u(t) is given by 

u(t)= Q-‘(t) B*(t)p(t) a.e. t E I, 

where the pair (x, p) E C(Z; X) x C(Z; X) satisfies the system qf equations 

dx(t) 
-=A,x(t)+[’ dy(s)x(t+s)+B(t)Q-‘(t)B*(t)p(t)+f(t) 

dt -h 

a.e. tE I, 

40) = go, x(s) = g’(s) a.e. s E [-h, 0), 

4(t) _;i;_+“$p(t)+/o dv*(s)p(t-s)- w(t)x(t)=O a.e. t E I, 
h 

! P(T) = -MT), p(s) = 0 ss(T, T+h] 

in the weak sense. 

The above cost problem is called the regulator problem and is very 
important in system design and synthesis. There are many researchers who 
discuss the problem in both finite- and infinite-dimensional systems. We 
refer to the books [l, 14, 261 for infinite-dimensional systems without 
delay and [15, 16, 191 for finite-dimensional retarded systems. But the 
literature dealing with infinite-dimensional retarded systems is small 
r2, 351. 

The optimality condition (5.1) or (5.2) is often used to derive the uni- 
queness of optimal control. To give such an application we need the follow- 
ing lemma, which is well known for CO-semigroups [33, Chap. 71. 

LEMMA 5.1. Let j*E L,(I; X), 1 <p< CO. zf 

s 
‘G(t-s)f(s)ds=O for all t E Z, 

0 

then f(t)=0 a.e. t E I. 
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Proof Put y(t) = 16 G(t - s)f(s) ds. Then by Theorem 2.2, y(t) satisfies 

1 

j’T(t-$1 j” dv(Oy(.~+Ods+ j; T(f-s)f(s)ds, tGI 

y(t)= O 
-h (5.13) 

0, fE [-h,O). 

Since y(t) = 0, t E 1, it follows from (5.13) that 

5 ’ T( t - s)f(s) ds = 0 for all t E I. 
0 

Hence by the property of a Co-semigroup T(t), we have 

,f(t)=O a.e. tEZ. 

EXAMPLE 5.2 (Uniqueness of averaging observation control). Let 2 be a 
Hilbert space with inner product (, )z and norm 1% I=. Let 
C( .) E -&(I; 9(X, Z)) and p = 2. The cost J2 is given by 

J2=; j IC(t)x(t)-zd(t)(;dt, Zd E L,(Z; Z). (5.14) 
I 

Note that the cost J, is not strictly convex. 

COROLLARY 5.2. Let the cost J2 be given by (5.14) and Uad be bounded 
and closed in L,(Z; Y). Then there exists an optimal control u for J,. If both 
B(t) and C(t) are one to one for a.e. t E I, then the optimal control for J, is 
unique. 

ProoJ: Since U,, is bounded and closed, the existence of an optimal 
control follows from Theorem 4.1. It is sufficient to show the uniqueness of 
optimal control. Let u,, u2 be optimal controls for J, and x,, x2 be the 
corresponding trajectories to u, , u2, respectively. Then as in the proof of 
Theorem 5.1, we have for i = 1,2 

J;bi)(v - u,) = j, (1; G(t -T.) B(T)(v(T) - U;(T)) dT> 

c*(t)(c(t )x,(t)--z,(t)) dt>O 
> 

for all vE U,,. (5.15) 



LINEAR RETARDED SYSTEMS IN BANACH SPACES 191 

By substituting u = u2 if i = 1 and u = U, if i = 2 in (5.15) and adding these 
inequalities, we obtain 

N I G(t - 7) B(T)(u,(z) - 4(T)) d? c*(t)(c(t)(x,(f) - X*(f))) dr 6 0, I 0 ) 

so that from the representation (3.4), 

s IC(~)(x,(~)--x,(~))l~d~60. (5.16) 
I 

Since C(t) is one to one, then by (5.16) 

x,(r) - x2(t) = 1’ G(t -s) B(s)(u,(s) - u2(s)) ds = 0, lEZ. (5.17) 
0 

Applying Lemma 5.1 to (5.17), we have 

B(t)(u,(t)-u,(t))=0 a.e. t~l. 

Since B(t) is also one to one, ul(t) = Us a.e. t E I. That is, the optimal 
control for Jz is unique. 

6. MAXIMUM PRINGPLE 

The purpose of this section is to establish the “pointwise” maximum 
principle for time varying control domain with the convex cost J in (3.5). 
The assumption Hy is assumed in this section. Let the admissible set CT,,, be 

Uad= {uELJZ; Y): u(~)E U(t) a.e. FEZ}, 

where the (time varying) control domain U(t) c Y, t E Z, satisfies 

(6.1) 

H,. ( 1) U(t) is closed and convex in Y for each t E I; 

(2) for any t E Z, u E Int U(t), there exists an &o > 0 such that 

(6.2) 

It is evident from H4( 1) that Uad is convex. 

Remark 6.1. If U(t) varies continuously with respect to the Hausdorff 
metric or U(t) is monotone increasing or decreasing, then the condition 
H,(2) is satisfied. 

4OY’l?O I-11 
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The following “pointwise” maximum principle is deduced from the 
optimality condition (5.2). Compare with (5.10). 

THEOREM 6.1. Let Uad be given by (6.1) and H, be satisfied. Let 
(u, x) E Uad x C(Z; X) be an optimal solution for J in (3.5). Then 

max ( (B(t) 0, p(t)> -kdv, t)) = (B(t) 4th p(t)> - kdu(t), t) Ut u(r) 

a.e. teZ, (6.3) 

where p(t) is gioen by (5.3). Zf X is ref7exiue, then p(. ) E C(I; X*) and is the 
mild solution of (AS) given in (5.4). 

Proof. Let t E Z and u E Int U(t). Since v satisfies (6.2), we suppose, e.g., 
u E fiSE(l,,+E,,j V(s). Then it is easily seen that the function 

v,(s) = 
i 

U(S)? SEZ-(t, t+&) 

0, SE [t, t+E] 

belongs to Uad for each E E (0, Q,). Substituting v, for v in (5.2) and deviding 
the resulting inequality by E, we obtain 

1 
I 

*+C 
- E , {<~-U(Sh -B*(s)P(s)) y, y* + (Mu, s)- k,(u(s), 4)) ds 3 0. (6.4) 

Since all the integrands in (6.4) are integrable on Z by virtue of H;‘, the 
Lebesgue density theorem [33, Chap. l] can apply. Then by letting E + 0 
in (6.4), we have 

<fA B*(t) P(l)) Y, Y’ -Mu? t) 6 (4th B*(t) p(t)> Y, Y’ - kl(u(th t) 

a.e. t EZ. (6.5) 

Let t E Z be fixed for which u(t) E U(t) and (6.5) holds. Since the duality 
pairing (v, B*(t)p(t)) Y,Y* is continuous in v, we see from (6.5) that the 
maximum principle (6.3) is true for such t E Z. 

Remark 6.2. Let H, be satisfied and U,, be as in Theorem 6.1. Then the 
“pointwise” optimality condition that for a.e. t E Z 

(-4th ~,k,(u(t), t)-B*(t)p(t)),,.>O for all VE U(t) 

holds. This fact is proved by applying the Lebesgue density theorem to the 
condition (5.1). 

Remark 6.3. Consider the extended cost J in Remark 4.2. Under some 
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suitable conditions on the total Frtchet differentiability of &, and f,, the 
(modified) maximum principle (6.3) also holds in which p(t) is replaced by 

p(t) = - i G*(t; - t) ~;h,(x(t, L x(tk)) 
i= 1 

where ai denotes the Frechet derivative in the ith argument. 
Before giving applications of Theorem 6.1 we shall show the next lemma. 

LEMMA 6.1. Let Y be reflexive and 1 < p < co. Let U,, be given by (6.1) 
and H4( 1) be satisfied. Zf 

u U(t) is bounded inY, (6.6) 
rt/ 

then U,, is weakly (and hence strongly) closed and weakly compact in 

L/AI; Y). 

Proof: We shall prove that Uad is weakly closed. Let {an ) be a 
sequence in U,, such that u, + u. weakly in L,(I; Y). By (6.6) {u,, } is 
uniformly bounded in Y, i.e., there exists a constant M > 0 such that 

l&l(t)l Y 6 hf for all t E I and n = 1, 2,..., 

Hence by the lemma in Kato [23, Lemma 81, we have 

uo(t) E m for a.e. t E Z, 

where O(t) denotes the closed convex hull of the weak closure of U(t). 
Since H4( 1) is satisfied, then o(t) = U(t), t E 1, and hence u0 E Uad. This 
shows Uad is weakly closed. Because L,(Z; Y) is reflexive and U,, is boun- 
ded (by (6.6)), convex and weakly closed, we see from the 
Eberlein-Smulian theorem [ 17, p. 4301 that Uad is weakly compact. 

In what follows we consider the special cost functionals J, -J, in Exam- 
ples 6.1-6.5. Such costs are important in practical applications and are 
studied in [ 1, 3,4, 14, 18, 261 for systems without delay. In all examples 
given below the assumptions on U,, in Lemma 6.1 are supposed. Then the 
existence of an optimal solution for each J,, i = 2, 3, 4, 5, 6, is assured by 
Theorem 4.1, Remark 4.2, and Lemma 6.1. 

EXAMPLE 6.1. (Averaging observation control problem). Consider the 
same convex cost problem for J2 in Example 5.2. In this case the maximum 
principle is represented by the following 
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COROLLARY 6.1. Let (u, x) E U,, x C(Z; X) be an optimal solution for J2 
in (5.14). Then 

max (4 B*(t) p(t) > y, y* = W), B*(t) At) > y, y* a.e. t E I, 
L’E u(r) 

where 

p(t) = ST G*(s - t) C*(s)(z,(s) - C(s) x(s)) ds, t E I. (6.7) 
f 

If X is rejlexitle, p(t) in (6.7) is strongly continuous on X* and satisfies 

4(t) dt+ Adp(t) + I”, dv*(s)p(t -s) + c*(t)(z,(t) - c(t) x(t)) = 0 

p(s) = 0 SE [T, T+h] 

in the weak sense. 

EXAMPLE 6.2. (Special linearized 
by 

J, = (x(T), tie* > + 

a.e. tEI 

Bolza problem). The cost J3 is given 

1 (-4th $1*(t) > dt, (6.8 1 I 

where $$ E X* and II/ : E L, (I; X* ). Then we have 

COROLLARY 6.2. Let (u, x) E U,, x C(I; X) be an optimal solution for Jz 
in (6.8). Then 

LT;;) (B(t) 0, p(t)> = (B(t) a(t), p(t)> a.e. tEZ, 

where 

p(t)= -G*(T-t)$,*-17G*(s-t)$f(s)ds, t E I. (6.9) 
f 

If X is reflexive, p(t) in (6.9) belongs to C(Z; X*) and satisfies 

i 

4(t) 
-;i;-+Abp(t)+SOhdrl*(S)P(f-S)-i:(I)=O a.e. tEI 

P(T)= -+o*, P(S) = 0 SE(T, T+h] 

in the weak sense. 
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EXAMPLE 6.3 (Terminal value control problem). Let X be a Hilbert 
space. As usual we identify X and X*. The cost .I4 is given by 

J4=4 Ix(T)-x,12, XdE X. (6.10) 

COROLLARY 6.3. Let (u, x) E U,, x C(I; X) he an optimal solution for J, 
in (6.10). Then 

max (B(t)u,p(t))=(B(t)u(t),p(t)) a.e. tEZ, 
“E cl(t) 

where p(t) is given by 

P(t)=G*(T-t)(x,-x(T)), t E I. 

The adjoint state p E C(I; X) in (6.11) satisjies 

4.!.(f) 
F+A$p(t)+j’ dq*(s)p(t-s)=O a.e. tEI 

-h 

~(T)=x,-x(Tl, p(s) = 0 SE(T, T+h] 

in the weak sense (p(t) may be identically zero). 

(6.11) 

EXAMPLE 6.4 (Minimum energy problem). Let X and Y be Hilbert 
spaces. The cost J, is given by 

J, = 1 (1’ lx(t)12 + l4f)l$) & (6.12) 
I 

where I. > 0. Then by Theorem 6.1 and Corollary 2.2 we have 

COROLLARY 6.4. Let (u, x) E U,, x C(Z; X) be an optimal solution ,for J, 
in (6.11). Then 

max (B(t) 4 p(t)) - Id’, = (B(f) 4th p(t)) - lu(t)l$ a.e. tE I, 
UE U(f) 

where 

p(t)= - j“G*(s- t)(2A’x(s)) dsEX*=X, [El (6.13) 
I 

satisfies 

i 

dp(t) 
-;i;-+AO*P(‘)+i^” dq*(s)p(t-s)-2;l’x(t)=O a.e. tEI 

-h 

p(s) = 0 sE[T, T+h] 
(6.14) 
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in the weak sense. Zff(t), (go, g’(s)), and B(t) u(t) in (CS) satisfy, respec- 
tioefy, (2.30), (2.31), and B(.)u(.)EWF)(I;X), then p(t) in (6.13) is 
absolutely continuous on I and satisfies (6.14). 

EXAMPLE 6.5 (Intermediate values control problem). Let Z be a Hilbert 
space and let { (t;, Ci, zi): i = l,..., k} c Ix .Y(X, Z) x Z. The cost J, is given 
by 

J6=; .i ICjx(t;)-z;I;. (6.15) 
r=l 

From Remark 6.3, we have 

COROLLARY 6.5. Let (u, x) E U,, x C(I; X) be an optimal solution for J, 
in (6.15). Then 

max (B(t) hP(t)) = <B(t) u(tLp(t)) DE u(r) 

where 

p(t)= i G*(ti- t) C:(z,-C,x(ti)), 
,=I 

a.e. t E I, 

t E I. 

7. BANGBANG PRINCIPLE 

Let the admissible set Uad be given in Section 6. In this section we con- 
sider the terminal value cost J given by 

J = 90(x( T) 1, (7.1) 

where do satisfies H,( 1) and H,( 1). We investigate the possibility of the so- 
called bang-bang control for J in (7.1) for the time varying control domain 
U(t). In general it is known that the bang-bang control does not hold for 
the retarded system even in finite-dimensional space [20, p. 601. However, 
by restricting the cost J to the terminal value cost, we can prove that the 
bang-bang control is possible under some regularity condition on the 
adjoint system. Let X be reflexive in this section. Consider the adjoint 
system (AS) given in (3.9) (3.10). We denote by p(t; q$, q:) the mild 
solution of (AS). We now give the condition 

C,: q$ = 0 in X* follows from the existence of a set E c I such that 

meas E>O and P(K qo*, 0) = 0 for all t E E. (7.2) 
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We say that the adjoint system (AS) is weakly regular if the condition C, is 
satisfied. Examples for which the system (AS) is weakly regular are given in 
[ 18, p. 411, but those systems do not involve time delay. 

EXAMPLE 7.1. Consider the control system (CS) enjoying the following 
conditions: 

(i) A, generates an analytic semigroup; 

(ii) the Stieltjes measure u is given by q(s) = -xcPm, mh,(~) A,; 

(iii) the system (CS) is pointwise complete for all t>O. 

The condition (iii) means that for any fe Lp(R+; X), 

Cl(x(t;A g): g E M,} = X for each t > 0, 

where Cl denotes the closure in X. If (i), (ii), (iii) are satisfied, the adjoint 
system of (CS) is weakly regular (see Appendix 4). 

Let us define the reachable set Q(t), t E Z, by 

Q(t)= (yEX:y=x,(t), UE U,,}. (7.3) 

It is verified that Q(t) is convex, closed, and weakly compact in X provided 
that U,, is weakly compact in L,(I; Y) (cf. Lemma 6.1). The following 
assumption is needed in proving the bang-bang principle. 

H,. d&,(y) # 0 in X* for all y E l2( T). 

THEOREM 7.1. Let the cost J be given in (7.1). Assume that the aAjoint 
system (AS) is weakly regular and B*(t) is one to one for a.e. t E I. If H, is 
satisfied, then the optimal control u(t) is a bang-bang control, i.e., u(t) 
satisfies 

u(t)EaU(t) a.e. t E I, (7.4) 

where au(t) denotes the boundary of U(t). 

Proof: For the terminal value cost J in (7.1) the maximum principle is 
written by 

max (0, B*(t) p(t)> y,ye = (4th B*(t) p(t)> y, y* 
LIE u(t) 

a.e. tG& (7.5) 

where p(t) =p(t; d&(x(T)), 0) and x(t) is the trajectory corresponding to 
the optimal control u(t). Then it is sufficient to show (7.4) that 

B*(t)p(t)#O in Y* a.e. t E I. (7.6) 
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Suppose to the contrary that there exists a set E such that meas E > 0 and 
B*(t) p( t) = 0 for t E E. Since B*(f) is one to one and (AS) is weakly 
regular, we have by C,, that d&(x(T)) = 0. Because x(T) E Q(T), the con- 
dition d&(x(T)) = 0 is impossible by H,. Hence (7.6) is shown. 

EXAMPLE 7.2. Let the assumption in Theorem 7.1 be satisfied and let X 
be a Hilbert space. We consider two costs J, = 4 Ix(T) - xdl 2 and 
5, = (x(T), $O)r $,,E X. If there exists no trajectory x,, UE Uad, such that 
x,(T) = xd, then the optimal control u(t) for J4 is a bang-bang control. For 
the cost J, the bang-bang principle (7.4) holds for any \c/O # 0. 

Let U be a convex set in Y. The set U is said to be strictly convex if U, u, 
(u + u)/2 E U imply u = u. We know that the non-void closed ball in a 
Hilbert space is strictly convex. The next corollaries are immediate from 
Theorem 7.1. 

COROLLARY 7.1. Let the assumption in Theorem 7.1 he satisfied and let 
U(t) be strictly convex for all t E I. Then the optimal control u(t) for J in 
(7.1) is unique. 

COROLLARY 7.2. Let the assumption in Theorem 7.1 be satisfied. Let Y 
be a Hilbert space and U(t) be given by 

U(t)= {uE Y: Iu-y(t)lr6r(t)}, t E I, (7.7) 

where y( . ) E C(Z; Y) and r( . ) E C( I; R + - (0 > ). Then the optimal control u(t) 
for J in (7.1) is unique and is given by 

where A y is the canonical isomorphism of Y onto Y* and 
p(t)=G*(T-t)d&,(x(T)), tEI. 

8. TIME OPTIMAL CONTROL 

In this section we study the time optimal control problem P,. 
Throughout this section it is assumed that X is reflexive, W is weakly com- 
pact in X, and U,, is weakly compact in L,(I; Y). Let UO be given in (3.7). 
Since x, E C(I; X), the transition time l(u) is well defined for each u E U,, 

THEOREM 8.1. Assume that UO # 0. Then there exists a time optimal 
control for P,. 
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Proof Put t, = inf{ F(u): u E U,}. Let {u,, x,} be a minimizing sequence 
such that 

x,(t,) = x(b;f, g) + j;” G(t, - s) B(s) u,(s) ds~ W, f-&E uo, (8.1) 

where t, = T(u,) 1 t, as n + co. We denote {x,(t, )} by {w, }. Since W and 
U,, are weakly compact, there exist an uO E U,, , wO E W and subsequences, 
which are denoted again by (u, }, {wn }, and {tn }, such that 

UH -+ uo weakly in &(I; Y), 

wn + wo 

t” 1 to 

weakly in X, 

in I. 

Let x* E X*. Then 

(8.2) 

(w,, x* > = (x(f, if, g), x* > + jr (G(f, -J) B(s) u,(s), x* > ds 

” + 
s 

(G(t, -s) B(s) u,(s), x* ) ds. (8.3) 
10 

Since G(t) satisfies (2.19), then 

-T(E) T(t)+ j’T(t-s) j” 
( 

dq(t)G(s+<)ds 
0 -h 

= 
I I 

‘+’ T(~+E-s)j” dq([)G(s+i;)ds 
-h 

= j’T(c-s) j” dq(5)G(s+t+Ods, E > 0. 

0 - h 

Hence, the second term in the right-hand side of (8.3) is written by 

s 
” (G(to - s) B(s) u,(s), T*( t, - to) x* ) ds 

0 

+ ?:d” (K(t,,, to; 8) 4s) ds), x* > 4 (8.4) 
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where 

K(t,, to; s) = ib’“- lo T(t,-to-v) j” dq(()G(v+t,-s+()dv. (8.5) 
-h 

By the expression (8.5), we have 

llK(t,, to; s)ll < (sup II T(t)ll). Var ~1. (sup11 G(t)ll)(f, - 1,) 
rtl 1.51 

= M,(fn - to), s E co, tol. 

So that by Holder inequality, 

(K(t,, to; s) B(s) u,(s), x* > ds 

where l/p + l/p’ = 1. Similarly the last term in (8.3) is estimated as 

” (G(t, -s) B(s) u,,(s), x* ) ds 

6 ‘y IlG(t)ll)~ IIW. Ill a0.l . II un(. )ll,i /x*1*. (tn - f01”~‘. (8.7) 

Since x(t;f. g) is strongly continuous in t (Theorem 2.1), 

x(tn;f, 8) -+ x(to;.f, g) strongly in X. 

Moreover, by (8.2) 

T*( t, - to) x* 4 x* strongly in X*, 

(8.8) 

(8.9) 

@to- . ) 4.) u,(.)+ G(to- 1 BC.1 uot.1 weakly in L,,( [0, t]; X). 

(8.10) 

Therefore, by tending n -+ co in (8.3) it follows from (8.4))(8.10) that 

(wo, x* > = (x(to;f, g), x* > + 1;” (G(fo- s) B(s) uob), x* > ds. 

Since x* is arbitrarily chosen, 

w. = x(t;f, g) + 1’” G(t, -s) B(s) uo(s) ds l W, 
0 
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and hence U,,E U,,. It is obvious by definition that to = i(u,) < Z(U) for all 
u E U,. This shows u,, is a time optimal control for P,. 

Next we consider the possibility of maximum principle and bang-bang 
principle for time optimal controls. Probably, the most simple case in 
which the maximum principle holds is given by the following 

THEOREM 8.2. Assume that W is convex, closed, and has non-empty 
interior. Let u he a time optimal control for P, and let t, be its optimal time. 
Then there exists a non-zero q* E X* such that 

max 
5 

lo 
L! t L&j 

(v(s), B*(s) G*(t,-s) q*)u,r* ds 
CJ 

= d” (u(s), B*(s) G*(t,-s) q*)Y,Y* ds. 
I 

(8.11) 

Furthermore if U,, is given by (6.1) and the control domain U(t) satkfies 
H,, then 

max (v, B*(t) G*(tO- t) q*)Y,Y*= (u(t), B*(t) G*(t,- t)q*)Y,Y* 
L’E L’(I) 

a.e. tE [0, t,]. (8.12) 

Proof: Let Q(t,) be the reachable set at time t, in (7.3). We shall show 
(Int W) nQ(to) = 0. Suppose to the contrary that there exists a 
JJE (Int W) n O(T,,). Then there exists a control v E U,, such that 
y = x,( to) E Int W. Since x,(t) is continuous in t, there is t, < t, such that 
x,.(tl) E W, which contradicts that t, is an optimal time. Then 
(Int W) n Q(t,) = 0. It is clear that both Q(t,) and Int W (#@) are con- 
vex in X. Hence, by the separating hyperplane theorem [ 17, p. 4171, there 
exists a non-zero q* E X* such that 

SUP (Y, 4* > G ,,t’:,f,, (Y, q* >. (8.13) 
.b’cfi(ro) 

Since W is convex and closed, W= Cl(Int W). So that by continuity and 
(8.13), 

sup (Y, 4* > G ,‘,“fw <Y, 4* > 6 (x,(td 9* >. (8.14) 
vtQ(&l) 

By the definition of Q(t,), the condition (8.14) is reduced to 

SJ~~ j;” (v(s), B*(s) G*(to -s) q* > Y, Y* ds 

< 
s 
d” (u(s), B*(s) G*( t, - s) q* ) y, y* ds. (8.15) 
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Therefore (8.11) follows. In the case where U,, is given by (6.1), we can 
obtain (8.12) from (8.15) by applying the Lebesgue density theorem. 

COROLLARY 8.1. Let W he a closed and convex set in X with non-empty 
interior. Let the assumption in Theorem 7.1 in which T is replaced by t, be 
satisfied, where t, is the optimal time for P,. Then the time optimal control 
u(t) is a bang-bang control on I,= [0, to], i.e., u(t) satisjies 

u(t)Eau(t) a.e. t E Z,. 

Proof The proof is similar to that given in Theorem 7.1. Note that 
q* #O in X*. 

COROLLARY 8.2. Let the assumption in Corollary 8.1 be satisfied. Let 
U(t) be strictly convex for all t E I,, = [0, to]. Then there exists a unique time 
optimal solution (u, x) E Uad x C(Z,; X). In addition, tf Y is a Hilbert space, 
p = 2, and U(t) is given by (7.7) in which I is replaced by I,, then the time 
optimal control u(t) is given by 

u(t) =y(t) +r(t). ,A; 1 B*(t)p(t)l y a.e. t E IO, 

where p(t) = G*(tO - t) q*, t E I,, and q* is as given in Theorem 8.1. 

Lastly we consider the case W= ( w0 }, a single point. In this case the 
time optimal control problem can be considered as a limit of those 
problems for target sets with non-empty interior. Let { W, > be a sequence 
of convex and weakly compact sets in X such that 

H’o E fi w,,, Int W,#@, n= I,2 ,..., W, 3 W,=, ‘.. 3 W,l= ..., 
n=l 

dist(w,, W,,) = sup /x- wo/ --t 0 as n+c0. (8.16) 
x;t Iv, 

Put u;= {ME U&I x,(t) E W,, for some t E I}. 

THEOREM 8.3. Let { W, } be a sequence of closed convex sets in X 
satisfying the condition (8.16). Assume Ud # 0 for all n = 1, 2,... and let {u, } 
be a sequence such that u, is the time optimal control with the optimal time t, 
to the target set W,, n = 1, 2,.... Then there exists a time optimal control 
u,(t) with the optimal time to = sup,, a1 { t, } to a point target set {w. } which 
is given by the weak limit of some subsequence of (u,, } in L,,( [0, t,]; Y). 

Proof Let to = sup,,>, , { t, } and let x,(t), t E I, be the trajectory 
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corresponding to u,. Since (8.16) is satisfied and Uad is weakly compact, 
there exist u0 E Uad and subsequences (which are denoted again by {u, }, 
(tn}, and {ran}) such that 

un -+ uo weakly in &(I; Y), 

t, = t(4) T to in I, 

w, = x,( t,) E w, + wo strongly in X. 

(8.17) 

First we shall show 

u. E U, 3 {u E Uad : x,(t) = w. for some t E I}. (8.18) 

Let x* E A’*. Then by noticing G(t) = 0 if t < 0, 

(~,,~*)=(x(t~;~g),x*)+~‘“(rr,,(s),B*(s)G*(t,,--~)~*)~,~~d.~. 
0 

(8.19) 

Since A’ is reflexive, G*(t) is strongly continuous on R+, so that 

lim G*(t,-s)x*=G*(t,-s)x* a.e. s E I, = [O. to]. 
n-nc 

Then by the Lebesgue dominated convergence theorem, 

i 
IB*(s)(G*(t,-s)-G*(t,,-s))x*JP;ds 

IO 

< IIB(~)II,,,~ IG*(t,-3)x*-G*(t,-s)x*IP’ds+O 
i 

as n+co, 
10 * 

where l/p + l/p’ = 1. This proves 

II*(.) G*(t, - . )x* + B*(.) G*(t,- . )x* strongly in L,(Z,; Y*). (8.20) 

We then apply (8.17) and (8.20) to (8.19) and obtain 

<wo, x* > = <x(to;f, 81, x* > + j; (ds), B*(s) G*(r,, -s) x*> y, ,e ds, 

and hence 

w. = x(to;L g) + St0 G(t, -s) B(s) u,,(s) ds. 
0 
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Then (8.18) is shown. Next we shall prove that u0 is the time optimal con- 
trol and t, is the optimal time to the target ( w,, }. Suppose to the contrary 
that there exists a u E U,, such that x,( t,) = w0 and t, < t,. We choose a 
large integer n, such that t, < t,, < t,, then by the third term in (8.16) 
v E UT. Since unO is the time optimal control with the optimal time 
t ng, trio < I(U) for all u E U;tO, so that t,, d F(u) < t, , a contradiction yields. 

APPENDIX 1 

Let X be reflexive. Let G,(t) be the adjoint operator of G(t) and G,(t) 
be the solution of (3.11). Then 

G*(t) = G,(f), tER. (A.1 1 

Proof We shall prove (A.1 ) by using Laplace transforms. Since G(t) 
satisfies (2.19), then 

G*W=~*W+j-~(/~h t 30. (A-2) 

Clearly, T*(t) is strongly continuous on R+. Then by (A.2) and using the 
Lebesgue dominated convergence theorem, G*(t) is also strongly con- 
tinuous on R +. It is easy to see that G*(t) x* and G,(t) x* are of exponen- 
tial order for each x* E X*. Hence both G*(t) and G,(t) are Laplace trans- 
formable. Taking Laplace transform of (3.11), we have 

C?,(A) = R(A; A,*) + R(i; A,*) 1” e”‘&*(s). e,(i) for Re A large, 
h 

(A.3) 

where R(1.; A,*) denotes the resolvent of A,*. Thus 

I- R(I; A,*) J”” ei.’ a*(s)]- R(& A,*). (A.4) 
h 

We now recall the following relation proved in [30]; 

C?(A) AZ-A,-Jo eisdq(s))=Z for Re 2 large. (A.5 ) 
h 

Substituting A = X (complex conjugate) in (A.5) and taking their adjoints, 
we obtain 
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I= IJ-A,-j" 
( 

e"dq(s) *(G(l))* 

+,~i;: 

) 

e" dq*(s) G*(A) 
-h ) 

= (M-A,*) 
[ 

I- R(/I; A,*) jnh e"" dq*(s)] G*(A), 

so that 

6*(A) = 
[ 

I- R(i*; A,*) j”, eisdq*(J)]-’ R(& A,*). 

Hence by (A.4) and (A.6), 

e*(A) = G*(n) for Re 1+ large, 

and then by the uniqueness of Laplace transforms, 

G*(t) = G,(t) a.e. teR+. 

Since both G*(t) and G,(t) are strongly continuous on R 
G*(t) = G,(t) = 0 if t < 0, we have (A.l) from (A.7). 

APPENDIX2: PROOF OF COROLLARY 2.1 

+ 

(A.7) 

and 

It is shown in [30] that for each x* E D(A,*), G*(t) x* is absolutely con- 

205 

(A.61 

tinuous and satisfies 

dG*(t) x* 

dt 
=G*(t)A,*x*+ j” G*(t+S)dv*(s)x* a.e. t>O, (A.8) 

-h 

provided that X is reflexive. Let x(t) be the mild solution (2.21). We put 
x(t;f, (g’,O))=x,(t) and x(t;O, (O,g’))=x,(t), t>O. Then the scalar 
function (x(t), x*), x* E D(A,*), is represented by 

(x(t), x* > = (x,(t), x* > + (x,(t), x* > 

= 
( 

<g”,G*(t)x*)+j~(/(s),G*(t-s)s’)d~) 

+ j” (U,(s) g’(s), x* > ds. 
-h 
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Since G*(t) is strongly continuous and G*(O) =I (Appendix l), then by 
(A.8) and Fubini’s theorem we have 

~(~o(r),x’)=<s’,c’(r)a~x*)+ g”.jo G*(t+s)dy*(s)x* 
( -h 

+ (f(t), x*> + (f(s), G*(t-s) AJx*) ds 

+ jr (f(s), j” G*(t-s+r)dy*(<)x* 
0 

=(G(t)g’,A,*x*)+ co dq(s)G(t+s)g’,x* 
-h > 

+ (f(f), x* > + 
> 

= <x,(t), A,*x* > 

p*drWo(t+4,x* 
> 

+ (f(t)? x* > a.e. t > 0. 

(A.9) 

We next use the relation 

J’nh U,(s)g’(s)ds=/‘G(f-s)E(s)ds, t 3 0, (A.lO) 
0 

where 

For t < 0 we put x1(t) = 0. Then as calculated in (A.9) we obtain by (A. 10) 
and (2.12) that if t E [0, h], 

$ <xl(t)? x* > 

= (E(t), x* > + (x,(t), Gx* > + j”, &(5) x,(t + 51, x* > 
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= (Xl(f), ‘4,*x*) + 

(j 
0 

= (x,(r), ‘4,*x*) + 4(s) x,(t + s), x* 
-h > 

a.e. t E [0, h]. (A.1 1) 

If t>h, then E(t)=0 and t+s>O for sel,, so that 

-$ (xl(t), x*> = (xl(t), Gx*) + (jO MS) x,(t + s), x* 
> 

a.e. t 2 h. 
-h 

(A.12) 

Hence from (A.9), (A.ll), and (A.12) it follows that 

; <x(t), x* > = (x(t), 4Tx* > + (jO dYf(s) x(t + s), x* 
-h > 

+ (f(t), x*) a.e. t30. 

This proves that x(t) is a weak solution of (E). 

APPENDIX3: PROOF OF COROLLARY 2.2 

From (2.4), (2.30), and (2.31) it can be verified that 

x(.)E Wj,‘)([-h, T];X)nC([-h, T];X) for any T> 0. 

Then 

E(. ) = j” d/(s) x(. + s) E By [O, T]; X) for any T>O. (A.13) 
-h 

Since X is reflexive, we have by (2.3 1) and (A. 13) that 

yi(t)= ’ T(t-s)Fj(s)dsED(Ao) a.e. s t 3 0, 
0 

y,(t) is strongly differentiable for a.e. t 3 0 and satisfies 

gy,(t)=Aoy,(t)+Fj(t) a.e. t>O, i= 1,2, 

where F’,(t)=f(t) and F2(t)=E(t) [9, p. 321. This implies by (2.4) and 
(2.30) that x(t)eD(Ao) a.e. t 20 and 
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~x(t)=AoT(t)go+~o dq(s)x(s+t)+f(t) 
-h 

Hence x(t) is a strong solution of (E). 

APPENDIX 4 

The retarded adjoint system given in Example 7.1 is weakly regular. 

Proof It is proved in [30] that the system (CS) is pointwise complete 
for all t > 0 if and only if 

n Ker G*(s) = (0) for each t > 0. (A.14) 
S>, 

Since the conditions (i), (ii) in Example 7.1 are satisfied, it can be checked 
that G(t) is piecewise analytic, i.e., G(t) x is analytic on each ((k - 1) h, kh] 
(k = 1, 2,...) for any x E X. Hence the mild solution p(t; q$, 0) = 
G*( T- t)( -4:) is also piecewise analytic. If the condition (7.2) is satisfied, 
then by analytic continuation and strong continuity of G*(t) there exists an 
integer j such that 

G*(t) q; = 0 forall t~fJh,~+l)h). (A.15) 

Since the adjoint system is autonomous, we have by (A.15) that 

G*(t) q; = 0 for all t E cjh, co), 

or 

q$-E n KerG*(t). 
rajh 

So, by (A.14) and (A.16), q,f =0 in X*. Thus C,. is satisfied. 

ACKNOWLEDGMENT 

(A.16) 

The author wishes to thank Professor Hiroki Tanabe for his helpful comments. 



LINEAR RETARDED SYSTEMS IN BANACH SPACES 209 

REFERENCES 

1. N. U. AHMED AND K. L. TEO, “Optimal Control of Distributed Parameter Systems,” 
North-Holland, New York, 1981. 

2. M. ARTOLA, Equations paraboliques g retardemenf C. R. Acad. Sci. Paris 264 (1967), 
668-671. 

3. A. V. BALAKRISHNAN, Optimal control problems in Banach spaces, SIAM J. Confrol 3 
(1965), 152-180. 

4. A. V. BALAKRISHNAN, “Applied Functional Analysis,” 2nd ed., Springer-Verlag, 
Berlin/Heidelberg/New York, 1981. 

5. H. T. BANKS, Necessary conditions for control problems with variable time-lags, SIAM J. 
Control 6 (1969), 9-47. 

6. H. T. BANKS AND M. Q. JACOBS, An attainable sets approach to optimal control of 
functional differential equations with function space boundary conditions, J. D@rential 
Equations 13 (1973), 127-149. 

7. H. T. BANKS AND G. T. KENT, Control of functional differential equations of retarded and 
neutral type with target sets in function space, SIAM J. Control 10 (1972), 567-593. 

8. H. T. BANKS AND A. MANITIUS, Application of abstract variational theory to hereditary 
systems-A survey, IEEE Trans. Automat. Control AC-19 (1974), 524-533. 

9. V. BARBU, “Nonlinear Semi-groups and Differential Equations in Banach Spaces,” 
Noordhoff, Leyden, the Netherlands, 1976. 

IO. Z. BIEN AND D. H. CHYUNG, Optimal control of delay systems with a final function con- 
dition, Internal. J. Control 32 (1980), 539-560. 

11. D. H. CHYUNG AND E. B. LEE, Linear optimal systems with time delays, SIAM J. Control 
4 (1966), 548-575. 

12. F. COLONIUS, The maximum principle for relaxed hereditary differential systems with 
function space end condition, SIAM J. Control Optim. 20 (1982), 695-712. 

13. F. COLONIUS AND D. HINRICHSEN, Optimal control of functional differential systems, 
SIAM J. Control Oprim. 16 (1978), 861-879. 

14. R. F. CURTAIN AND A. J. PRITCHARD, “Infinite Dimensional Linear Systems Theory,” Lec- 
ture Notes in Control and Information Science, Vol. 8, Springer-Verlag. 
Berlin/Heidelberg/New York, 1978. 

15. M. C. DELFOUR, The linear quadratic optimal control problem for hereditary differential 
systems: Theory and numerical solution, Appl. Math. Optim. 3 (1977), 101-162. 

16. M. C. DELFOUR AND S. K. MITTER, Controllability, observability and optimal feedback 
control of afine hereditary differential systems, SIAM J. Control, 10 (1972). 298-328. 

17. N. DUNFORD AND J. T. SCHWARTZ, “Linear Operators, Part I,” Interscience, New York, 
1966. 

18. A. FRIEDMAN, Optimal control in Banach spaces, J. Math. Anal. Appl. 19 (1967), 35-55. 
19. J. S. GIBSON, Linear-quadratic optimal control of hereditary differential systems: Infinite 

dimensional Ricati equations and numerical approximations, SIAM J. Conrrol Oplim. 21 
(1983), 95-139. 

20. J. K. HALE, “Theory of Functional Differential Equations,” Springer-Verlag, New 
York/Heidelberg/Berlin, 1977. 

21. E. HILLE AND R. S. PHILLIPS, “Functional Analysis and Semi-group,” Colloquium 
Publications, Vol. 31, Amer. Math. Sot., Providence, R.I., 1957. 

22. M. Q. JACOBS AND T. J. KAO, An optimum setting problem for time lag systems, J. Math. 
Anal. Appi. 40 (1972), 687-707. 

23. T. KATO, Accretive operators and non-linear evolution equations in Banach spaces, in 
“Proceedings, Symposium on Nonlinear Funtional Analysis, Chicago,” pp. 138-161, 
Amer. Math. Sot., Providence, RI., 1968. 



210 SHIN-ICHI NAKAGIRI 

24. T. KATO, “Perturbation Theory for Linear Operators,” 2nd ed., Springer-Verlag, 
Berlin/Heidelberg/New York, 1976. 

25. H. KOMATSU, Semi-groups of operators in locally convex spaces, J. Mafh. Sot. Japan 16 
(1964), 23iX262. 

26. J. L. LIONS, “Optimal Control of Systems Governed by Partial Differential Equations,” 
Springer-Verlag, Berlin/Heidelberg/New York, 1971. 

27. S. NABABAN AND K. L. TEO, On the existence of optimal controls of the first boundary 
value problems for parabolic delay-differential equations in divergence form, J. Math. Sot. 
Japan 32 (1980), 343-362. 

28. S. NABABAN AND K. L. TEO, Necessary conditions for optimality of Cauchy problems for 
parabolic partial delay-differential equations, J. Optim. Theory Appl. 34 (1981), 117-155. 

29. S. NAKAGIRI, On the fundamental solution of delay-differential equations in Banach 
spaces, J. Differential Equafions 41 (1981), 349-368. 

30. S. NAKAGIRI, Pointwise completeness and degeneracy of functional differential equations 
in Banach spaces, I, II, to appear. 

31. M. N. OGUZTBRELI, “Time-Lag Control Systems,” Academic Press, New York, 1966. 
32. R. S. PHILLIPS, The adjoint semi-group, Pacific J. Mafh. 5 (1955), 269-283. 
33. H. TANABE, “Equations of Evolution,” Pitman, New York, 1979. 
34. K. L. TEO, Optimal control of systems governed by time delayed second order linear 

parabolic partial differential equations with a first boundary condition, J. Optim. Theory 
Appl. 29 (1979), 437481. 

35. P. K. C. WANG, Optimal control of parabolic systems with boundary conditions involving 
time delays, SIAM J. Control 13 (1975), 274-293. 

36. J. WARGA, “Optimal Control of Differential and Functional Equations,” Academic Press, 
New York, 1972. 


