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Abstract 

For the multisensor multi-channel autoregressive (AR) signals with common disturbance noise, when model 
parameters and noise variances are unknown, the estimates of model parameters and noise variances can be obtained 
based on the multi-dimension recursive extended least squares (RELS) algorithm and the correlation method. Further, 
a self-tuning fusion Wiener filter is presented based on the modern time series analysis method by substituting the 
estimates for the true values. A simulation example shows the consistence of the estimates of the model parameters 
and noise variances, and the tracking characteristics of the self-tuning fusion Wiener filter. 
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1. Introduction

The term "filtering” originates from radio field, and its meaning is to filter out the noise and restore the
original state or signal. The optimal filters mentioned above are effective only when the model parameters 
and noise variances are known. In many practical applications, the model parameters and noise variances 
are often completely or partly unknown, so many results about the self-tuning signal filter based on 
mlutisensor have been obtained, but most of them are just for the single-channel signals [1,2] or for the 
multi-channel signals with independent noises [3,4]. In this paper, for solving the problem of the more 
complex multi-channel signal filtering, the multi-dimension recursive extended least squares (RELS) [5] 
algorithm and the correlation method [6] are applied to obtain the unknown model parameters and noise 
variances. Further, a self-tuning fusion Wiener filter is presented based on the modern time series analysis 
method by substituting the estimates for the true values. It is obvious that the estimates of the model 
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parameters and noise variances converge to their true values, and the self-tuning information fusion 
Wiener filter can track the signal well. 

2. Problem Formulation 

Consider the multisensor multi-channel autoregressive (AR) signals with common disturbance noise 
1( ) ( ) ( 1)A q s t w t− = −                                                                                                                                (1) 

( ) ( ) ( ) ( ), 1, ,i iy t s t t e t i Lξ= + + = L (2) 

where ( ) ms t R∈  is the signal to be estimated, ( ) m
iy t R∈  is the measurement of the thi  sensor, 

( ) , ( ) , ( )m m m
iw t R t R e t Rξ∈ ∈ ∈  are uncorrelated white noises with zero mean and variances , ,w eiQ Q Qξ ,

respectively. 1q−  is the backward shift operator, 1( )A q−  is a stable polynomial with form 
1 1

1( ) n
m nA q I A q A q− − −= + + +L , mI  denotes the m m×  unite matrix.  

The problem is to find the self-tuning fusion Wiener filter 0ˆ ( | )ss t t  of ( )s t  weighted by scalar when 
, ,w eiQ Q Qξ  and 1( )A q−  are unknown. 

3. Estimates of Model Parameters and Noise Variances 

From (1) and (2), an ARMA innovation model can be obtained: 
1 1( ) ( ) ( ) ( )i i iA q y t D q tε− −=                                                                                                                            (3) 

where 1 1
0 1( ) n

i i i inD q D D q D q− − −= + + +L  is stable (i.e. all zeros of ( )iD x  lie outside the unit circle), 0i mD I= ,
innovation process ( ) m

i t Rε ∈  is white noise with zero mean and variance iQε , and 
1 1 1( ) ( ) ( 1) ( ) ( ) ( ) ( )i i iD q t w t A q e t A q tε ξ− − −= − + +                                                                                               (4)

1( )iD q−  and iQε  can be obtained by Gevers-Wouters iterative algorithm [7]. For the ARMA innovation 
model (3), applying the multi-dimension RELS algorithm, the local estimates ˆ ˆ,ij ijA D  and ˆ

iQε  at time t  can 
be obtained, 1 , 1, ,i L j n= =L L . Then the fused estimate ˆ

jA  of jA  is defined as  

1

1ˆ ˆ , 1, ,
L

j ij
i

A A j L
L =

= =∑ L                                                                                                                            (5)

And it has been proved [5] that the RELS estimator of the ARMA innovation model parameters is 
strongly consistent, i.e. ˆ ˆˆ, ,ij ij i iD D Q Qε εθ θ→ → → , as t → ∞ , w.p.1, where T

1[ ]nA Aθ = L .
Introduce a new measurement ( )ir t  as 1( ) ( ) ( )i ir t A q y t−= , thus from (3) and (4), we have 

1 1( ) ( 1) ( ) ( ) ( ) ( )i ir t w t A q e t A q tξ− −= − + +                                                                                                  (6)

So it is evident that ( )ir t  is a stationary stochastic process with correlation function 
T( ) E[ ( ) ( )]rij i jR k r t r t k= − , , 1, ,i j L= L , where E denotes the mathematical expectation. Computing the 

correlation function of the stochastic processes of two sides for (6), we obtain that 

T T

0 0

(0)
n n

rij w ij ei k kR Q A Q A A Q Aα α α ξ α
α α

δ − −
= =

= + +∑ ∑ ; ( )rii n vi nR n A Q A Qξ= + , ( )rij nR n A Qξ= , i j≠                                           (7)

where 1, 0( )ii ij i jδ δ= = ≠ . At time t , based on the measurement processes ( ), ( 1),i ir t r t − L , the sampled 

correlation function ( )t
rijR k  has the recursive formula 1 T 11

( ) ( ) ( ( ) ( ) ( ))t t t
rij rij i j rijR k R k r t r t k R k

t
− −= + − − .
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Defining the estimator of ( )ir t  as 1ˆˆ ( ) ( ) ( )i ir t A q y t−= , then the estimate of the sampled correlation function 
( )t

rijR k  can be derived. Substituting the estimates ˆ ( )t
rijR k  and 1ˆ( )A q−  into (7) yields the estimators of the 

noise variances at time t  as 

1

, 1

2ˆ ˆ ˆ ( ),
( 1)

L
t

n rij
i j

Q A R n
L Lξ

−

=

=
− ∑ 1ˆ ˆ ˆ ˆˆ( ( ) ),t

ei n rii nQ A R n A Qξ
−= − 1, , ,i L i j= ≠L                                                                 (8)

T T

, 1 0 0

1ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ( (0) )
L n n

t
w rij ij ei k k

i j

Q R A Q A A Q A
L L α α α ξ α

α α
δ − −

= = =

= − −
× ∑ ∑ ∑                                                                                      (9)

4. Self-tuning Fusion Wiener Filter 

The AR signal system (1) and (2) can be transformed into state space model as 

( 1) ( ) ( ) ( )x t x t w tθ+ = Φ + Γ                                                                                                                        (10)

( ) ( ) ( ), ( ) ( ) ( )i i i iy t Hx t v t v t t e tξ= + = +                                                                                                          (11) 

( ) ( )s t Hx t=                                                                                                                                           (12)

with the following block companion form 
1

( 1)( )

0 0

n m

n

A

I

A

θ −

−⎡ ⎤
⎢ ⎥
⎢ ⎥Φ = ⎢ ⎥
⎢ ⎥
−⎢ ⎥⎣ ⎦

M

L

, 0

0

mI⎡ ⎤
⎢ ⎥
⎢ ⎥Γ =
⎢ ⎥
⎢ ⎥
⎣ ⎦

M
, [ ]0 0mH I= L . ( )w t  and ( )iv t

are white noises with zero means and variances with the relationship 

T T
0( )

E [ ( ) ( )]
0( )

w
j tk

iji

Qw t
w k v k

Rv t
δ

⎧ ⎫ ⎡ ⎤⎡ ⎤⎪ ⎪ =⎨ ⎬ ⎢ ⎥⎢ ⎥
⎪⎣ ⎦⎪ ⎣ ⎦⎭⎩

, where , ,ii vi ijR Q Q R Q i jξ ξ= + = ≠                                                   (13)

When θ  is known, we denote ( )θΦ = Φ , T
1( ) [ ( ), , ( )]nx t x t x t= L , ( ) m

ix t R∈ . Substituting the estimates for the 
true values, the thi  sensor subsystem has the local self-tuning Wiener filter of the state ( )x t  as [8] 

1 1ˆˆ ˆ( ) ( | ) ( ) ( ), 1, ,s
i i i iq x t t K q y t i Lψ − −= = L                                                                                                        (14)

1 1 ˆˆ ( ) det( )i mn fiq I qψ − −= − Ψ , 1 1ˆ ˆ ˆ( ) ( )i mn fi fiK q adj I q K− −= − Ψ                                                                               (15) 

ˆˆ ˆ[ ] ( )fi mn fiI K H θΨ = − Φ , 1

1
, 1

ˆˆ /
ˆ ˆ( )ˆ

ˆ ˆ( )i

i

m ii i

i
fi

i

H I R Q

H M
K

H M

ε

β
β

θ

θ

+

−
−

⎡ ⎤−⎡ ⎤
⎢ ⎥⎢ ⎥

Φ ⎢ ⎥⎢ ⎥= ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥Φ⎣ ⎦ ⎣ ⎦

M M
                                                                                (16)

where ˆ
fiΨ  is a stable matrix, ˆ

fiK  is the filter gain, the pseudo-inverse of matrix X  is defined as 
T 1 T( )X X X X+ −= , and ˆ

ijM  can recursively be computed as 1 , 1 ,
ˆ ˆˆ ˆ ˆ ˆ

ij i j n i j n ijM A M A M D− −= − − − +L with 

0
ˆ ˆ0( 0),ij i mM j M I= < = . The local self-tuning filtering error cross-covariance ˆ ˆ( )ij ijP t P=  at time t  satisfy the 

Lyapunov equations T T T Tˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( ) ( 1) [ ] [ ]ij fi ij fj mn fi mn fj fi ij fjP t P t I K H Q I K H K R K= Ψ − Ψ + − Γ Γ − + , , 1, ,i j L= L .

From (12) and (14), applying the projective theorem, the thi  sensor subsystem has the local self-tuning 
Wiener signal filter 

1 1ˆˆ ˆ( ) ( | ) ( ) ( ), 1, ,s
i i i iq s t t HK q y t i Lψ − −= = L                                                                                                 (17)

And the self-tuning filtering error cross-covariance of ( )s t  can be given by Tˆ ˆ
sij ijP HP H= . Then the self-

tuning fused Wiener filter of ( )s t  weighted by scalar is obtained by 



2498 	 Jinfang Liu and Peng Zhang / Procedia Engineering 15 (2011) 2495 – 24994 Jinfang Liu, Peng Zhang/ Procedia Engineering 00 (2011) 000–000 

0
1

ˆˆ ˆ( | ) ( | )
L

s s
i i

i

s t t s t tω
=

= ∑                                                                                                                               (18)

where the self-tuning weighting vector 1ˆ ˆ ˆ[ , , ]Lω ω ω= L  is given by T 1 1 T 1ˆ ˆˆ [ ]str stre P e e Pω − − −= , T [1, ,1]e = L , ŝtrP  is a 

L L×  matrix whose the ( , )thi j  element is ŝijtrP . The fused error variance is given by 0
1 1

ˆ ˆˆ ˆ
L L

s i j sij
i j

P Pω ω
= =

= ∑∑ , and 

0
ˆ ˆ
s siitrP trP≤ . When the measurement data ( )iy t  is bounded for each sensor i , it can be easily proved [1] that 

the self-tuning information fusion Wiener filter 0ˆ ( | )ss t t  has asymptotic optimality.

5. Simulation Example 

Consider the multisensor multi-channel AR signals with common disturbance noise as (1) and (2)
1

2 1( ) ( ) ( 1)I A q s t w t−+ = −                                                                                                                          (19)

( ) ( ) ( ) ( ), 1, 2,3i iy t s t t e t iξ= + + = (20)

In this simulation, we take the unknown model parameters and noise variances as  

1

0.9 0.5

0.8 0.3
A

⎡ ⎤
= ⎢ ⎥−⎣ ⎦

,
1 2 3

2 0 0.1 0 0.6 0 0.3 0 0.4 0
, , , ,

0 4 0 0.2 0 0.3 0 0.5 0 0.1w e e eQ Q Q Q Qξ
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

.

The convergences of the model parameters and noise variance estimates are shown in Fig 1 and Fig 2, 
where the straight lines denote the true values, the curves denote the fusion estimates. It is obvious that 
these estimates have the consistency. In Fig 3, the solid lines denote the signal ( )s t , the dotted lines 
denote the self-tuning fusion Wiener filter 0ˆ ( | )ss t t , it yields that the self-tuning fusion Wiener filter can 
track the signal well. 

Fig. 1. (a) the estimate of 1A ; (b) the estimate of Qξ ; (c) the estimate of wQ

Fig. 2. (a) the estimate of 1eQ ; (b) the estimate of 2eQ ; (c) the estimate of 3eQ
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Fig. 3. (a) the first component of signal ( )s t  and its self-tuning fusion Wiener filter; (b) the second component of  signal ( )s t  and its 

self-tuning fusion Wiener filter 

6. Conclusion 

For the multisensor multi-channel AR signals with common disturbance noise, when the model 
parameters and noise variances are unknown, the information fusion estimates of the model parameters 
and noise variances are obtained by the multi-dimension RELS algorithm and the correlation method. The 
so called information fusion estimates mean taking the average of all local estimates. Then a self-tuning 
fusion Wiener filter with asymptotical optimality is presented based on the modern time series analysis 
method, which can track the signal well. 
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