
Plakins, a Versatile Family of Cytolinkers: Roles in Skin
Integrity and in Human Diseases
Jamal-Eddine Bouameur1,2, Bertrand Favre1 and Luca Borradori1

The plakin family consists of giant proteins involved in
the cross-linking and organization of the cytoskeleton
and adhesion complexes. They further modulate sev-
eral fundamental biological processes, such as cell
adhesion, migration, and polarization or signaling
pathways. Inherited and acquired defects of plakins
in humans and in animal models potentially lead to
dramatic manifestations in the skin, striated muscles,
and/or nervous system. These observations unequivo-
cally demonstrate the key role of plakins in the
maintenance of tissue integrity. Here we review the
characteristics of the mammalian plakin members
BPAG1 (bullous pemphigoid antigen 1), desmoplakin,
plectin, envoplakin, epiplakin, MACF1 (microtubule-
actin cross-linking factor 1), and periplakin, highlight-
ing their role in skin homeostasis and diseases.
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INTRODUCTION
The plakins are a family of cytolinkers characterized by a
multimodular structure that enables them to function as
versatile cross-linkers of the cytoskeleton. They connect the
microfilament, microtubule (MT), and intermediate filament
(IF) systems with each other and with junctional complexes in
organelle and plasma membranes, thereby contributing to cell
shape and polarity. They also act as scaffolds and adaptors for
signaling proteins that modulate cytoskeletal dynamics or cell
migration, differentiation, and stress responses. First identified
as important structural elements in the epidermis, they were
subsequently found to exert other complex functions in a
variety of tissues, including striated muscles and the central
nervous system. Their analogs fulfill equivalent functions in
zebrafish and in invertebrate organisms, such as Caenorhab-
ditis elegans or Drosophila melanogaster (previously reviewed

in (Roper et al., 2002; Jefferson et al., 2004; Sonnenberg and
Liem, 2007; Boyer et al., 2010; Suozzi et al., 2012).

Mammalian plakins share a similar structural organization
and comprise seven members: bullous pemphigoid antigen 1
(BPAG1), desmoplakin, envoplakin, epiplakin, microtubule-
actin cross-linking factor 1 (MACF1), periplakin, and plectin
(Figure 1) (Choi et al., 2002; Jefferson et al., 2007; Choi and
Weis, 2011; Ortega et al., 2011). The existence of develop-
mentally regulated and tissue-specific splice variants of some
plakins further increases the diversity and versatility of these
proteins (Table 1; Figure 1; Leung et al., 2001; Rezniczek et al.,
2003; Lin et al., 2005; Jefferson et al., 2006; Cabral et al., 2010).

PLAKINS IN THE EPIDERMIS
Epithelial BPAG1 (BPAG1e, also called BP230) constitutes the
epithelium-specific isoform of BPAG1 and is localized in basal
keratinocytes in hemidesmosomes, junctional adhesion com-
plexes that mediate dermo-epidermal cohesion (Sawamura
et al., 1991; Leung et al., 2001); reviewed in (Borradori and
Sonnenberg, 1999; Litjens et al., 2006). Via its N-terminal
domains, BPAG1e interacts with the hemidesmosomal
transmembrane proteins a6b4 integrin and BP180 (also
called BPAG2 or type XVII collagen; Hopkinson and Jones,
2000; Koster et al., 2003). Its C-terminal tail specifically binds
to the epidermis-specific IF network formed by the keratins 5
and 14 (K5, K14) and thereby connects the cytokeratin
network of basal keratinocytes to the extracellular matrix
(Figure 1; Guo et al., 1995; Fontao et al., 2003).

Plectin, similarly to BPAG1e, connects the K5/K14 network to
hemidesmosomes (Gache et al., 1996; Nikolic et al., 1996).
However, three plectin isoforms are expressed in the epidermis:
plectins 1, 1a, and 1c. They exclusively differ from each other in
their N extremities, which confer different tethering properties
(Rezniczek et al., 2003; Wilhelmsen et al., 2005; Rezniczek
et al., 2007; reviewed in Wiche and Winter, 2011). Plectin 1a
seems to be the major variant in hemidesmosomes (Walko
et al., 2011). However, plectin 1c is also able to localize either
in or close to hemidesmosomes (Litjens et al., 2003; Walko
et al., 2011). In contrast to BPAG1e, the IF-binding region of
plectin is more versatile and binds to several types of IF proteins,
such as epidermal keratins, simple epithelial keratins, the
muscle-specific IF protein desmin, and IF proteins expressed
in the central nervous system (Figure 1; Foisner et al., 1988;
Nikolic et al., 1996; Reipert et al., 1999; Favre et al., 2011).

Desmoplakin is an obligate component of desmosomes,
which are highly specialized complexes that ensure cell–cell
adhesion and serve as anchorage sites for the keratin network.
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Figure 1. The mammalian plakin family. The members and structural organization of the plakin family are depicted. Plakins are arranged in a phylogenetic tree

(with distances) based on their protein sequences. Plakins can be divided into two groups according to their structures and binding partners. The first group

encompasses the epithelial isoform of bullous pemphigoid antigen 1 (BPAG1; BPAG1e), desmoplakin, envoplakin, periplakin, and plectin and bears a central

coiled-coil rod (CC-ROD) domain, which mediates their homodimerization or oligomerization, and a variable number of plakin-repeat domains and connecting

segments in their C tails that give plakins the ability to interact with intermediate filaments (IFs) with various affinities and specificities. The second group consists of

the neuronal and muscular variants of BPAG1 (BPAG1a and BPAG1b, respectively) and all microtubule-actin cross-linking factor 1 (MACF1) isoforms. This group

carries additional spectrin repeats forming a rod-like domain in their middle parts. They are also called spectraplakins. GAR, growth arrest specific 2-related; MT,

microtubule.

Table 1. Spectraplakin family members, associated diseases, and distribution

Human diseases

Plakins Tissue distribution
Major localization and
binding partners Genetic Autoimmune Mouse models

BPAG1a and

BPAG1b

Broad (nervous

system, striated

muscles)

Microtubules, microfilaments Lethal form of dysautonomia,

psychomotor retardation

Not known Sensory and motor neuron

abnormalities, myopathy

BPAG1e Epidermis and other

stratified epithelia

Hemidesmosomes,

intermediate filaments

EBS Bullous

pemphigoid,

paraneoplastic

pemphigus

EBS-like phenotype

Plectin Broad (skin,
muscles, nervous

system,

gastrointestinal tract)

Hemidesmosomes, muscle
Z-disks, intermediate

filaments, microfilaments,

microtubules

EBS, pyloric atresia, myopathy
(cerebral atrophy,

ophthalmoplegia)

Paraneoplastic
pemphigus,

bullous

pemphigoid

EBS-like phenotype, myopathy,
pyloric atresia, CNS

manifestations

Desmoplakin Broad (stratified

epithelia, heart)

Desmosomes, intercalated

discs, intermediate filaments

Palmoplantar keratoderma,

woolly hair, cardiomyopathy
lethal acantholytic epidermolysis

bullosa

Paraneoplastic

pemphigus

Early lethality (extraembryonic

tissue defects, cardiac and
epidermal defects, intestinal

abnormalities)

Envoplakin Epidermis and other

stratified epithelia

Cornified envelope,

intermediate filaments

Not known Paraneoplastic

pemphigus

Abnormalities of the cornified cell

envelope

Periplakin Epidermis and other

stratified epithelia

Cornified envelope,

intermediate filaments

Not known Paraneoplastic

pemphigus

No obvious phenotype

Epiplakin Epidermis and other

stratified epithelia

Cornified envelope,

intermediate filaments

Not known Blistering

diseases

Accelerated wound healing

MACF1 Broad Microtubules, microfilaments Not known Not known Developmental defects at

gastrulation stage

Abbreviations: BPGA1, bullous pemphigoid antigen 1; CNS, central nervous system; EBS, epidermolysis bullosa simplex; MACF1, microtubule-actin
cross-linking factor 1.
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The desmosomes comprise desmogleins and desmocollins,
transmembrane glycoproteins of the cadherin family, as well
as plakoglobin and plakophilins, members of the armadillo
protein family. By means of linear and lateral interactions,
they link the IF cytoskeleton to the cell membrane via
desmoplakin (Smith and Fuchs, 1998; reviewed in Nekrasova
and Green, 2013). Desmosomes’ stability is affected by the IF
network. In fact, some K5 and K14 keratin mutations in humans
lead to a reduction in the expression of desmosomal com-
ponents (Liovic et al., 2009; Wagner et al., 2012), whereas
mouse keratinocytes lacking keratins showed destabilized
desmosomes and reduced intercellular adhesion (Kroger
et al., 2013). However, the exact mechanisms underlying
these observations remain unclear (Hobbs et al., 2011; Kroger
et al., 2013).

Periplakin and envoplakin are highly abundant in the
granular cell layer of the epidermis and are subject to protein
cross-linking mediated by transglutaminases (Ruhrberg et al.,
1996, 1997; Aho, 2004; reviewed in Kalinin et al., 2002).
These two proteins can form heterodimers and provide a
scaffold onto which the cornified cell envelope can be formed
(DiColandrea et al., 2000). They are associated with the
plasma membrane and desmosomes via the interaction of
the N terminus of periplakin with kazrin (Groot et al., 2004).

The spectraplakin MACF1, also named ACF7, is expressed
in the epidermis and particularly in hair follicles (Karakesisoglou
et al., 2000). Despite the similar structural organization of
MACF1a and MACF1b to BPAG1a and BPAG1b, their
function and expression are different (Guo et al., 1995;
Leung et al., 2001; Chen et al., 2006).

PLAKIN-ASSOCIATED FUNCTIONS
Lessons from mouse models and genetic diseases

The key role of BPAG1e in the maintenance of epidermis
integrity was first disclosed by gene-targeting experiments.
Null-mutant mice for the BPAG1-encoding gene dystonin
(DST) showed discrete signs of skin blistering as a result of
impaired attachment of keratin filaments to hemidesmosomes.
Unexpectedly, these mice also developed severe neurodegen-
eration with dystonia, ataxia, and myopathy (Guo et al.,
1995). This phenotype originates from the concomitant
inactivation of the other isoforms of BPAG1: a and b (Leung
et al., 2001), which were found to be essential for the
maintenance of the cytoarchitecture of neurons and skeletal
muscles, respectively (Brown et al., 1995; Yang et al., 1996;
Dalpe et al., 1998, 1999; De Repentigny et al., 2011).
Evidence for an implication of BPAG1 in human inherited
diseases was found only a decade later. Disruption of DST due
to a 6;15 translocation, resulting in the loss of BPAG1a and
BPAG1b, was first described in a child suffering from
encephalopathy and severe motor and mental retardation
(Giorda et al., 2004). Subsequently, a DST mutation was
found to cause a lethal form of dysautonomia with progressive
limb contractures and psychomotor retardation (Edvardson
et al., 2012). Recently, the first cases of autosomal recessive
epidermolysis bullosa simplex (EBS), due to a homozygous
nonsense mutation in DST specifically affecting BPAG1e,
were described, providing the unequivocal proof for the

critical role of BPAG1e in the tethering of the epidermal K5/
K14 keratin network to hemidesmosomes and in the
maintenance of the integrity of the basal cell layer (Groves
et al., 2010; Liu et al., 2012).

Mutations of the human plectin gene (PLEC) also result in
EBS but not exclusively, as plectin is ubiquitously expressed
in mammalian tissues. Muscular dystrophy, pyloric atresia,
as well as central nervous system manifestations, including
cerebral atrophy and myasthenic syndrome, have also been
linked to PLEC mutations (Gache et al., 1996; McLean et al.,
1996; Smith et al., 1996; Banwell et al., 1999; Schroder et al.,
2002; Charlesworth et al., 2003; Pfendner and Uitto, 2005;
McMillan et al., 2007; Bolling et al., 2010a; reviewed in
Winter and Wiche, 2013). Loss of the full-length plectin
isoforms often leads to EBS in association with late-onset
muscular dystrophy. In contrast, when mutations affect both
the full-length and rodless plectins (Table 1), the resulting
phenotypes are more severe, with EBS and pyloric atresia
causing early postnatal death (Charlesworth et al., 2003;
Natsuga et al., 2010a, b; Charlesworth et al., 2013). The
observation that both BPAG1e and plectin defects lead to
cytoskeletal disorganization and increased cell fragility in EBS
clearly proves the importance of hemidesmosomes as keratin
IF–anchoring sites important for skin resilience. In analogy to
what is observed in humans with inherited plectin defects,
inactivation of the plectin gene in mice leads to skin blistering
and myopathy with necrotic muscle fibers, streaming of
Z-discs, focal rupture of the sarcolemma, and accumulation
of mitochondria (Andrä et al., 1997; Konieczny et al., 2008).
Isoform-specific knockout mice have further disclosed other
unexpected functions of plectin, such as for the motility of
immune cells or for conduction velocity in motor nerves
(Winter and Wiche, 2013). The conclusions, derived from
knockout mouse models, that the various plectin variants exert
important tissue-specific functions are further substantiated by
some clinical observations. For example, a mutation affecting
the muscle-specific plectin 1f isoform causes isolated limb-
girdle muscular dystrophy (Gundesli et al., 2010). Furthermore,
a dominant missense mutation, which was found to lead to
the selective proteolysis of the hemidesmosomal plectin 1a
isoform in a mouse model, causes the so-called Ogna variant
of EBS that only affects the skin (Koss-Harnes et al., 2002;
Walko et al., 2011).

Mutations in the desmoplakin gene (DSP) have been linked
to devastating inherited diseases that variably affect the skin,
hair, nails, and teeth, as well as the heart (Table 1) (Carvajal-
Huerta, 1998; Chalabreysse et al., 2011; Boule et al., 2012;
reviewed in Lai Cheong et al., 2005). Specifically,
palmoplantar keratoderma, woolly hair, and cardiomyopathy
have been described with both recessive and dominant
mutations (Armstrong et al., 1999; Norgett et al., 2000).
Severe phenotypes with early postnatal death and
acantholytic epidermolysis bullosa have been observed in
cases of complete loss of desmoplakin or with homozygous
truncations of its C-terminal tail encompassing the IF-binding
domain (Figure 1; Table 1; Jonkman et al., 2005; Bolling et al.,
2010b). In the affected skin, the connection of the keratin
network to desmosomes is variably lost. Similar deleterious
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consequences may be observed in cases of genetic defects of
other desmosomal components, as well as of keratins 1 and
10, an observation implying functional synergy of these
molecules (reviewed in Lai Cheong et al., 2005; Simpson
et al., 2011; Petrof et al., 2012). In cardiomyocytes,
desmoplakin defects critically impair the tethering of the
desmin–IF network and its attachment to the intercalated disc
junctions, resulting in sarcomeric disorganization and loss of
tissue integrity (Kartenbeck et al., 1983; Meng et al., 1997;
Lapouge et al., 2006). These alterations contribute to the
development of right-sided or left-sided dilated arrythmogenic
cardiomyopathies and sudden death. Although desmoplakin-
null mutant mice show early embryonic lethality before E6.5,
with defects of the extra-embryonic tissue (Gallicano et al.,
1998), chimeric morulae expressing desmoplakin in extraem-
bryonic tissues do not survive beyond E9.5. In the latter case,
defects of the developing epidermis, neuroepithelium, and
heart are observed with perturbation of desmosome assembly
and loss of the IF–cell membrane attachment (Gallicano et al.,
2001). Epidermis-specific desmoplakin knockout mice die
early after birth owing to intercellular epidermal separation
and defective epidermal sheet formation. Desmosomes seem
morphologically normal but completely lack IF attachments
(Vasioukhin et al., 2001). Together, these findings confirm the
key role of desmoplakin for the assembly of functional
desmosomes, the maintenance of cytoskeletal architecture,
and stable intercellular adhesion.

Other plakins, such as envoplakin, periplakin, and epipla-
kin, appear to have less critical functions in the skin. Never-
theless, they regulate terminal differentiation or wound
healing, as inferred from various knockout animal studies
(Maatta et al., 2001; Goto et al., 2006; Spazierer et al., 2006;
Sevilla et al., 2007).

PLAKINS IN AUTOIMMUNE DISEASES
BPAG1e was first identified as the target autoantigen in the
most frequent autoimmune subepidermal blistering disease of
the skin—bullous pemphigoid (Stanley et al., 1988; Sawamura
et al., 1991). Affected patients are typically elderly and have
an increased risk to concomitantly suffer from neurological
diseases, such as dementia, Parkinson disease, epilepsy, and
multiple sclerosis (reviewed in Di Zenzo et al., 2012). These
observations raise the intriguing question of the involvement
of the neuronal variants of BPAG1a as additional autoantigens
and their contribution to these neurological manifestations.
Despite the intracellular location of BPAG1, some evidence
suggests that autoantibodies to BPAG1e participate in tissue
damage (Hall et al., 1993). For instance, in a passive transfer
animal model, injection of antibodies to BPAG1e was
reported to induce subepidermal blistering (Kiss et al., 2005).

Autoantibodies to plectin, epiplakin, and desmoplakin have
also been detected in few cases of autoimmune blistering
diseases and of severe drug eruptions, but their effects remain
to be established (Table 1; Fujiwara et al., 1996; Ohnishi
et al., 2000; Fujiwara et al., 2001; Laffitte et al., 2005).

Finally, there is a rare but devastating autoimmune multi-
organ syndrome, paraneoplastic pemphigus, in which an
autoantibody response to several plakins is a striking finding.

This disease is characterized by severe mucocutaneous lesions
in association with underlying malignancy. Patients’ autoanti-
bodies almost systematically recognize periplakin and envo-
plakin and often also desmoplakin, plectin, and BPAG1e
(Table 1) (Anhalt et al., 1990; Borradori et al., 1998;
Mahoney et al., 1998; Nguyen et al., 2001). Autoantibodies
react with unique and shared epitopes within their C tails,
including the common linker domain involved in IF binding
(Figure 1; Table 1; Mahoney et al., 1998). The development of
an autoimmune response to plakins is thought to occur
secondarily after initial tissue damage. Although autoanti-
bodies to desmogleins and the broad-spectrum protease
inhibitor A2ML1 may be involved as initial triggers for
damage, the mechanisms responsible for the distinct
reactivity with several plakins remain unclear (Schepens
et al., 2010; Saleh et al., 2012; Numata et al., 2013).

PLAKINS REGULATE CYTOSKELETON SHAPE AND
DYNAMICS
Plakins critically orchestrate the organization of various
cytoskeletal networks and their linkage to the plasma and
nuclear membranes, as well as to various organelles (Table 1;
Figure 2; Koster et al., 2003; Lin et al., 2005; Wilhelmsen
et al., 2005; Wu et al., 2008; Ryan et al., 2012b). Besides
cross-linking MTs and microfilaments, spectraplakins (see
Figures 1 and 2 and Table 1) are involved in MT dynamics
and stabilization (Yang et al., 1999; Karakesisoglou et al.,
2000; Kodama et al., 2003; Slep et al., 2005; Drabek et al.,
2006; Gupta et al., 2010; Ryan et al., 2012a), as well as in the
vesicular transport (Figure 2; Guo et al., 1995; Yang et al.,
1999; Liu et al., 2003; Kakinuma et al., 2004; Liu et al., 2007;
Wu et al., 2008; Burgo et al., 2012).

Specifically, plectin binds to microfilaments and modulates
their rearrangement in response to various stimuli, leading to
the activation of Rho, Rac, and Cdc42 pathways (Andrä et al.,
1998; Rezniczek et al., 2003). Plectin also regulates in a
complex manner the vimentin network assembly and dis-
assembly (Spurny et al., 2008). Similar effects are observed
with different IF types, indicating a regulatory role of plectin
in precursor formation and dynamics of various IF networks,
which may also apply to desmoplakin and BPAG1e
(Osmanagic-Myers et al., 2006; Tian et al., 2006; Konieczny
et al., 2008; Burgstaller et al., 2010). By attaching the IFs to
organelles and plasma membrane sites, plectin contributes to
the positioning and stabilization of the nucleus, centrosomes,
and mitochondria (Rezniczek et al., 2003; Wilhelmsen et al.,
2005; Winter et al., 2008; Niwa et al., 2009; reviewed in
Wiche and Winter, 2011). The plectin 1c isoform cross-links
MTs to IFs (Svitkina et al., 1996; Valencia et al., 2013).
Binding of plectin to MTs seems to occur directly via its actin-
binding domain (Valencia et al., 2013). Plectin-knockout
keratinocytes exhibit more stable MTs and defects of the
mitotic spindle during cell division, indicating that plectin 1c
acts as an MT destabilizer via its interaction with microtubule-
associated proteins (Valencia et al., 2013).

Although it does not directly interact with MTs and micro-
filaments, desmoplakin affects their tethering and organiza-
tion. In fact, desmoplakin loss leads to MT aggregation
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(Lechler and Fuchs, 2007; Sumigray et al., 2011) and to an
aberrant microfilament reorganization in the epidermis
(Vasioukhin et al., 2001). These effects reflect the role of
desmosomes in the modulation of the cytoskeleton (Waschke
et al., 2006; reviewed in Green et al., 2010). In intestinal
epithelium, desmoplakin is important for the control of the
size and shape of actin-rich microvilli (Sumigray and Lechler,
2012).

Epiplakin silencing causes IF disruption in keratinocytes
(Jang et al., 2005). Gene-targeting studies have revealed the
role of epiplakin in lateral bundling of keratins in migrating
keratinocytes during wound healing (Ishikawa et al., 2010).

PLAKINS’ EFFECTS ON CELL MIGRATION AND
POLARIZATION
BPAG1e was shown to regulate cell polarity and migration
through the integrin-b4 subunit–mediated modulation of Rac1
and cofilin activities. The latter are required for microfilament-
dependent formation of lamellipodia (Hamill et al., 2009).
Interestingly, human keratinocytes, carrying homozygous
nonsense mutations in the DST gene, exhibited reduced
adhesion but increased spreading and migration, as well as
abnormal protein levels of keratin 14, integrins b1, and b4
(Michael et al., 2013). These alterations were not mimicked by
the knockdown of BPAG1e expression in normal keratino-
cytes, suggesting that either the complete absence of BPAG1e
or the expression of a truncated protein is responsible for this
phenotype.

The effects of plectin on migration and polarization depend
on the cell types and are most likely variant-specific. Ablation
of plectin results in the acceleration of migration of keratino-
cytes or pancreatic cancer cells, whereas fibroblast or
lymphocyte migration is reduced (Andrä et al., 1998;

Abrahamsberg et al., 2005; Osmanagic-Myers et al., 2006;
Yu et al., 2012). In fact, cells slowed down by plectin ablation
do not form hemidesmosomes. On the other hand, plectin loss
in cells able to form hemidesmosomes significantly increases
their migration potential as their adhesion is reduced.
Moreover, plectin-deficient keratinocytes show loss of
directionality in migration and cell shape changes (Valencia
et al., 2013).

Finally, the spectraplakin MACF1 participates in the polar-
ization of stem cells in the epidermis by interacting with
theþ tip of MTs and their associated proteins (Wu et al.,
2011). In the absence of MACF1, loss of MT–microfilament
cross-linking activity leads to a stabilization of the focal
contacts and thereby reduces cell migration of hair follicle
stem cells (Wu et al., 2008, 2011). Neuronal migration also
depends on MACF1 (Goryunov et al., 2010).

PLAKINS AND CELL SIGNALING
Phosphorylation sites have been identified in all plakins
(Hornbeck et al., 2012). They are particularly abundant in
the C-terminal region of desmoplakin, plectin, and
spectraplakins. Nevertheless, only a few plakin phosphory-
lation pathways have been identified so far. Phosphorylation
events are thought to be important for the dynamic regulation
of the association of plakins with their binding partners in
processes, such as cell mitosis, migration, and differentiation.

In the C-terminal region of plectin, a cell cycle–dependent
phosphorylation of a threonine by Cdk1 is implicated in the
dissociation of plectin from the cytoskeleton (Skalli et al.,
1992; Foisner et al., 1996; Malecz et al., 1996). It was recently
found that phosphorylation of a serine residue in plectin C
extremity by protein kinase A or the mitogen-activated
kinase-interacting kinase 2 weakens its interaction with IFs

Desmosomes Microfilaments

Microtubules

Desmoplakin

MACF1a/b or BPAG1a/bCentrosome

BPAG1e

Hemidesmosomes

Envoplakin, periplakin

Epiplakin

Basal cell layer

Cornified cell envelope

Basement membrane

Focal contacts

Adherens junctions

Vesicular transport

Cytokeratins network/
intermediate filaments

Plectin

Spinous and granular
cell layers

Figure 2. Schematic representation of spectraplakin localization. (a) In the epidermis, (b) in a virtual cell. Plectin and bullous pemphigoid antigen 1e (BPAG1e)

anchor intermediate filaments (IFs) to hemidesmosomes, junctional adhesion complexes promoting strong cell-substrate cohesion in squamous epithelia.

Desmoplakin attaches the IF network to desmosomes, cell–cell adhesion complexes. Some plectin variants are also present in focal contacts and at the nucleus

surface, recruiting IFs to the perinuclear region. Plectin cross-links microfilament or microtubules (MTs) with IFs. In analogy to desmoplakin, envoplakin,

periplakin, and epiplakin attach keratins to the cell membrane in the epidermis. Spectraplakins attach microfilaments to MTs. They are also involved in vesicular

transport, such as in neuronal cells. MACF1, microtubule-actin cross-linking factor 1.
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(Bouameur et al., 2013). This serine residue is highly
conserved across species and is also found in desmoplakin.
In the latter, its phosphorylation modulates its binding to IFs
and its incorporation into desmosomes (Stappenbeck et al.,
1994; Fontao et al., 2003; Godsel et al., 2005; Hobbs and
Green, 2012). The interaction of plectin with vimentin is
also affected by the nitrosylation state of its plakin-repeat
domains (Spurny et al., 2007). In analogy to what was
observed with a-actinin, phosphomimetic substitution of a
tyrosine residue in the actin-binding domain of plectin inhibits
its interaction with microfilaments (Izaguirre et al., 2001;
Burgstaller et al., 2010). MACF1–MT interaction is inhibited
by a glycogen synthase kinase 3b–mediated polyphos-
phorylation of glycine-serine-arginine motifs in MACF1
(Wu et al., 2011). BPAG1a, BPAG1b, desmoplakin, and
plectin also bear such motifs, suggesting similar regulatory
mechanisms.

Plakins are not only substrates for post-translational
modifications but they also modulate several signaling path-
ways. Plectin directly or indirectly interacts with several
kinases and signaling molecules. Specifically, plectin associ-
ates with and modulates the activities of the nonreceptor
tyrosine kinase Fer, energy-controlling AMP-activated protein
kinase, the protein kinase C receptor RACK1, and b-dystro-
glycan (Lunter and Wiche, 2002; Osmanagic-Myers and
Wiche, 2004; Gregor et al., 2006; Osmanagic-Myers et al.,
2006; Rezniczek et al., 2007; Takawira et al., 2011). Thus,
plectin affects a variety of processes, such as control of cell
adhesion, regulation of protein kinase C signaling, or cellular
stress responses. Plectin is not only involved in the activation
of extracellular signal–regulated kinases 1/2 (ERK1/2) after
b-dystroglycan-mediated mechanical stress but also in its
basal activity in distinct squamous carcinoma–derived cell
lines (Takawira et al., 2011; Katada et al., 2012). In contrast,
plectin inactivation in keratinocytes increases basal ERK1/2
activity, suggesting that it has opposite effects depending on
the isoforms and the cellular context (Osmanagic-Myers et al.,
2006).

PLAKINS AS CANCER MARKERS
On the basis of their role in cell signaling, coordination of
the cytoskeletal networks, cell adhesion, and migration, the
available evidence pointing to a role of plakins in cancer
development and as tumor markers is not unexpected. For
example, the expression level of desmoplakin is reduced in
metastatic oropharyngeal tumors (Depondt et al., 1999;
Papagerakis et al., 2004, 2009). In analogy to other desmo-
somal proteins that are downregulated in invasive cancers,
plectin and epiplakin are upregulated in pancreatic ductal
adenocarcinoma or precursor lesions (Kelly et al., 2008;
Yoshida et al., 2008). Plectin is also more expressed in a
colon carcinoma cell line (SW480), in which its deletion by
small interfering RNA reduced migration, invasion, and
adhesion of these tumor cells (McInroy and Maatta, 2011).
Finally, plectin is also more abundant in head and neck
squamous cell carcinoma cells where its expression level
inversely correlates with survival rate. Knockdown of plectin
suppresses proliferation, migration, and invasion of tumor cells

(Katada et al., 2012). Together, these observations position
plakins not only as useful severity markers but also as potential
therapeutic targets.

CONCLUSION
In the past two decades, our understanding of the plakin
protein family has significantly evolved. These proteins are not
mere structural cytoskeletal elements, but they act as dynamic
regulators of numerous cellular processes. Congenital defects
of plakins lead to devastating diseases affecting particularly
organs exposed to mechanical stress, such as the skin and
muscles, as well as to more complex and subtle phenotypes,
such as encephalopathy, autonomic neuropathy, and myas-
tenic syndrome. These clinical manifestations reflect the
function of plakins as scaffolds for a variety of cytoskeletal
elements and signaling molecules. Abnormal expression of
plakins also represents a characteristic of different cancers. It is
anticipated that future studies will unravel novel insights into
the biological roles of these giant multidomain proteins in a
variety of processes ranging from tissue morphogenesis and
homeostasis to tissue regeneration.
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