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1. Introduction

It is a simple classical result, found in every book on the representation theory of groups, that if G
is an irreducible group of complex matrices (or matrices over any algebraically closed field) and if G
has finite trace, that is, if {tr A : A ∈ G} is a finite set, then G itself is finite. Here “irreducible” means

that there is no nontrivial subspace simultaneously invariant under all the members of G (viewed

as linear operators). This result was extended to semigroups of matrices (i.e., sets of matrices closed

under multiplication) in [6]. It was shown in [8] that the result holds if trace is replaced by any linear

functional. There are other results available in which the finiteness is replaced by boundedness in the

assumption as well as the conclusion [8].

We are interested in semigroups ofmatriceswith nonnegative entries (called nonnegativematrices

for short). A natural analogue of irreducibility here is indecomposability, which is a much weaker
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assumption. A setS of nonnegativematrices is said to bedecomposable if there is a permutationmatrix

P such that all the members of {P−1SP : S ∈ S} are in simultaneous block form

[
X Y

0 Z

]
. (If we prefer

to view thematrices as operators represented relative to the basis {ej}, then a set is indecomposable if

it has no simultaneous invariant subspace spanned be a nonempty, proper subset of {ej}. An equivalent

definition of indecomposability for a nonnegative semigroup S is: for each pair i and j, the (i, j) entry
of some member of S is positive.)

As anybody who has used, say, the Perron–Frobenius theorem, knows, indecomposability is a very

useful condition to have, especially in dealing with nonnegative matrices. It would be interesting to

get boundedness and finiteness results of the type mentioned above with this weaker condition. One

of the results proved in the recent paper [2] is that if S is an indecomposable semigroup of nonnegative

matrices and if for some nonzero positive linear functional φ the set {φ(S) : S ∈ S} is bounded, then
S itself is bounded.

We are mainly interested in the finiteness analogue of this assumption. It has been shown recently

in [4] that if all the diagonal entries of an indecomposable nonnegative semigroup consist of zeros

and ones, then the semigroup is finite (and furthermore, all entries are in {0, 1} after a suitable

diagonal similarity). The indecomposability condition is clearly necessary for this result. For example,

the semigroup of all upper-triangular nonnegative matrices whose diagonal elements are all equal to

1 is by no means finite.

In this paper, we ask the question: if all diagonal entries in an indecomposable nonnegative semi-

group come from a fixed finite set, is the semigroup itself finite? The following example shows that in

general the answer is negative.

Example 1.1. Let

S =
{[

E 0

0 E

]
,

[
0 E

E 0

]
,

[
0 S

E 0

]}
,

where E =
[
1/2 1/2
1/2 1/2

]
and S runs over the set of all matrices of form

[
p q

q p

]
, where p, q� 0,

p + q = 1.

The semigroup in Example 1.1 is indecomposable and is not very far from having only zeros and

ones on the diagonals: the set of all the diagonal entries of matrices in S is {0, 1/2}. However, S is not

finite, and incidentally, consists of doubly stochastic matrices. (Recall that a nonnegativematrix is said

to be row (column) stochastic if each of its rows (columns) sums to 1. A matrix is doubly stochastic if it

is both row and column stochastic.)

Although the answer in general is negative, we get affirmative results in two significant cases:

that of a self-adjoint semigroup (that is a semigroup S such that S ∈ S implies S∗ ∈ S), and that of

constant-rank semigroups. We also obtain results about the non-diagonal entries in certain cases.

All semigroups in thispaper consist ofnonnegativematrices.A semigroupS ofnonnegativematrices

will be called a semigroup with finite diagonals if all the diagonal entries of all the matrices in S come

from a finite set. We will call S a semigroup with finite trace if the set {tr(S) : S ∈ S} is finite.
In Section 2, some useful properties of semigroups with finite diagonals are collected. The main

result of Section 3 is Theorem 3.4 stating that if a semigroupwith finite diagonals is self-adjoint then it

is finite. Ourmethods also reveal the structure of such semigroups. In Section 4, we show that if all the

nonzeromatrices in a semigroupwith finite diagonals have the same rank then the semigroup is finite.

Finally, in Section 5 we characterize possible sets of values for the diagonal elements of semigroups

with finite diagonals.

Throughout the paper, the following result, which can be found in [1, Section 3.3] (see also [7,

Lemma 5.1.9]) will be used without additional references:

Theorem 1.2. Let E be a nonnegative idempotent of rank r:

(i) If E has no zero rows or columns then there exists a permutation matrix P such that P−1EP has the

block-diagonal form
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E1 ⊕ · · · ⊕ Er ,

where each Ei is an idempotent of rank one whose entries are all positive.

(ii) In general, there exists a permutation matrix P such that P−1EP has the block-triangular form

E =
⎡
⎣0 XF XFY

0 F FY

0 0 0

⎤
⎦ ,

with squarediagonalblocks,whereF = F1 ⊕ · · · ⊕ Fr is an idempotentwithout zero rowsor columns

as in (i) and X and Y are two nonnegative matrices.

As mentioned above, we will use this result repeated and so for clarity, we call the (2,2) block, F ,

of E the rigid part of E.

2. Preliminary results

In this section, we will state some auxiliary lemmas that will be important later in the paper and

collect some partial solutions of the main problem.

The next two lemmas reveal certain useful properties of the members of semigroups with finite

traces.

Lemma 2.1. Let S be a semigroup with finite trace. If S ∈ S then all the nonzero eigenvalues of S are roots

of unity of degree at most the size of matrices in S. In particular, ρ(S) � 1 for all S ∈ S.

Proof. By Ref. [5, Proposition 2.2], ρ(S) � 1. Let n be the size of S and (λi)
n
i=1 be the sequence of the

eigenvalues of S (with multiplicities), ordered by

1 = |λ1| = · · · = |λk| > |λk+1| � · · · � |λn| � 0,

where 0� k � n. By the Perron–Frobenius theorem, themodulus-one eigenvalues of S are roots of unity

of degree at most k. It is left to show that λk+1 = · · · = λn = 0.

Since |λi| < 1 for all i = k + 1, . . . , n, for each ε > 0 there is N ∈ N such that for all j �N

ε >
n∑

i=k+1

|λi|j �
∣∣∣∣∣∣

n∑
i=k+1

λ
j
i

∣∣∣∣∣∣ � 0.

Therefore, the sequence
(∣∣∣∑n

i=k+1 λ
j
i

∣∣∣)∞
j=1

either has a strictly decreasing subsequence or a constant

zero tail. If the former were true, the set
{∑n

i=k+1 λ
j
i : j ∈ N

}
would be infinite. However, this set

cannot be infinite because
{∑k

i=1 λ
j
i : j ∈ N

}
and

{∑n
i=1 λ

j
i : j ∈ N

}
are both finite. Thus, for some

r ∈ N we have

n∑
i=k+1

λ
rj
i = 0, j ∈ N.

ByRef. [3] (see also [7, Lemma2.1.15(ii)]) this impliesλr
i = 0, and henceλi = 0 for all i = k + 1, . . . , n.

�

Lemma 2.2. LetS be an indecomposable semigroupwith finite trace. Then each S ∈ S is similar to amatrix

of the form[
U 0

0 N

]
,

where U is a unitary diagonal matrix and N is a nilpotent matrix.
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Proof. Let S ∈ S and let[
J 0

0 N

]
be the Jordan form of S, where J is an invertible matrix and N is a nilpotent matrix. Write J = D + M,

where D is a diagonal matrix and the only possible positions of nonzero elements of M are on the

super-diagonal.

Weclaim thatM = 0. Indeed, supposeM /= 0. ByRef. [2, Proposition8] the semigroupS is bounded.

Hence so is the set {Jm : m ∈ N}. Let k be such that Mk /= 0 andMk+1 = 0. Since DM = MD we get

Jm = Dm +
(
m

1

)
Dm−1M + · · · +

(
m

k

)
Dm−kMk

for all m� k. By Lemma 2.1 all the diagonal entries of D are of absolute value 1, hence ‖Dm‖ = 1 for

allm. This implies ‖Jm‖ → ∞ asm → ∞. Therefore,M = 0.

This shows that S is similar to[
D 0

0 N

]
.

By Lemma 2.1, D is unitary. �

Corollary 2.3. Let S be an indecomposable semigroup with finite trace. Then there exists m ∈ N such that

Sm is an idempotent for each S ∈ S.

Proof. Let n be the size of matrices in S . Putm = n!. Let S ∈ S . By Lemma 2.2, S is similar to[
U 0

0 N

]
,

where U is a unitary diagonal matrix and N is a nilpotent matrix. By Lemma 2.1 every diagonal entry

of U is a root of unity of degree at most n. Hence Sm is similar to[
I 0

0 0

]
,

where I is an identity matrix. Therefore, Sm is an idempotent. �

In the next lemma which will be used in Section 4 we establish a useful property of idempotents

without zero rows and zero columns in semigroupswith finite trace. Recall that a collection ofmatrices

is block-monomial if each member has only one nonzero block in each block row and block column

under a given block structure.

Lemma 2.4. LetS be an indecomposable semigroupwith finite trace and E an idempotent inS with no zero

rows or columns. Then, after a permutation of the basis which makes E block-diagonal with each diagonal

block being a rank-one idempotent matrix with strictly positive entries, the set SE = {A ∈ S : rank(A) =
rank(E) and EAE = A} is a finite block-monomial group relative to the block structure inherited from E.

Proof. First, we will show that SE is a group with identity E. Indeed, let A, B ∈ SE . Then clearly

EABE = AB. Also, in some basis, E can be represented as E =
[
I 0

0 0

]
. Since EAE = A and EBE = B,

and rank(A) = rank(B) = rank(E), in this basis A and Bwill be represented as A =
[
A0 0

0 0

]
and B =[

B0 0

0 0

]
, where A0 and B0 are invertible matrices. Then the representation of AB is AB =

[
A0B0 0

0 0

]
,

and A0B0 is again invertible, so that rank(AB) = rank(E). This shows that SE is a semigroup.

Let us show that SE is closed under inverses. Let A ∈ SE be arbitrary. By Corollary 2.3 there ism ∈ N
such that Am is an idempotentwhichwewill denote by F . Since SE is a semigroup, F ∈ SE . In particular,
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rank(F) = rank(E) and EFE = F . Therefore, E = F . Thus the matrix Am−1 is the inverse of A in SE , and

hence SE is a group.

Let r = rank(E). Applying a permutation, we can write E = E1 ⊕ · · · ⊕ Er , where each Ei is a rank-

one idempotent without zero rows or zero columns. Applying a suitable diagonal similarity to S , we

can also assume without loss of generality that E is row stochastic. In particular, since the blocks of E

have rank one, each block of E is a strictly positive matrix having all rows equal to each other.

Let K(r, s) stand for the r × s matrix having the value 1/
√

rs at each entry. A straightforward

calculation shows that K(r, s)K(s, t) = K(r, t) for all r, s, and t ∈ N.

For each i = 1, . . . , r, denote the size of Ei by ri. Since each Ei is row stochastic, we have EiK(ri, rj) =
K(ri, rj) for all i, j ∈ {1, . . . , r}. Let Lij = EiK(ri, rj)Ej=K(ri, rj)Ej . Then

LijLjk = EiK(ri, rj)EjEjK(rj, rk)Ek = EiK(ri, rj)K(rj, rk)Ek = EiK(ri, rk)Ek = Lik. (1)

Let A ∈ SE be arbitrary. Write A in the block form inherited from E:

A =
⎡
⎢⎢⎣
A11 . . . A1r

...
...

Ar1 . . . Arr

⎤
⎥⎥⎦ .

Since EAE = A, we get Aij = EiAijEj for all i, j ∈ {1, . . . , r}. The ranks of Ei and Ej are equal to 1; thus for

each i, j ∈ {1, . . . , r} there exists a nonnegative λij such that Aij = λijLij .

This shows that every matrix A ∈ SE can be represented as a numerical matrix Ã = (λij)
r
i,j=1. By

formula (1) we also conclude that ÃB = ÃB̃. Observe also that Ẽ is the r × r identity matrix. Therefore,

the set G = {̃A : A ∈ SE} is a group of nonnegative invertible matrices.

Since S is an indecomposable semigroup with bounded trace, by [2, Proposition 8] S itself is

bounded. In particular, SE is bounded, and hence G is bounded. Therefore, by Ref. [7, Lemma 5.1.11] G
is a finite monomial group. Hence SE is finite and block-monomial. �

The next lemma is a technical statement that allows us to work with the north-west corners of

matrices in a semigroup.

Lemma 2.5. Let S be an indecomposable semigroup of N × N matrices. Let k ∈ {1, . . . , N} and
Jk = {S ∈ S : rows k + 1 through N of S are zero}.

Put Sk = {A : A is the north�west k × k corner of some S ∈ Jk}. If Sk has no permanent zero rows, that

is, if for each i ∈ {1, . . . , k} there is a matrix A ∈ Sk such that the ith row of A is not zero, then Sk is an

indecomposable semigroup.

Proof. A straightforward calculation shows that Sk is a semigroup for each k. We now establish the

indecomposability statement.

We need to show that for each i, j ∈ {1, . . . , k} there is a matrix A ∈ Sk such that the (i, j) entry

of A is different from zero. Pick a matrix U ∈ Sk whose ith row is not zero, say (U)im /= 0 for some

m ∈ {1, . . . , k}. There is a matrix V such that T :=
[
U V

0 0

]
∈ Jk . Since S is indecomposable, there is

S ∈ S such that (S)mj /= 0. Then (TS)ij /= 0. Also, TS ∈ Jk . Clearly, the north-west k × k corner of TS

has a nonzero (i, j) entry. �

The next lemma is the same statement about the south-east corners of matrices in a semigroup. Its

proof is analogous to that of Lemma 2.5, so we omit it.

Lemma 2.6. Let S be an indecomposable semigroup of N × N matrices. Let k ∈ {1, . . . , N} and
J′k = {S ∈ S : columns 1 through k of S are zero}.

Put S′
k = {A : A is the south�east (N − k) × (N − k) corner of some S ∈ J′k}. If S′

k has no permanent

zero columns then S′
k is an indecomposable semigroup.
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In the rest of this section we record some simple partial results regarding the main problem.

Theorem 2.7. Let S be a commutative finitely generated indecomposable semigroupwith finite trace. Then

S is finite.

Proof. Let {Ai}ni=1 be the set of generators of S . By commutativity, each S ∈ S can be written as S =∏n
i=1 A

ki
i for some ki � 0. By Corollary 2.3, there ism ∈ N such that Ei :=Am

i is an idempotent for each

i = 1, . . . , n. Thus S = ∏n
i=1 A

ki
i , where ki ∈ {0, 1, . . . , 2m − 1} and therefore S is finite. �

Theorem 2.8. Let S be an indecomposable semigroup of invertible matrices with finite trace. Then S is

finite and after a diagonal similarity, is in fact a permutation group.

Proof. First, we prove that S is actually a group of matrices. Indeed, clearly the only idempotent

in S is the identity matrix. If S ∈ S then by Corollary 2.3 there is m ∈ N such that Sm = I. Then

S−1 = Sm−1 ∈ S .
By Ref. [2, Proposition 8], S is bounded. By Ref. [7, Lemma 5.1.11], after a diagonal similarity, S is a

permutation group and is thus finite. �

It should be noted that if we replace the condition about the trace in the last theorem with the

condition of finiteness of the diagonal entries of the members of S then Theorem 2.8 becomes a

special case of Theorem 4.8 which will be proved in the next section. The following simple example

shows that the finiteness of the trace does not in general imply the finiteness of all the diagonal entries.

Example 2.9

S =
{[

p q

p q

]
: p + q = 1, p� 0, q� 0

}
.

Then {tr(S) : S ∈ S} = {1}, but the diagonal entries of members of S take all values in [0, 1].
Before introducing our general results, we record a theorem for the case of matrices of very small

size.

Theorem 2.10. Let S be an indecomposable semigroup with finite diagonals consisting of 2 × 2 or 3 × 3

matrices. Then S is finite.

Proof. For two indices i and j and a subset X of S , put Xij = {Sij : S ∈ X}, where Sij stands for the (i, j)
entry of S.

Assume S consists of 2 × 2 matrices. Suppose S is infinite. Then without loss of generality we

can assume that the set S12 is infinite. Fix A ∈ S such that A21 /= 0. By the hypothesis, (SA)11 =
{S11A11 + S12A21 : S ∈ S} should be finite, which is impossible.

Now assume S consists of 3 × 3 matrices. Suppose S is infinite. Again, we can assume that S12 is

infinite. Fix A ∈ S such that A21 /= 0. Since (SA)11 = {S11A11 + S12A21 + S13A31} is finite, the set S13

is necessarily infinite. By considering (BS)33, where B31 /= 0, we see that S23 is infinite. Analogously,

S21 is infinite.

Let F = {Sii : S ∈ S , 1� i � 3} and F1 = {a − bc : a, b, c ∈ F}. Since (ST)11 ∈ F and (ST)11 −
S11T11 = S12T21 + S13T31 for all T, S ∈ S , we have S12T21 + S13T31 ∈ F1 for all T, S ∈ S . Since S21 is

infinite and F1 is finite, by the Pigeon Hole principle, there exist T ′, T ′′ ∈ S and a number a ∈ F1 such

that T ′
21 /= T ′′

21 and

S12T
′
21 + S13T

′
31 = a,

S12T
′′
21 + S13T

′′
31 = a (2)
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for infinitely many S ∈ S . Moreover, since S12T21 + S13T31 is equal to zero only when S12 = 0 or T21 =
0, we can assume that a /= 0. Since (2) has more than one solution, the matrix[

T ′
21 T ′

31

T ′′
21 T ′′

31

]

is not invertible. Hence the second line of (2) is in fact a scalar multiple of the first line. Since a /= 0,

this implies that T ′
21 = T ′′

21, a contradiction. �

3. Self-adjoint semigroups

In this section, we show that if a semigroup with finite diagonals is self-adjoint then it is finite.

Moreover, our argument reveals the structure of such semigroups. In contrast with most statements

in the other sections, it should be noted that the semigroups in the present section are not assumed

to be indecomposable.

Definition 3.1. A collection C of matrices is called self-adjoint if for each S ∈ C we have S∗ ∈ C. Note
that for our purposes, S∗ is just the transpose of S.

We start with two nice properties of self-adjoint semigroups with finite trace.

Lemma 3.2. Let S be a self-adjoint semigroup with finite trace. Then for each S ∈ S the matrix SS∗ is an

idempotent.

Proof. By Lemma 2.1, every eigenvalue of SS∗ is either zero or a root of unity. Since SS∗ is self-adjoint,

σ(SS∗) ⊆ {0, 1}. Since SS∗ is also diagonalizable, the Lemma follows. �

Lemma 3.3. If S is a self-adjoint semigroup with finite trace then each idempotent in S is self-adjoint.

Proof. Let E = E2 ∈ S . Then E is unitarily similar to the matrix in the block form

[
I X

0 0

]
, where

I is an identity matrix. With the same similarity, E∗ is similar to

[
I 0

X∗ 0

]
. Then EE∗ is similar to[

I + XX∗ 0

0 0

]
. By Lemma 3.2, EE∗ is an idempotent, hence (I + XX∗)2 = (I + XX∗). This, however,

can only happen when X = 0. �

The next theorem is the main result of this section.

Theorem 3.4. Let S be a (not necessarily indecomposable) semigroup with finite diagonals. If S is self-

adjoint then S is finite. Moreover, all the entries of all matrices in S are of the form
√

ξη, where ξ and η
are either diagonal values of some matrices in S or zero.

Remark 3.5. The statement in Theorem 3.4 can be abbreviated as follows. Let S be a self-adjoint

semigroup of N × N matrices with finite diagonals. If F = {Sii : S ∈ S , i = 1, . . . , N} ∪ {0} and F̂ =
{Sij : S ∈ S , i, j = 1, . . . , N} then

F̂ ⊆ √
F · F.

Proof of Theorem 3.4. Let F = {Sii : S ∈ S , i = 1, . . . , N}. We will prove that every S ∈ S can be

written in the block form
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S = Δ1

⎡
⎢⎢⎢⎣
u1v

∗
1 0 . . . 0

0 u2v
∗
2 0

...
. . .

...
0 0 . . . ukv

∗
k

⎤
⎥⎥⎥⎦ Δ∗

2 , (3)

where Δ1 and Δ2 are each permutations and ui, vi are vectors whose entries are either of the form√
ξ , with ξ ∈ F or are all zero (with no restrictions on the size of ui and vi; that is, the blocks uiv

∗
i are

in general rectangular).

Fix S ∈ S . Set P = SS∗ and Q = S∗S. By Lemma 3.2, both P and Q are self-adjoint idempotents.

Choose two permutations Γ1 and Γ2 such that the matrices P1 = Γ1PΓ ∗
1 and Q1 = Γ2QΓ ∗

2 are block-

diagonal with self-adjoint blocks of rank one or zero. Since rank(P) = rank(Q) = rank(S), we deduce

that P1 andQ1 have the samenumber of nonzero blocks. Denote this number by r. That is, P1 = (P1)1 ⊕
· · · ⊕ (P1)r ⊕ 0 and Q1 = (Q1)1 ⊕ · · · ⊕ (Q1)r ⊕ 0, where either of the last zero entries could be

absent.

Put T = Γ1SΓ
∗
2 . Then clearly TT∗ = P1 and T∗T = Q1. Write T in the rectangular block form

T =

⎡
⎢⎢⎢⎣

T11 . . . T1r T1r+1

...
...
...

Tr1 . . . Trr Trr+1

Tr+11 . . . Tr+1r Tr+1r+1

⎤
⎥⎥⎥⎦ ,

where the vertical sizes of blocks are those of the blocks of P1 and the horizontal sizes are those of the

blocks of Q1, and the (r + 1)th row or (r + 1)th column, or both could be void.

Since P1 = TT∗ has the same range as T , we get P1T = T . Analogously, TQ1 = T . Therefore, P1TQ1 =
T . Observe that in fact T is a partial isometry with corresponding projections P1 and Q1.

We claim that each block row and each block column of T has at most one nonzero block. Indeed,

since TT∗ is block-diagonal, we get
∑r+1

k=1 TikT
∗
jk = 0 for all i /= j. Hence for each k and i /= j we have

TikT
∗
jk = 0. This implies that if for some n andm the (n, m) entry of Tik is not zero then themth column

of each Tjk is zero for all j /= i. Since P1TQ1 = T and the diagonal entries of P1 andQ1 are strictly positive

or zero, the entries of all Tij are either all zero or are all nonzero simultaneously. It follows that each

block columnof T can contain atmost one nonzero block. Considering T∗T , we get the same conclusion

about the block rows.

Changing the order of blocks in Q1 (by changing Γ2), if necessary, we can assume that T is block-

diagonal with rectangular diagonal blocks:

T =

⎡
⎢⎢⎢⎣
T1 . . . 0 0
...

. . .
...

...
0 . . . Tr 0

0 . . . 0 0

⎤
⎥⎥⎥⎦ ,

where Ti = (P1)iTi(Q1)i for all i = 1, . . . , r. Also, TiT
∗
i = (P1)i and T∗

i Ti = (Q1)i.
Recalling that every (P1)i and (Q1)i is a rank-one projection,write (P1)i = xix

∗
i and (Q1)i = yiy

∗
i for

some vectors xi and yi satisfying ‖xi‖ = ‖yi‖ = x∗
i xi = y∗

i yi = 1 (i = 1, . . . , r). Clearly, rank(Ti) = 1

for all i = 1, . . . , k. Hence for each i there exist vectors ui and vi such that Ti = uiv
∗
i .

Fix i and denote for simplicity of notation x = xi, y = yi, u = ui, and v = vi. Since P1T = T and

TQ1 = T , we get xx∗uv∗ = uv∗ and uv∗yy∗ = uv∗. Let α = x∗u and β = v∗y. Then uv∗ = αxv∗ =
βuy∗. This is only possible when u = αx and v = βy.

This shows that there is a scalar γ such that uv∗ = γ xy∗. We claim that γ = 1. Indeed, from the

the equality TT∗ = P1, we obtain γ 2(xy∗)(xy∗)∗ = γ 2xy∗yx∗ = γ 2xx∗ is equal to xx∗. Since γ � 0, we

get γ = 1.

We have shown that Ti = xiy
∗
i for each i = 1, . . . , r. To establish formula (3), it is left to note that

since for all i and j the numbers (xi)
2
j and (yi)

2
j are some diagonal entries of P1 and Q1, respectively,

the entries of xi and yi are all of the form
√

ξ with ξ ∈ F . �
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Remark 3.6. The representation (3) in the proof of the above theorem will still be valid if we replace

finiteness of the diagonal entries in the hypothesis of Theorem 3.4 with the finiteness of the trace.

4. Constant-rank semigroups

In this section, we will prove that if all nonzero matrices in an indecomposable semigroup with

finite diagonals have the same rank, then the semigroup must be finite. The key step in obtaining this

result is proving that the idempotent matrices in such a semigroup form a finite set (Theorem 4.3). We

will need a series of lemmas to prove this.

Recall that if E is a nonnegative idempotent matrix then, after a permutation, E can be written as

E =
⎡
⎣0 XF XFY

0 F FY

0 0 0

⎤
⎦ , (4)

where F is a nonnegative idempotentwithout zero rows or zero columns and X, Y are two nonnegative

matrices. Furthermore, once E is in the form (4), then the (2,2) block, F , of E is called the rigid part of E.

Thenext lemma is thefirst step inestablishing thefinitenessof the setof idempotentsof a semigroup

with finite diagonals. Note that it requires neither indecomposability nor constancy of rank.

Lemma 4.1. Let S be a semigroup with finite diagonals. Then the set

{F : F is the rigid part of some E = E2 ∈ S}
is finite.

Proof. Let N be the size of matrices in S . Fix three numbers m, n, k � 0 such that m + n + k = N. We

will prove that the set

F = {F : F is the rigid part of some E = E2 ∈ S
whose diagonal blocks are of sizem, n, and k, respectively}

is finite. For each F ∈ F there exists a permutation matrix P such that P−1FP = E1 ⊕ · · · ⊕ Er , where

each Ei is an idempotent of rank onewhose entries are all positive. There are only finitelymany choices

for the permutation P, the number of blocks, r, and the sizes of each block in this representation.

Therefore, it suffices to show that, after a fixed permutation P, there are only finitely many members

in F having the same sequence of block sizes.

Let F ′, F ′′ ∈ F andapermutationP be such thatP−1F ′P = E′
1 ⊕ · · · ⊕ E′

r ,P
−1F ′′P = E′′

1 ⊕ · · · ⊕ E′′
r

and the sizes of E′
i and E′′

i are the same for all i = 1, . . . , r. Fix i ∈ {1, . . . r}. We will prove that if the

sequences of the diagonal entries of E′
i and E′′

i are the same (that is, if (E′
i)jj = (E′′

i )jj for all j) then

E′
i = E′′

i . Since there are only finitely many choices for such diagonal sequences, the conclusion will

follow.

Relabel for convenience E′
i = Q , E′′

i = R. If Q and R have size 1, we are done. Hence we can assume

that the size is at least 2. SinceQ and R are both positive rank-onematrices with equal diagonals, there

is a positive diagonal matrix D such that R = DQD−1. Also, since Q and R are both strictly positive, RQ

is again of rank one. Thus, σ(RQ) = {tr(RQ), 0}. Let Q = (qij), D = diag(dj):

tr(RQ) − 1= tr(DQD−1Q) − tr(Q2) = ∑
i,j

did
−1
j qijqji −

∑
i,j

qijqji

= ∑
i,j

(did
−1
j − 1)qijqji = ∑

i<j

(did
−1
j + djd

−1
i − 2)qijqji.

We will be done if we prove that D is a multiple of the identity. Assume otherwise. Fix i < j such

that di /= dj . Observe that for a > 0 we have a + a−1 � 2 and the equality holds if and only if a = 1.

Hence using a = did
−1
j , we get (did

−1
j + djd

−1
i − 2)qijqji > 0, by strict positivity of elements of Q .
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Thus tr(RQ) > 1, and therefore the spectral radius of RQ , ρ(RQ) > 1, so that ρ(F ′′F ′) > 1. This is

impossible by Lemma 2.1. �

In the following lemma, we establish finiteness of the set of idempotents of a special kind in

semigroups with finite diagonals having constant rank.

Lemma 4.2. Let S be an indecomposable semigroup with finite diagonals such that all nonzero members

of S have the same rank and

E =
{
E = E2 ∈ S : E =

[
F X

0 0

]
for some block X

}
,

where F is a fixed idempotent matrix without zero rows and columns. Then E is finite.

Proof. Denote by r the rank of all nonzero members of S . Applying a suitable permutation to S we

can assume that F is of the form F = F1 ⊕ · · · ⊕ Fr , where each Fi is an idempotent of rank one whose

entries are all positive. Furthermore, applying a diagonal similarity, we can assume that F is row

stochastic.

Let k be the size of F . Define Jk and Sk as in Lemma 2.5. Clearly, E ⊆ Jk . We shall show that every

nonzeromember of Sk has rank r. Indeed, pick any nonzero A ∈ Sk . Then there is amatrix T in S of the

form T =
[
A B

0 0

]
for somenonnegativematrixB. Pick any E =

[
F X

0 0

]
=

[
F FX

0 0

]
∈ E . Then ETE =[

FAF FAFX

0 0

]
. Since A /= 0 and F is block-diagonal with diagonal blocks having no zero entries, FAF /=

0. Therefore, ETE /= 0, and thus rank(ETE) = r. Since each column of FAFX is a linear combination of

columns of FAF , we get rank(ETE) = rank(FAF) = r. Hence r = rank(FAF) � rank(A) � rank(T) = r,

and thus rank(A) = r. So, in view of Lemma 2.5, we conclude that Sk is an indecomposable semigroup

with finite diagonals such that every nonzero member of Sk has rank r. Then clearly F is a nonzero

idempotent in Sk . Define

S0 = FSkF.

By Lemma 2.4we deduce that S0 is a finite group that is block-monomial relative to the block structure

inherited from F .

Consider the set

X =
{
X : X = FX and

[
F X

0 0

]
∈ S

}
.

To prove the lemma, we need to show that X is finite. Write every X ∈ X in a block form compatible

with the block form of F:

X =
⎡
⎢⎢⎣
X1

...
Xr

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
F1X1

...
FrXr

⎤
⎥⎥⎦ .

Since the blocks of F are row stochastic and have rank one, all rows of each Fi and of each Xi = FiXi

are the same (i = 1, . . . , r). This in particular implies that any given entry of X can be moved into the

(1, 1) position by applying a suitable permutation to S that keeps F in block-diagonal form with the

same diagonal blocks (the order of blocks can change). Therefore, it is enough to prove that the (1, 1)
entry of X can only take finitely many values as X runs over X . Denote the (1, 1) entry of X by aX . Put

X1 = {X ∈ X : aX /= 0}. To prove the lemma, we need to show that {aX : X ∈ X1} is finite.
Since S is indecomposable, there exists a matrix S =

[
H K

R Q

]
in S such that the (1, 1) entry of R,

R11, is nonzero. For each X ∈ X1 the north-west block of the product[
F X

0 0

]
·
[
H K

R Q

]
·
[
F X

0 0

]



A.I. Popov et al. / Linear Algebra and its Applications 434 (2011) 1409–1424 1419

belongs toS0 and is equal to F(H + XR)F . SinceS0 is blockmonomialwith respect to theblock structure

of F , so is the set {F(H + XR)F : X ∈ X1}. However, H is fixed and all matrices in this expression are

nonnegative. Therefore, the set Y1 = {FXRF : X ∈ X1} is finite and has the property that every row of

blocks in each matrix in Y1 has at most one nonzero block.

Write RF in a block form, conforming to the block columns of F:

RF = [
L1 . . . Lr

]
.

For each X ∈ X1 we have

FXRF =
⎡
⎢⎢⎣
X1L1 . . . X1Lr

...
...

XrL1 . . . XrLr

⎤
⎥⎥⎦ .

Since aX /= 0 for all X ∈ X1, the block X1L1 /= 0. Therefore, X1Li = 0 for all i ∈ {2, . . . , r}. Again, by
aX /= 0 this implies that the first row of each Li is equal to zero (i = 2, . . . , r). Since the first entry in

every row of X1 = F1X1 is equal to aX , the leading entry of RX = L1X1 + · · · + LrXr is equal to s · aX ,
where s is the sum of elements from the first row of L1. Observe that s /= 0 by the choice of R. Also, RX

is the south-east block of the product[
H K

R Q

]
and

[
F X

0 0

]
,

which belongs to S . Therefore, there are only a finite number of values for s · aX . Since s is independent
of X , the set {aX : X ∈ X1} is finite which completes the proof. �

Theorem 4.3. Let S be an indecomposable semigroup with finite diagonals. If all nonzero elements of S
have the same rank then the set of idempotents in S is finite.

Proof. Each idempotent in S is in the form of (4) after a suitable permutation. Since the number of

possible permutations is finite, it is enough to prove that for each permutation P, the indecomposable

semigroup P−1SP contains finitely many idempotents in the form of (4).

Relabeling, if necessary, we can assume that the permutation P has already been applied to S . For
a fixed nonnegative idempotent F without zero rows or zero columns, define

EF = {E = E2 ∈ S : the (2, 2) block of E in the block form of (4) is F},
XF = {XF : XF is the (1, 2) block in the form of (4) for some E ∈ EF},
YF = {FY : FY is the (2, 3) block in the form of (4) for some E ∈ EF}.

Fix the (2, 2)-block F . By Lemma 4.1, it suffices to show that XF and YF are finite.

Denote by k (by n, respectively) the number of rows in the (2, 1) block (in the (2, 3) block, re-

spectively) of the representation (4). Let i ∈ {0, . . . , n}. We will prove that the set YF,i = {FY ∈ YF :
Y has exactly i zero columns} is finite. Suppose that i = 0. Define J′k and S′

k as in Lemma 2.6. By Lemma

2.6, S′
k is an indecomposable semigroup with finite diagonals. Therefore, by Lemma 4.2 the set of all

idempotents in S′
k of the form

[
F FY

0 0

]
is finite. This shows that YF,0 is finite.

Suppose i > 0. Then there is a permutation Q which turns idempotents of the form

[
F FY

0 0

]
in

S′
k into the idempotents of the form

[
0 0

0 E1

]
, where E1 is of the form

[
F FY1
0 0

]
and Y1 has no zero

columns. Now the finiteness of YF,i follows from the argument in the previous paragraph applied to

the semigroup Q−1SQ .

The finiteness of each XF is established by applying an analogous argument to S∗. �

The following example shows that the condition on the rank is important in Theorem 4.3.



1420 A.I. Popov et al. / Linear Algebra and its Applications 434 (2011) 1409–1424

Example 4.4. An indecomposable semigroup with finite diagonals having infinitely many idempo-

tents:

S =
{[

I S

0 0

]
,

[
E 0

0 E

]
,

[
0 E

E 0

]
,

[
E E

0 0

]
,

[
0 0

E E

]}
,

where E =
[
1/2 1/2
1/2 1/2

]
and S runs over all matrices of form

[
p q

q p

]
, with p + q = 1, p, q� 0.

Lemma 4.5. Let N be a nonnegative n × n matrix such that N2 = 0. Then there exists a permutation of

the basis vectors such that N can be written as N =
[
0 A

0 0

]
(with square diagonal blocks). Moreover, if N

is nonzero then A can be chosen to contain no zero columns or (alternatively) no zero rows.

Proof. LetF = {i : Nei = 0},where (ei) is the standardunit vector basis.Wewill first showthatF can-

not be empty. Suppose otherwise. Then Ne1 = (a1e1 + · · · + anen) for some nonnegative ai, where at

leastone, sayak , ispositive. Then,by thenonnegativityofN andsinceNakek /= 0,‖N2e1‖ � ‖N(akek)‖ >
0, which is a contradiction. Therefore, applying a suitable permutation, we can assume that F =
{1, . . . , k} for some k. Since N2 = 0, for each i ∈ {k + 1, . . . , n} we have Nei = ∑

j∈F aijej for some

nonnegative aij . This shows that N can be represented in the desired form with A having no zero

columns (provided N /= 0). If A has zero rows then, applying a permutation and partitioning the first

diagonal block into two diagonal subblocks, we obtain a new A with no zero rows (but some zero

columns). �

Before we can state the main result of this section, we need another lemma.

Lemma 4.6. Let S be an indecomposable semigroupwith finite diagonals. If all nonzeromembers of S have

the same rank, then the set {N ∈ S : N is nilpotent} is finite.
Proof. Denote by r the rank of the nonzero elements in S . The proof is by induction on the size n of

matrices in S . If n = 1 then there are no nonzero nilpotent matrices in S . Let n > 1.

Clearly, since the rank of all nonzero elements ofS is the same, ifN ∈ S is nilpotent thenN2 = 0. By

Lemma 4.5, after a permutation of the basis, we can write N =
[
0 A

0 0

]
for some nonnegative matrix

A without zero rows. Since the number of possible permutations is finite, it is enough, as in Theorem

4.3, to show that S contains only finitely many nilpotent matrices in this block form.

Define

Nk =
{[

0 A

0 0

]
∈ S : A has k nonzero rows and no zero rows

}
.

(Note thatwe have to allowA to have zero columns in the definition above, because the diagonal blocks

have to be square.) For a matrix N ∈ Nk , we will denote by aN the leading entry, A11, of the block A. As

in the Proof of Theorem 4.3, it is enough to show that the set {aN /= 0 : N ∈ Nk} is finite.
Pick any matrixM =

[
H L

J K

]
∈ S such that the leading entry of J is different from zero. If aN /= 0

then NM is not nilpotent, and hence a power of NM is a nonzero idempotent by Corollary 2.3. Denote

this idempotent by EN . SinceN and EN have the same range, ENN = N. In particular, the zero rows of EN

and N are the same. Hence in the block form inherited from N we get EN =
[
Q Z

0 0

]
. Clearly, Q = Q2

and Z = QZ , so that Q has no zero rows.

Case1.Suppose thatEN andN havecommonzerocolumns.Aftera suitablepermutation thematrices

EN and N can be written in the block form
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⎡
⎢⎢⎣
0 0 0 0

0 0 XF XFY

0 0 F FY

0 0 0 0

⎤
⎥⎥⎦ and

⎡
⎢⎢⎣
0 0 0 0

0 0 0 B

0 0 0 C

0 0 0 0

⎤
⎥⎥⎦ ,

respectively, where F has no zero columns and the fourth block column in each of the two matrices

has no common zero columns. Since ENN = N, we get B = XFC and C = FC. In particular FY and C

have no common zero columns. Let j be the number of zero columns in the first two block columns.

Define S′
j as in Lemma 2.6. Then S′

j is an indecomposable semigroup. We will show now that the rank

of nonzero elements in S′
j is equal to r.

Let F̃ =
[
F FY

0 0

]
, X̃ =

[
0 0

X 0

]
, and C̃ =

[
0 C

0 0

]
, then EN =

[
0 X̃F̃

0 F̃

]
and N =

[
0 X̃C̃

0 C̃

]
. Let

V ∈ S′
j be nonzero. Then there exists T =

[
0 U

0 V

]
∈ S . Consider the products ENT =

[
0 X̃F̃V

0 F̃V

]
and

NT =
[
0 X̃C̃V

0 C̃V

]
. Since V /= 0 and the matrices F̃ and C̃ have no common zero columns, one of the

matrices ENT or NT is different from zero and hence has rank r. It is left to note that rank(ENT) =
rank(̃FV), rank(NT) = rank(C̃V), and r = rank(T) � rank(V) � rank(̃FV) ∨ rank(C̃V) = rank(ENT)∨
rank(NT) = r.

So, the semigroup S′
j is an indecomposable semigroup with finite diagonals whose nonzero ele-

ments have constant rank. Also, the size of matrices in S′
j is smaller than n. Thus, by the induction

hypothesis, there are finitely many nilpotent matrices in S′
j . Therefore, the matrix C̃ comes from a

finite set. By Theorem 4.3, there are finitely many idempotents in S , hence the matrix X̃ also comes

from a finite set. Hence so does the matrix N.

Case 2. Suppose EN and N have no common zero columns. Then in particular Q is an idempotent

without zero rows and zero columns.

Write Q = Q1 ⊕ · · · ⊕ Qr , where each Qi is a rank-one idempotent without zero entries. In this

block structure, write

A =
⎡
⎢⎢⎣
A1

...
Ar

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
Q1A1

...
QrAr

⎤
⎥⎥⎦ and J = [

J1 . . . Jr
]
.

Applyinga suitablediagonal similarity (note that thesediagonal similarities come fromafinite set since

they depend on EN only, and the set of idempotents inS is finite by Theorem4.3), we can assume thatQ

is row stochastic. Then the rows of A1 are all the same.WriteNM =
[
AJ AK

0 0

]
. Clearly,Q(AJ) = (AJ)Q

and, since ENN = N, Q(AJ) = AJ. The size of Q is n − k. Let Sn−k be as in Lemma 2.5. Then Sn−k is

indecomposable. Therefore, the matrix AJ is block monomial by Lemma 2.4.

We have

AJ =
⎡
⎢⎢⎣
A1J1 . . . A1Jr
...

...
ArJ1 . . . ArJr

⎤
⎥⎥⎦ .

The leading block of AJ is different from zero. Hence A1Ji = 0 for all i ∈ {2, . . . , r}. The leading entry

of A1 is nonzero. Hence the first row of each Ji (i ∈ {2, . . . , r}) is zero. Denote the sum of elements in

the first row of J1 by s. By analyzing the product of

[
H L

J K

]
and

[
0 A

0 0

]
, we get: the value saN is on

the diagonal of this product, and hence can only take finitely many values. Since s is independent of N

and is different from zero, this shows that aN can only take finitely many values, too. �
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Lemma 4.7. Let S be an indecomposable semigroup with finite diagonals such that all nonzero members

of S have the same rank. Let E ∈ S be a nonzero idempotent. Then the set SE = {S ∈ S : ESE = S} is a

finite group with unit E.

Proof. By Lemma 2.1, ρ(T) = 1 for all T ∈ SE . So, the statement follows from [7, 5.2.2(iv)]. The condi-

tion in [7, 5.2.2(iv)] that S = R+S is not essential since it is only used to establish that SE is bounded

(which follows from [2, Proposition 8]) and that for each S ∈ SE a sequence of powers of S converges

to an idempotent in SE (which follows from Lemma 2.2). �

Theorem 4.8. Let S be an indecomposable semigroup with finite diagonals. If all nonzero members of S
have the same rank, then S is finite.

Proof. Let E be the set of all nonzero idempotents inS . For each E ∈ E , denoteSE = {S ∈ S : ESE = S}.
By Lemma 4.7, SE is a finite group with unit E. We claim that each non-nilpotent member of S

belongs to∪E∈ESE . Indeed, by Lemma 2.2, each S ∈ S is represented in some basis as

[
U 0

0 N

]
, where

U is a unitary diagonal matrix and N is a nilpotent matrix. If S is not nilpotent then N = 0 because the

rank of all nonzero elements of S is the same. Therefore, a power Sm of any non-nilpotent S ∈ S is a

nonzero idempotent E such that ESE = S.

Since the set E is finite by Theorem 4.3, this shows that the set of non-nilpotent matrices in S is

finite. The finiteness of nilpotent elements in S is shown in Lemma 4.6. �

The natural (in view of Theorem 2.8) question whether the finiteness of diagonal entries in the

statement of Theorem4.8 canbe replacedwithfiniteness of the tracehas anegative answer, as Example

2.9 in Section 2 shows. In fact, the semigroup in that example consists of idempotents only, so that the

corresponding question asked about Theorem 4.3 would already have a negative answer.

5. Admissible diagonal values

In this section, we analyze what values there could be on the diagonal positions of a semigroup

with finite diagonals.

Theorem 5.1. Let S be an indecomposable semigroup with finite diagonals. Then for each S ∈ S the se-

quence (Sii) can be partitioned into disjoint subsequences each of which either adds up to 1 or consists of

zeros.

Proof. Let S ∈ S be fixed. By Lemma 2.1, the possible eigenvalues of S are roots of unity and zero.

After a permutation, S can be decomposed into a block triangular form whose diagonal blocks are

indecomposable matrices S1, . . . , Sk . Pick any i ∈ {1, . . . , k} and denote for convenience T = Si. It is

enough to prove that the statement of theorem is valid for T .

Since T is indecomposable, T is not nilpotent. Let r � 1 be the number of nonzero eigenvalues

(countingmultiplicities) of T . Then r = rank(T). ByCorollary2.3, theminimal rankofnonzeromatrices

in thenormclosed semigroupgeneratedby T is r. Hence by the Perron–Frobenius theorem [7, Corollary

5.2.13], after a permutation, T can be written in the block form

T =

⎡
⎢⎢⎢⎣
0 . . . 0 Tr
T1 0 . . . 0
...

. . .
. . .

...
0 . . . Tr−1 0

⎤
⎥⎥⎥⎦ .

If r > 1 then all the diagonal elements are zero, since permutations only change the order of diagonal

elements. If r = 1 then zero has multiplicity n − 1 (where n is the size of T). Since 1 ∈ σ(T), we get

tr(T) = 1, hence the sum of diagonal elements of T is 1. �
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Definition 5.2. Afinite setF ⊆ R+ is calledadmissible ifF canbewrittenasa (notnecessarilydisjoint)

union F = F1 ∪ · · · ∪ Fn where each Fk = {x1, . . . , xik} satisfies the condition that

ik∑
j=1

mjxj = 1

for somemj ∈ N (j = 1, . . . , ik).

Example 5.3. The set
{
1
5
, 1
3
, 2
9
, 2
3

}
is admissible since 5 · 1

5
= 1, 1

3
+ 3 · 2

9
= 1, and 2

3
+ 1

3
= 1. The

sets {0} and
{
3
7
, 2
5

}
are not admissible.

The following lemma is obvious.

Lemma 5.4. A finite union of admissible sets is admissible.

Theorem 5.5. Let F ⊆ R be such that 0 ∈ F. Then F is admissible if and only if there exists an indecom-

posable semigroup S with finite diagonals such that the set of diagonal values of all the matrices in S is

equal to F.

Proof. If S is an indecomposable semigroup with finite diagonals and S ∈ S then the set FS of all the

diagonal entries of S is admissible by Theorem 5.1. Since S is a semigroup with finite diagonals, there

are only finitely many choices for the set FS . Therefore, F = ∪S∈SFS is admissible by Lemma 5.4.

Let F be admissible. Write F = F1 ∪ · · · ∪ Fn as in the definition of an admissible set. We will

show that there exists a semigroup S as in the statement of the theorem.

For each k ∈ {1, . . . , n},writeFk = {x(k)
1 , . . . , x

(k)
ik

} andfixm
(k)
1 , . . . , m

(k)
ik

such that
∑ik

j=1 m
(k)
j x

(k)
j =

1. Put Nk = ∑ik
j=1 m

(k)
j and define the vector y(k) = (y

(k)
i )

Nk

i=1 ∈ RNk by putting

y
(k)
i = x

(k)
j for all i ∈

⎡
⎣ j−1∑
p=1

m(k)
p + 1,

j∑
p=1

m(k)
p

⎤
⎦ ∩ N (j = 1, . . . , ik).

That is, y(k) has exactly m
(k)
j coordinates equal to x

(k)
j . Also

∑Nk

i=1 y
(k)
i = 1. For each i, j ∈ {1, . . . , n},

define the rank-one Nj × Ni matrix

Tij =

⎡
⎢⎢⎢⎣
y
(i)
1 . . . y

(i)
Ni

...
...

y
(i)
1 . . . y

(i)
Ni

⎤
⎥⎥⎥⎦ .

Since each Tij is row stochastic, a routine check shows that for all i, j, k ∈ {1, . . . , n}wehave TijTjk = Tik .

Now let Eij be the block matrix with n vertical and n horizontal blocks such that the (k, l) block of

Eij is equal to the Nk × Nl zero matrix if k /= i or l /= j and is equal to Tij if k = i and l = j. Define

S = {Eij : 1� i, j � n} ∪ {0}.
Then clearly S is an indecomposable semigroup whose set of diagonal elements is F . �

The last statement to be proved in this paper is the assertion that if an admissible setF ⊆ R+ does

not contain zero, then there may not be an indecomposable semigroup of matrices whose diagonal

entries formasetwhich is exactlyF . Itwill needanauxiliary lemmawhichmaybeof some independent

interest.

Lemma 5.6. Let S be a semigroup with finite diagonals such that nomember of S has zero on the diagonal.

If the minimal rank mS of nonzero elements in S is not one, then S is decomposable.
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Proof. Suppose S is indecomposable and mS � 2. Fix a minimal idempotent E ∈ S . Since E has no

zeros on the diagonal, E = E1 ⊕ · · · ⊕ EmS , where each Ei is a strictly positive idempotent.

Let S ∈ S be an arbitrarymatrix. By Corollary 2.3, there ism ∈ N such that (ESE)m is an idempotent

which we will denote by F . Clearly, EF = FE = F . Since the diagonal values of matrices in S do not

admit zeros, E = F by minimality of E.

We claim that up to a permutation similarity, S is block-diagonal relative to the block-structure

inherited from E. Indeed, let us first show that ESE is block-diagonal. Suppose that ESE is not block-

diagonal, that is, ESE has a nonzero, non-diagonal block. Without loss of generality, we can assume

that the (1, 2) block of ESE is not zero:

ESE =

⎡
⎢⎢⎢⎣
E1 X . . . ∗
∗ E2 . . . ∗
...

...
. . .

...
∗ . . . ∗ EmS

⎤
⎥⎥⎥⎦ ,

where X /= 0. Since the diagonal blocks of E are strictly positive, it is easy to see that the (1, 2) block
of (ESE)m would be different from zero, too, which is a contradiction. Therefore, ESE is block-diagonal.

Again, since the diagonal blocks of E are strictly positive, this is only possible if S is block-diagonal

itself. �

Proposition 5.7. IfF =
{
1
2
, 1
3

}
then there is no indecomposable semigroup,S , such that the set of diagonal

entries of matrices in S is equal to F.

Proof. Suppose such a semigroup, S , exists. By Lemma 5.6, S contains an idempotent E of rank one.

Since E cannot have zeros on the diagonal, E must be strictly positive. Since also tr(E) = 1, there are,

up to a diagonal similarity, only two choices for E:

either E =
[
1/2 1/2
1/2 1/2

]
or E =

⎡
⎣1/3 1/3 1/3
1/3 1/3 1/3
1/3 1/3 1/3

⎤
⎦ .

That is, S consists of either 2 × 2 matrices or 3 × 3 matrices. We will consider these two cases

separately.

Assume the size of matrices in S is 2. Let A be a matrix having 1/3 on the diagonal. That is, up to a

permutation, A =
[
1/3 a

b c

]
for some a, b, and c. By Lemma 2.1, the eigenvalues of A are either zero

or roots of unity of degree at most 2. Also, tr(A) � 0. Therefore, the only possible values for tr(A) are 0,

1, and 2. In either case, c cannot belong to F .

Now let the size of matrices in S be 3. Again, fix a matrix A with 1/2 on the diagonal. Denote the

two other diagonal entries of A by a and b. Observe that in this case, the only possible values for tr(A)
are 0, 1, 2, and 3, none of which can be achieved by choosing a and b in F . �
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[6] J. Okniński, Semigroups of Matrices, World Scientific, Singapore, 1998.
[7] H. Radjavi, P. Rosenthal, Simultaneous Triangularization, Springer-Verlag, New York, 2000.
[8] H. Radjavi, P. Rosenthal, Limitations on the size of semigroups of matrices, Semigroup Forum 76 (2008) 25–31.

doi:10.1007/s11117-009-0024-5

	Nonnegative matrix semigroups with finite diagonals
	Introduction
	Preliminary results
	Self-adjoint semigroups
	Constant-rank semigroups
	Admissible diagonal values
	References


